Article

Soyasapogenol A and B distribution in soybean (Glycine max L. Merr.) in relation to seed physiology, genetic variability, and growing location.

Guelph Center for Functional Foods, Laboratory Services, University of Guelph, Guelph, Ontario, N1H 8J7, Canada.
Journal of Agricultural and Food Chemistry (Impact Factor: 3.11). 10/2003; 51(20):5888-94. DOI: 10.1021/jf0343736
Source: PubMed

ABSTRACT An efficient analytical method utilizing high-performance liquid chromatography (HPLC)/evaporative light scattering detector (ELSD) was developed to isolate and quantify the two major soyasaponin aglycones or precursors in soybeans, triterpene soyasapogenol A and B. Soaking of seeds in water up to 15 h did not change the content of soyasapogenols. Seed germination had no influence on soyasapogenol A content but increased the accumulation of soyasapogenol B. Soyasapogenols were mainly concentrated in the axis of the seeds as compared with the cotyledons and seed coat. In the seedling, the root (radicle) contained the highest concentration of soyasapogenol A, while the plumule had the greatest amounts of soyasapogenol B. In 10 advanced food-grade soybean cultivars grown in four locations in Ontario, total soyasapogenol content in soybeans was 2 +/- 0.3 mg/g. Soyasapogenol B content (1.5 +/- 0.27 mg/g) was 2.5-4.5-fold higher than soyasapogenol A content (0.49 +/- 0.1 mg/g). A significant variation in soyasapogenol content was observed among cultivars and growing locations. There was no significant correlation between the content of soyasapogenols and the total isoflavone aglycones.

0 Bookmarks
 · 
173 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to evaluate Crossandra infundibuliformis (Acanthaceae family) for its antibacterial, antioxidant activity and phytochemical constituents. The leaves of C. infundibuliformis were screened for antibacterial activity against six pathogenic bacteria isolated from clinical samples such as Shigella dysenteria, Pseudomonas aeruginosa, Serratia marcescens, Salmonella typhimurium, Proteus mirabilis & Staphylococcus aureus by extracting them in ethanol, petroleum ether and water. Ethanol extract exhibited inhibition zone against all the pathogens comparable to the standard (Amikacin), whereas no zone of inhibition was observed in petroleum ether and water extracts. Phytochemical analysis showed the presence of flavonoids, saponins, terpenoids, cardiac glycoside, reducing sugars and tannins. The ethanol extract of C. infundibuliformis leaves appeared to be good antioxidant agent with maximum inhibition percentage of 89.27 ±0.284 % at 16µg/ml whereas standard Quercetin showed maximum inhibition percentage of 94.30 ±0.272 % at 22µg/ml.
    International journal of phytomedicine. 11/2011; 6:151-156.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eight wild soybean accessions with different saponin phenotypes were used to examine saponin composition and relative saponin quantity in various tissues of mature seeds and two-week-old seedlings by LC–PDA/MS/MS. Saponin composition and content were varied according to tissues and accessions. The average total saponin concentration in 1 g mature dry seeds of wild soybean was 16.08 ± 3.13 μmol. In two-week-old seedlings, produced from 1 g mature seeds, it was 27.94 ± 6.52 μmol. Group A saponins were highly concentrated in seed hypocotyl (4.04 ± 0.71 μmol). High concentration of DDMP saponins (7.37 ± 5.22 μmol) and Sg-6 saponins (2.19 ± 0.59 μmol) was found in cotyledonary leaf. In seedlings, the amounts of group A and Sg-6 saponins reduced 2.3- and 1.3-folds, respectively, while DDMP + B + E saponins increased 2.5-fold than those of mature seeds. Our findings show that the group A and Sg-6 saponins in mature seeds were degraded and/or translocated by germination whereas DDMP saponins were newly synthesized.
    Bioscience Biotechnology and Biochemistry 08/2014; · 1.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to evaluate Crossandra infundibuliformis (Acanthaceae family) for its antibacterial, antioxidant activity and phytochemical constituents. The leaves of C. infundibuliformis were screened for antibacterial activity against six pathogenic bacteria isolated from clinical samples such as Shigella dysenteria, Pseudomonas aeruginosa, Serratia marcescens, Salmonella typhimurium, Proteus mirabilis & Staphylococcus aureus by extracting them in ethanol, petroleum ether and water. Ethanol extract exhibited inhibition zone against all the pathogens comparable to the standard (Amikacin), whereas no zone of inhibition was observed in petroleum ether and water extracts. Phytochemical analysis showed the presence of flavonoids, saponins, terpenoids, cardiac glycoside, reducing sugars and tannins. The ethanol extract of C. infundibuliformis leaves appeared to be good antioxidant agent with maximum inhibition percentage of 89.27 ±0.284 % at 16µg/ml whereas standard Quercetin showed maximum inhibition percentage of 94.30 ±0.272 % at 22µg/ml.
    International Journal of Phytomedicine. 10/2011; 6:151-156.

Full-text

Download
22 Downloads
Available from
May 30, 2014