Numerical modeling of pulsatile turbulent flow in stenotic vessels.

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
Journal of Biomechanical Engineering (Impact Factor: 1.52). 09/2003; 125(4):445-60.
Source: PubMed

ABSTRACT Pulsatile turbulent flow in stenotic vessels has been numerically modeled using the Reynolds-averaged Navier-Stokes equation approach. The commercially available computational fluid dynamics code (CFD), FLUENT, has been used for these studies. Two different experiments were modeled involving pulsatile flow through axisymmetric stenoses. Four different turbulence models were employed to study their influence on the results. It was found that the low Reynolds number k-omega turbulence model was in much better agreement with previous experimental measurements than both the low and high Reynolds number versions of the RNG (renormalization-group theory) k-epsilon turbulence model and the standard k-epsilon model, with regard to predicting the mean flow distal to the stenosis including aspects of the vortex shedding process and the turbulent flow field. All models predicted a wall shear stress peak at the throat of the stenosis with minimum values observed distal to the stenosis where flow separation occurred.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gravity associated with postural changes has a strong bearing on haemodynamics of blood flow in arteries. Its effect on stenosed cases has not been widely investigated. In the present study, variation observed in blood flow during postural changes is investigated for different conditions like standing, sleeping and head-down position. A fluid structure interaction study is carried out for idealized normal and 75 % eccentric and concentric stenosed common carotid normal artery. The results clearly indicate the effects of altered gravity on flow conditions. It was found to be very significant during head-down position and demonstrated very high arterial blood pressure in stenosed common carotid when compared with normal carotid.
    Australasian physical & engineering sciences in medicine / supported by the Australasian College of Physical Scientists in Medicine and the Australasian Association of Physical Sciences in Medicine. 02/2014;
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73 Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.
    Computer Methods in Biomechanics and Biomedical Engineering 02/2014; · 1.39 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014