Article

The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment.

Departments of Bioinformatics, Molecular Biology and Protein Chemistry, Genentech, Inc, South San Francisco, California 94080, USA.
Genome Research (Impact Factor: 13.85). 10/2003; 13(10):2265-70. DOI: 10.1101/gr.1293003
Source: PubMed

ABSTRACT A large-scale effort, termed the Secreted Protein Discovery Initiative (SPDI), was undertaken to identify novel secreted and transmembrane proteins. In the first of several approaches, a biological signal sequence trap in yeast cells was utilized to identify cDNA clones encoding putative secreted proteins. A second strategy utilized various algorithms that recognize features such as the hydrophobic properties of signal sequences to identify putative proteins encoded by expressed sequence tags (ESTs) from human cDNA libraries. A third approach surveyed ESTs for protein sequence similarity to a set of known receptors and their ligands with the BLAST algorithm. Finally, both signal-sequence prediction algorithms and BLAST were used to identify single exons of potential genes from within human genomic sequence. The isolation of full-length cDNA clones for each of these candidate genes resulted in the identification of >1000 novel proteins. A total of 256 of these cDNAs are still novel, including variants and novel genes, per the most recent GenBank release version. The success of this large-scale effort was assessed by a bioinformatics analysis of the proteins through predictions of protein domains, subcellular localizations, and possible functional roles. The SPDI collection should facilitate efforts to better understand intercellular communication, may lead to new understandings of human diseases, and provides potential opportunities for the development of therapeutics.

Full-text

Available from: Jeremy A Stinson, Jun 14, 2015
2 Followers
 · 
188 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As their name implies, MMPs were first described as proteases that degrade extracellular matrix proteins, such as collagens, elastin, proteoglycans, and laminins. However, studies of MMP function in vivo have revealed that these proteinases act on a variety of extracellular protein substrates, often to activate latent forms of effector proteins, such as antimicrobial peptides and cytokines, or to alter protein function, such as shedding of cell-surface proteins. Because their substrates are diverse, MMPs are involved in variety of homeostatic functions, such as bone remodeling, wound healing, and several aspects of immunity. However, MMPs are also involved in a number of pathological processes, such as tumor progression, fibrosis, chronic inflammation, tissue destruction, and more. A key step in regulating MMP proteolysis is the conversion of the zymogen into an active proteinase. Several proMMPs are activated in the secretion pathway by furin proprotein convertases, but for most the activation mechanisms are largely not known. In this review, we discuss both authentic and potential mechanisms of proMMP activation.
    Matrix Biology 11/2007; 26(8):587-96. DOI:10.1016/j.matbio.2007.07.001 · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the cloning in 1997 of SEL1L, the human ortholog of the sel-1 gene of C. elegans, most studies have focused on its role in cancer progression and have provided significant evidences to link its increased expression to a decrease in tumor aggressiveness. SEL1L resides on a "Genome Desert area" on chromosome 14q24.3-31 and is highly conserved in evolution. The function of the SEL1L encoded protein is still very elusive although, several evidences from lower organisms indicate that it plays a major role in protein degradation using the ubiquitin-proteosome system. SEL1L has a very complex structure made up of modules: genomically it consists of 21 exons featuring several alternative transcripts encoding for putative protein isoforms. This structural complexity ensures protein flexibility and specificity, indeed the protein was found in different sub-cellular compartments and may turn on a particular transcript in response to specific stimuli. The overall architecture of SEL1L guarantees an exquisite regulation in the expression of the gene.
    Journal of Cellular Physiology 07/2006; 208(1):23-38. DOI:10.1002/jcp.20574 · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian mitochondria may contain up to 1,500 different proteins, and many of them have neither been confidently identified nor characterized. In this study, we demonstrate that C11orf83, which was lacking experimental characterization, is a mitochondrial inner membrane protein facing the intermembrane space. This protein is specifically associated with the bc1 complex of the electron transport chain and involved in the early stages of its assembly by stabilizing the bc1 core complex. C11orf83 displays some overlapping functions with Cbp4p, a yeast bc1 complex assembly factor. Therefore, we suggest that C11orf83, now called UQCC3, is the functional human equivalent of Cbp4p. In addition, C11orf83 depletion in HeLa cells caused abnormal cristae morphology, higher sensitivity to apoptosis, a decreased ATP level due to impaired respiration and subtle, but significant, changes in cardiolipin composition. We showed that C11orf83 binds to cardiolipin by its α-helices 2 and 3 and is involved in the stabilization of bc1 complex-containing supercomplexes, especially the III2/IV supercomplex. We also demonstrated that the OMA1 metalloprotease cleaves C11orf83 in response to mitochondrial depolarization, suggesting a role in the selection of cells with damaged-mitochondria for their subsequent elimination by apoptosis, as previously described for OPA1. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
    Molecular and Cellular Biology 01/2015; 35(7). DOI:10.1128/MCB.01047-14 · 5.04 Impact Factor