Dynamic Surface Control Approach to Adaptive Robust Control of Nonlinear Systems in Semi-Strict Feedback Form

Authors:
Zi-Jiang Yang, Kyushu University, Japan
Nagai Toshimasa, Kyushu University, Japan
Kanae Shunshoku, Kyushu University, Japan
Wada Kiyoshi, Kyushu University, Japan

Topic:
2.3 Non-Linear Control Systems

Session:
Adaptive Nonlinear Control

Keywords:
Adaptive control, Robust control, Dynamic surface control, Nonlinear damping term, Input-to-state practical stability, Semi-strict feedback form

Abstract

This paper consider the adaptive robust control of a class of single-input-single-output (SISO) nonlinear systems in semi-strict feedback form, where nonlinearities can exist in the input channel of each subsystem. To overcome the problem of `explosion of terms", the recently developed dynamic surface control technique is generalized to the nonlinear systems under study. The design procedure is performed in a step by step manner. At each step of design, a feedback controller strengthened by nonlinear damping terms to counteract modelling errors is designed to guarantee input-to-state practical stability of the corresponding subsystem, and then parameter adaptions are introduced to reduce the ultimate error bound. Finally, simulational examples are included to verify the results of theoretical analysis.
DYNAMIC SURFACE CONTROL APPROACH TO ADAPTIVE ROBUST CONTROL OF NONLINEAR SYSTEMS IN SEMI-STRICT FEEDBACK FORM

Zi-Jiang Yang ∗ Toshimasa Nagai ∗
Shunshoku Kanae ∗ Kiyoshi Wada ∗

∗ Department of Electrical and Electronic Systems Engineering, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
TEL: (+81)92-642-3904, FAX: (+81)92-642-3939
E-mail: yoh@ees.kyushu-u.ac.jp

Abstract: This paper consider the adaptive robust control of a class of single-input-single-output (SISO) nonlinear systems in semi-strict feedback form, where nonlinearities can exist in the input channel of each subsystem. To overcome the problem of “explosion of terms”, the recently developed dynamic surface control technique is generalized to the nonlinear systems under study. At each step of design, a feedback controller strengthened by nonlinear damping terms to counteract modelling errors is designed to guarantee input-to-state practical stability (ISpS which is an extension of the concept of input-to-state stability (ISS), see Jiang & Praly (1998) for definition) of the corresponding subsystem, and then parameter adaptions are introduced to reduce the ultimate error bound. Finally, simulational examples are included to verify the results of theoretical analysis.

Keywords: Adaptive control, Robust control, Dynamic surface control, Nonlinear damping term, Input-to-state practical stability, Semi-strict feedback form.

1. INTRODUCTION

A drawback of the backstepping design procedure is the “explosion of terms” caused by the repeated differentiations of the virtual inputs. Recently, the dynamic surface control (DSC) technique has been proposed to avoid this problem by introducing a first-order low-pass filter at each step of the conventional backstepping design procedure (Yip & Hedrick 1998; Swaroop, Hedrick, Yip & Gerdes, 2000; Wang & Huang 2001).

In this paper, motivated by the pioneering works of the DSC technique reported in the literature, the theory and methodology are generalized to a class of SISO nonlinear systems in semi-strict feedback form, where nonlinearities can exist in the input channel of each subsystem. The design procedure is performed in a step by step manner. At each step of design, a feedback controller strengthened by nonlinear damping terms to counteract modelling errors is designed to guarantee input-to-state practical stability (ISpS which is an extension of the concept of input-to-state stability (ISS), see Jiang & Praly (1998) for definition) of the corresponding subsystem, and then parameter adaptions are introduced to reduce the ultimate error bound. Finally, simulational examples are included to verify the results of theoretical analysis.

2. STATEMENT OF THE PROBLEM

Consider the following SISO nonlinear system in semi-strict feedback form:

\[\dot{x}_i = f_i(x) + g_i(x)x_{i+1} + \Delta_i(x, t), \quad i = 1, \cdots, n-1 \]
\[\dot{x}_n = f_n(x) + g_n(x)u + \Delta_n(x, t) \]
\[y = x_1 \]
where, $\mathbf{x}_i = [x_1, \ldots, x_i]^T (i = 1, \ldots, n)$ is the state vector up to the ith subsystem, y is the system output; $f_i(\mathbf{x}_i), g_i(\mathbf{x}_i)$ are C^1 functions; $\Delta_i(\mathbf{x}_i, t)$ is the lumped nonrepeatable nonlinearities or external disturbances which may be non-lipschitz, but is continuous in its arguments.

The nonlinearities are modelled as follows.

$$\begin{align*}
\hat{\theta}^T_i &= \hat{\theta}^T_i + \gamma \hat{\theta}^T_i \quad \text{for } \gamma > 0
\end{align*}$$

Define the desired domain of operation $\Omega = \{ \mathbf{x}_i \mid \mathbf{x}_i \in \mathbb{R}^n \}$. The adaptive laws with smooth projection ensure $\hat{a}_{i,m} \in [a_{i,m} - \varepsilon, a_{i,m} + \varepsilon]$, $\hat{b}_{i,m} \in [b_{i,m} - \varepsilon, b_{i,m} + \varepsilon]$ for $m = 1, \ldots, M$, where $M = M_{fi}$ or $M = M_{gi}$.

The adaptive laws with smooth projection ensure $\hat{a}_{i,m} \in [a_{i,m} - \varepsilon, a_{i,m} + \varepsilon]$, $\hat{b}_{i,m} \in [b_{i,m} - \varepsilon, b_{i,m} + \varepsilon]$ for $m = 1, \ldots, M$, where $M = M_{fi}$ or $M = M_{gi}$.

The results are used for analysis of the performance of the adaptive laws.

Assumption 3: The input gain $g_i(\mathbf{x}_i)$ of the ith subsystem is bounded away from zero with known sign. Thus, without loss of generality, we assume $g_i(\mathbf{x}_i) > 0$ for $\mathbf{x}_i \in \Omega_x$.

Assumption 4: The parameter bounds are chosen such that $g_i(\mathbf{x}_i) > 0$, $g_i(\mathbf{x}_i) > 0$.

Assumption 5: There exist finite positive constants $M_{\Delta f_i}, M_{\Delta g_i}, M_{\Delta g_i} < \infty$ and known smooth functions $d_{\Delta f_i}(\mathbf{x}_i, t), d_{\Delta g_i}(\mathbf{x}_i, t)$, such that the following inequalities hold for $\mathbf{x}_i \in \Omega_x$:

$$\begin{align*}
\frac{\Delta_i(\mathbf{x}_i, t)}{\sqrt{d_{\Delta f_i}(\mathbf{x}_i, t)^2 + 1}} &\leq M_{\Delta f_i}
\frac{\tilde{g}_i(\mathbf{x}_i)}{\sqrt{d_{\Delta g_i}(\mathbf{x}_i, t)^2 + 1}} &\leq M_{\Delta g_i}
\end{align*}$$

where

$$\tilde{f}_i(\mathbf{x}_i) = f_i(\mathbf{x}_i) - f_i(\mathbf{x}_i) = -\phi_0^T(\mathbf{x}_i) \tilde{a}_i + \eta_f(\mathbf{x}_i)$$

Notice that $d_{\Delta f_i}(\mathbf{x}_i, t), d_{\Delta g_i}(\mathbf{x}_i, t)$, $d_{\Delta f_i}(\mathbf{x}_i, t)$ will be used for nonlinear damping terms.

Assumption 6: All of the following known nonlinear functions $f_0(\mathbf{x}_i), g_0(\mathbf{x}_i), \phi_0^T(\mathbf{x}_i), \phi_0^T(\mathbf{x}_i), d_{\Delta f_i}(\mathbf{x}_i, t), d_{\Delta g_i}(\mathbf{x}_i, t)$, $d_{\Delta f_i}(\mathbf{x}_i)$ which will be used in the designed controller are C^1 functions.

Assumption 7: The reference trajectory $y_r(t)$ is appropriately chosen as a sufficiently smooth function such that

$$\Omega_{y_r} = \{ y_r, \dot{y}_r, \ddot{y}_r \mid \| y_r \|, \| \dot{y}_r \|, \| \ddot{y}_r \| \leq \gamma_r, \| \dot{y}_r \|, \| \ddot{y}_r \|, \| \dddot{y}_r \| \leq \gamma > 0 \} \subset \mathbb{R}^3$$
3. DESIGN OF THE CONTROLLER

In this section, we show the design procedure of the proposed adaptive robust nonlinear controller.

Step 1:
Define the output tracking error as
\[S_1 = x_1 - y_r. \]
(16)

Then, we have the following dynamics of the first subsystem:
\[
\dot{S}_1 = \frac{g_1(S_1)}{g_2(S_1)} (1 + \frac{\gamma_1}{g_1(S_1)}) x_2 + \Delta_{1}(x_n, t) - y_r
\]
(17)

To stabilize the subsystem, we design the virtual input \(\xi_2 \) as the following:
\[
\xi_2 = \frac{\alpha_{10} - \alpha_{11} - \alpha_{12} - \alpha_{13} - \alpha_{14}}{\gamma_2(S_1)} g_2(S_1)
\]
where \(\alpha_{10} = -c_1 S_1 - f_{a1}(S_1) - \phi_1'(S_1) \hat{a}_{14} + y_r \)
\[\alpha_{11} = \kappa_1 \sqrt{d a_1(S_1)^2} + 1 S_1 \]
\[\alpha_{12} = \kappa_2 \sqrt{d a_2(S_1)^2} + 1 S_1 \]
\[\alpha_{13} = \kappa_3 \sqrt{d a_3(S_1)^2} + 1 S_1 \]
\[\alpha_{14} = \kappa_4 \sqrt{d a_4(S_1)^2} + 1 S_1 \]

Motivated by the DSC technique (Yip & Hedrick 1998; Swaroop, Hedrick, Yip & Gerdes, 2000; Wang & Huang 2001), a first-order low-pass filter with a small time constant \(\tau_2 \) is introduced here to avoid involving calculation of \(\xi_2 \).

Letting \(\xi_2 \) pass through the low-pass filter and defining a new signal \(\xi_{2d} \), we have
\[\tau_2 \xi_{2d} + \xi_{2d} = \xi_2, \quad \xi_{2d}(0) = \xi_2(0) \]
(19)

Define the error signal \(S_2 = x_2 - \xi_{2d} \) and the error signal between \(\xi_2 \) and its filtered version \(\xi_{2d} \)
\[y_2 = \xi_{2d} - \xi_2 = -\tau_2 \xi_{2d} \]
(20)

It follows that
\[x_2 = S_2 + y_2 \]
\[y_2 = \xi_{2d} - \xi_2 = -\tau_2 \xi_{2d} \]
where \(B_{2d} \) is an appropriate continuous function of its arguments, and \(S_{1a} = [S_1, y_2]^{T}, \kappa_1 = [\kappa_{11}, \kappa_{12}, \kappa_{13}, \kappa_{14}]^{T}, \hat{\theta}_1 = [\hat{a}_{14}^{T}, \hat{b}_{14}^{T}]^{T} \).

Our task here is to establish the ISpS of the combined subsystem \(C1 \):
\[
C1 : \begin{align*}
S_1 &= -c_1 S_1 - D_1 S_1 + \frac{\hat{g}_1(S_1)}{g_2(S_1)} \alpha_{10} + \Delta_{1}(x_n, t) + g_1(S_1) \otimes_1(S_{1a} + y_2) \\
y_2 &= -\frac{y_2}{\tau_2} + B_{2d}
\end{align*}
\]
(22)

where \(D_1 \) and \(B_{2d} \) are appropriate continuous functions of their arguments.

\[
D_1 = \kappa_1 \sqrt{d a_1(S_1)^2} + 1 + \kappa_2 \sqrt{d a_2(S_1)^2} + 1 + \kappa_3 \sqrt{d a_3(S_1)^2} + 1 + \kappa_4 \sqrt{d a_4(S_1)^2} + 1 \\
B_{2d} = B_{2d}(S_{1a}, c_1, \kappa_1, \hat{\theta}_{11}(\gamma_1), \hat{\theta}_{14}(\gamma_1), \hat{\theta}_{14}(\gamma_1), \Delta_{1}(x_n, t), y_r, y_r)
\]
(23)

and \(\gamma_1 = [\gamma_{11}, \gamma_{12}]^{T}, \theta_1 = [\alpha_{14}^{T}, \beta_{14}]^{T}, \theta_1 = [\alpha_{14}^{T}, \beta_{14}]^{T} \).

According to assumptions 7 and 8, \(|D_1| \) has a maximum \(\overline{D}_1 \) on \(S_{1a}^{\text{large}} \times \Omega_{y_r} \), and \(|B_{2d}| \) has a maximum \(\overline{B}_{2d} \) on \(S_{1a}^{\text{large}} \times \Omega_{y_r} \times \Sigma_{2d}^{\text{large}} \).

The time-constant of the low-pass filter satisfy
\[\frac{1}{\tau_2} \geq \frac{1}{\gamma_2(S_1)}, \quad c_1 + D_1 + \frac{\overline{B}_{2d}^2}{2\varepsilon} \]
(25)

where \(\overline{B}_{2d} \) is the maximum of \(g_1 \) on \(\Omega_x \subset \mathbb{R}^n \), and \(\varepsilon \) is an arbitrary positive number. Notice that (25) has transparent physical meaning, i.e., stronger control effort, larger adaptive gains and faster changing reference trajectory require a smaller filter time-constant \(\tau_2 \).

Then the ISpS property of the combined system (22) can be shown in the following lemma (the proof is omitted due to limit of paper length):

Lemma 1. Let assumptions 1–8 hold. If \(S_2 \) is made uniformly bounded at the next step, then there exists a set of \(\tau_2, c_1, \kappa_1, \gamma_1, \hat{\theta}_1, \hat{\theta}_1, \) for an appropriate set of initial conditions such that the combined system (22) is ISpS:
\[|S_{1a}| \leq |S_{1a}(0)| e^{-\epsilon_1 t/2} + \sqrt{\tau_2} \sup_{0 \leq \tau \leq t} \mu_1(\tau) \]
where \(\mu_1(t) \) is a uniformly bounded signal:
\[
\mu_{11}(t) = e^{-\epsilon_1 t/2} + \sqrt{\tau_2} \sup_{0 \leq \tau \leq t} \mu_1(\tau)
\]
(22)

where \(\theta_1 = [\alpha_{14}^{T}, \beta_{14}]^{T} \).

The lemma implies that we can make \(S_{1a} \) stay in a compact subset \(\Omega_{S_{1a}} \subset S_{1a}^{\text{large}} \).

Assumption 8: The states of the combined error system stay in a compact set \(\Omega_{S_{1a}} \times \Omega_{y_r} \times \Sigma_{2d}^{\text{large}} \subset \mathbb{R}^3 \)
\[\Omega_{S_{1a}} = \{ S_{1a} \mid |S_{1a}| \leq S_{1a}^{\text{large}}, y_r > 0 \} \subset \mathbb{R}^2 \]
\[\Omega_{y_r} = \{ y_r \mid |S_{1a}| \leq \Sigma_{2d}^{\text{large}}, y_r > 0 \} \subset \mathbb{R}^1 \]
(24)

According to assumptions 7 and 8, |\(D_1 | \) has a maximum \(\overline{D}_1 \) on \(S_{1a}^{\text{large}} \times \Omega_{y_r} \), and |\(B_{2d} | \) has a maximum \(\overline{B}_{2d} \) on \(S_{1a}^{\text{large}} \times \Omega_{y_r} \times \Sigma_{2d}^{\text{large}} \). Let the time-constant of the low-pass filter satisfy
\[|S_{1a}| \leq |S_{1a}(0)| e^{-\epsilon_1 t/2} + \sqrt{\tau_2} \sup_{0 \leq \tau \leq t} \mu_1(\tau) \]
where \(\mu_1(t) \) is a uniformly bounded signal:
\[
\mu_{11}(t) = e^{-\epsilon_1 t/2} + \sqrt{\tau_2} \sup_{0 \leq \tau \leq t} \mu_1(\tau)
\]
(22)

where \(\theta_1 = [\alpha_{14}^{T}, \beta_{14}]^{T} \).

The lemma implies that we can make \(S_{1a} \) stay in a compact subset \(\Omega_{S_{1a}} \subset S_{1a}^{\text{large}} \).
Also, assumption 8 holds in the sense that we can find a compact set \(\mathcal{D}_{S_{1a}} \subset \Omega_{S_{1a}} \subset S_{1a}^{\text{large}} \) such that \(S_{1a} \in \Omega_{S_{1a}} \subset S_{1a}^{\text{large}} \) for all \(S_{1a}(0) \in \mathcal{D}_{S_{1a}} \). Finally, notice the nonlinear damping terms appear in the denominator of \(\mu_1 \) so that the modelling errors that appear in the numerator are suppressed.
Furthermore, to analyze the ultimate error bound achieved by the adaptive law, we define the following Lyapunov function:

\[V_1 = \frac{s_i^2}{2} + V(\hat{a}_{i+1}, a_i) + V(\hat{b}_{i+1}, b_i) \]

Then we have the following results:

Lemma 2. Let the conditions and results of lemma 1 hold. If the adaptive law (8) where \(i = 1 \) is used, and \(S_2 \) is made uniformly ultimately bounded with ultimate bound \(S_2^* \) at the next step, then

\[|S_i(t)| \leq \frac{C_{\Delta 1} M_{\Delta 1}}{\kappa_{11}} + \frac{C_{\Delta 2} M_{\Delta 1}}{\kappa_{12}} + \frac{C_{\Delta 3} M_{\Delta 1}}{\kappa_{13}} + \frac{s_i^2}{\kappa_{14}} + 1 \sqrt{\frac{\varphi_i}{\zeta_i}} \text{ as } t \geq \frac{3}{2} T_i + 1 \]

with \(\beta C_{f_1}, \beta C_{g_1}, \beta C_{\Delta 1} > 0 \).

Steps 2 \(\leq i \leq n - 1 \):

The dynamics of the \(i \)th subsystem is obtained as

\[\dot{S}_i = \xi_i - \xi_{i:id} = f_i(\tau_i) + g_i(\tau_i)S_{i+1} + \Delta_i(\tau_i, t) - \xi_{i:id} \]

Then we design the following controller as we did in step 1:

\[\zeta_{i+1} = \frac{\alpha_0 - \alpha_{i-4} - \alpha_{i-2} - \alpha_{i-3} - \alpha_{i-4}}{\frac{\varphi_i}{\zeta_i}} \]

\[\xi_{i+1} = \frac{-\xi_{i:id} - \xi_{i=id} + \xi_{i:id}}{\varphi_i(\tau_i)} - \frac{\xi_{i:id}}{\varphi_i(\tau_i)} + \xi_{i:id} \]

\[\xi_{i+1} = \frac{\alpha_1 - \alpha_{i-4} \sqrt{\Delta_i(\tau_i)}^2 + 1S_i}{\varphi_i(\tau_i)} + 1S_i \]

\[\xi_{i+1} = \frac{\alpha_1 - \alpha_{i-4} \sqrt{\Delta_i(\tau_i)}^2 + 1S_i}{\varphi_i(\tau_i)} + 1S_i \]

where \(\beta_1 \), \(\beta_2 \), \(\beta_3 \), \(\beta_4 \) > 0, and \(\alpha_4 > 1 \).

Letting \(\xi_{i:id} \) pass through the low-pass filter and defining a new signal \(\xi_{i:id} \), we have

\[\tau_{i+1} \xi_{i:id} + \xi_{i:id} = \xi_{i+1} \]

Define the error signals

\[S_{i+1} = x_{i+1} - \xi_{i+1:id}, \quad y_{i+1} = \xi_{i+1:id} - \tau_{i+1} \]

It follows that

\[x_{i+1} = B_{i+1}(\tilde{S}_{i+1}, \tau_{i+1}, \ldots, \tau_{i+1}, S_{i+1}, \xi_{i+1:id}, \xi_{i+1:id}, \tilde{\theta}_{i+1}, \gamma_{i+1}) \]

\[S_{i+1}, c_i, \xi_{i+1:id}, \xi_{i+1:id}, \gamma_{i+1}, \delta_{i+1} \]

where \(B_{i+1}(\cdot) \) is an appropriate continuous function of its arguments, and \(\tilde{S}_{i+1} = [S_i, y_{i+1}]^T, \kappa_i = [\kappa_{i1}, \kappa_{i2}, \kappa_{i3}, \kappa_{i4}]^T, \tilde{\theta}_{i+1} = [\hat{a}_{i+1}^T, \hat{b}_{i+1}^T]^T \).

Our task here is to establish the ISpS of the combined subsystem \(c_i \):

\[c_i = \begin{cases} S_i = -c_i S_i - D_i S_i + \tilde{f}_i(\tau_i) + \frac{g_i(\tau_i)}{\tilde{g}_i(\tau_i)} a_{i/id} + \Delta_i(\tau_i, t) + \tilde{g}_i(\tau_i)(S_{i+1} + y_{i+1}) \\ y_{i+1} = -y_{i+1:id} + B_{i+1}(\tilde{S}_{i+1}) \end{cases} \]

where \(D_i \) and \(B_{i+1}(\cdot) \) are appropriate continuous functions of their arguments.

According to assumptions 7~9, \(|D_i| \) has a maximum \(D_{\text{max}} \) on \(\Omega_{\text{large}} \times \Omega_{\text{large}} \times \Omega_{\text{large}} \times \Omega_{\text{large}} \times \Omega_{\text{large}} \times \Omega_{\text{large}} \), and \(|B_{i+1}| \) has a maximum \(B_{\text{max}} \) on \(\Omega_{\text{large}} \times \Omega_{\text{large}} \times \Omega_{\text{large}} \times \Omega_{\text{large}} \times \Omega_{\text{large}} \times \Omega_{\text{large}} \). Let

\[\frac{1}{\kappa_i} \geq \frac{1}{\kappa_i} \tilde{g}_i(\tau_i) + c_i + D_i + B_{i+1}(\tilde{S}_{i+1}) \]

where \(\tilde{g}_i(\tau_i) \) is the maximum of \(g_i \) on \(\Omega_{\text{large}} \subset \mathbb{R}^n \), and \(\epsilon \) is an arbitrary positive number.

Then we have the following results:

Lemma 3. Let assumptions 1~9 hold. If \(S_{i+1} \) is made uniformly bounded at the next step, then there exists a set of \(\tau_{i+1}, \tau_i, \ldots, y_{i+1}, x_{i+1}, c_i, \kappa_i, \gamma_i, \delta_i, \tilde{\theta}_{i+1} \), \(c_i, \kappa_i, \gamma_i, \delta_i, \tilde{\theta}_{i+1} \), under an appropriate set of initial conditions such that the combined system (32) is ISpS:

\[|S_{i+1}| \leq |S_i| e^{-\frac{\epsilon}{\gamma_i}} + \sqrt{\frac{\varphi_i}{\zeta_i}} + \sup_{\tau_{i+1}, \tau_i, \gamma_i, \delta_i, \tilde{\theta}_{i+1}} \mu_i(\tau) \]

where \(\mu_i(t) \) is a uniformly bounded signal:

\[\mu_i(t) = \mu_i(t) + \mu_i(t) |S_{i+1}| + \frac{\tilde{g}_i(\tau_i) + \tilde{g}_i(\tau_i)}{\tilde{g}_i(\tau_i)} \]

where \(D_i = \frac{\kappa_i}{\kappa_i} \sqrt{D_i(\tau_i)^2 + 1 + \kappa_i^2 \sqrt{D_i(\tau_i)^2 + 1 + \kappa_i g_i(\tau_i)}} \)

Lemma 4. Let the conditions and results of lemma 3 hold. If the adaptive law (8) for each \(i \) is used and \(S_{i+1} \) is made uniformly ultimately bounded with ultimate bound \(S_{i+1}^* \) at the next step, then

\[|S_{i+1}(t)| \leq \frac{C_{\Delta 1} M_{\Delta 1}}{\kappa_{11}} + \frac{C_{\Delta 2} M_{\Delta 1}}{\kappa_{12}} + \frac{C_{\Delta 3} M_{\Delta 1}}{\kappa_{13}} + \frac{s_i^2}{\kappa_{14}} + 1 \sqrt{\frac{\varphi_i}{\zeta_i}} \text{ as } t \geq \frac{3}{2} T_i + 1 \]

with \(\beta C_{f_1}, \beta C_{g_1}, \beta C_{\Delta 1} > 0 \).

Step n:
The dynamics of the nth subsystem is obtained as
\[S_n = f_n(x_n) + \tau_n(x_n)u + \Delta_n(x_n,t) - \xi_{nd} \]
(36)
Then to stabilize the final subsystem we design the following controller:
\[u = \frac{\alpha_n - \alpha_n(0) - \alpha_n(1)}{\gamma_n(x_n)} \]
\[\alpha_n = -c_nS_n - D_nS_n - \phi_n^2(x_n)\tilde{\alpha} + \eta_n(x_n) \]
\[\alpha_n = \frac{\kappa_n\sqrt{d_\Delta(x_n)^2 + 1}S_n}{g_n(x_n)} \]
(37)
Substituting u into the subsystem, we have
\[S_n = -c_nS_n - D_nS_n - \phi_n^2(x_n)\tilde{\alpha} + \eta_n(x_n) \]
\[+ \frac{\kappa_n\sqrt{d_\Delta(x_n)^2 + 1}S_n}{g_n(x_n)} \]
where
\[D_n = \left(\kappa_n\sqrt{d_\Delta(x_n)^2 + 1} + \kappa_n\sqrt{\alpha_n^2 + 1} \right) \frac{g_n(x_n)}{\alpha_0 + \Delta_n(x_n,t)} \]
(38)
Similar to the previous steps, we have the following results:

Lemma 5. Let assumptions 1~9 hold. There exists a set of $\tau_2, \ldots, \tau_n, c_1, \kappa_1, \gamma_1, \theta_1, \theta_2, \ldots, c_n, \kappa_n, \gamma_n, \theta_n, \eta_n$, for an appropriate set of initial conditions such that subsystem (38) is ISS:
\[|S_n| \leq |S_n(0)|e^{-c_n/2} + \sup_{0 \leq \tau \leq t} \mu_n(t) \]

where $\mu_n(t)$ is a uniformly bounded signal:
\[\mu_n(t) = \frac{|\tilde{f}_n(x_n)| + |\tilde{\eta}_n(x_n)| + |\tilde{\alpha}_n| + \Delta_n(x_n,t)|}{2} \]

Lemma 6. Let the conditions and results of lemma 5 hold. If the adaptive law (8) where $i = n$ is used, then
\[|S(t)| \leq \sum_{i=1}^{n} \alpha_{i}S_i + \sum_{i=1}^{n} \alpha_{i}S_i \]
with $\sum_{i=1}^{3} \alpha_{i}S_i, \sum_{i=1}^{3} \alpha_{i}S_i, \sum_{i=1}^{3} \alpha_{i}S_i > 0$. Notice that these constants can be made small by the control gains $\kappa_1, \kappa_2, \kappa_3, \kappa_4$ and ξ_i.

Finally, the theoretical results are summarized in the following theorem (detailed analysis is omitted due to the limit of paper length):

Theorem 1. Let the assumptions and results of lemmas 1~6 hold. If the reference trajectory, the initial error signals and the design parameters are chosen appropriately, the following results hold:
(1) There exists a compact set $\mathcal{D}_x \subset \Omega_x$ of the initial states such that $\mathcal{F}_n \in \Omega_x$ for all $\mathcal{F}_n(0) \in \mathcal{D}_x$.
(2) The overall error system is ISpS as characterized in (40).
(3) The ultimate bound of $|S(t)|$ can be made sufficiently small as shown in (44).

Remark: Our practical purpose however, is to let the output $y = x_1$ track the reference trajectory y_r. Therefore, it is not necessary to make all of the error signals very small by paying great efforts of damping control and network adaption. Therefore we can set weak control gains and discard adaptive networks for the subsystems with large index i. The trajectory tracking task can be achieved by adopting relatively strongly control gains and adaptive networks for the first subsystem (17). See the results of lemmas 1 and 2. This policy is called "partial adaption".

4. ISpS Stability and Ultimate Bound of the Overall Error System

Recall the results of lemmas 1, 3 and 5. We can find that the overall error system is a cascade of the subsystems. Along the same lines of the proof of lemma C.4 in Krsitić, Kanellakopoulos & Kokotovic (1999), we have the ISpS property of the overall error system:
\[|S(t)| \leq \sqrt{2\lambda_1 e^{-\rho_c/2}}|S(0)| + \varepsilon_{\varepsilon(n)} + \varepsilon_{\mu(n)}(0,t) \]
(40)
where
\[S = [S_{1,1}, \ldots, S_{n-1,1})^T, \]
\[\varepsilon_{\varepsilon_1}(t) = \lambda_1 e^{-\rho_c/2}S(0) + \varepsilon_{\varepsilon(n)} + \varepsilon_{\mu(n)}(0,t) \]
(41)
with $\lambda_1 = \lambda_1 e^{-\rho_c/2}$, $\rho_1 = \min(\rho_c/2, c_1/2)$, $\lambda_1 = \|\mu_1\|_{\infty}$.
5. SIMULATIONAL EXAMPLES AND CONCLUSIONS

Consider the following nonlinear system:

\[\begin{align*}
x_1 &= f_1(x_1) + g_1(x_1)x_2 + \Delta_1(x_3, t) \\
x_2 &= f_2(x_2) + g_2(x_2)x_3 + \Delta_2(x_3, t) \\
x_3 &= f_3(x_3) + g_3(x_3)u + \Delta_3(x_3, t)
\end{align*} \tag{45} \]

where

\[\begin{align*}
f_1(x_1) &= 2x_1^2\sin x_1 \\
f_2(x_2) &= x_1^2 + x_1x_2 + x_2^2\cos x_1 \\
f_3(x_3) &= x_1x_3 + x_1^2\sin x_3 + x_2^2 + x_3 + x_3\sin x_2 \\
g_1(x_1) &= 1 + 0.2x_1^2 \\
g_2(x_2) &= 2 + (x_2\cos x_1)^2 \\
g_3(x_3) &= 3 + 2x_1\sin(x_1 + x_2 + x_3), \\
\Delta_1(x_3, t) &= 0.3(\gamma_1^{2/3}) \sin x_2 \\
\Delta_2(x_3, t) &= 0.3\gamma_1 x_1\sin x_3 \\
\Delta_3(x_3, t) &= 0.3\gamma_1\sin(10t)
\end{align*} \tag{46} \]

The \textit{a priori} known nominal functions are:

\[\begin{align*}
f_{01}(x_1) &= 0, & f_{02}(x_2) &= 0, & f_{03}(x_3) &= 0 \\
g_{01}(x_1) &= 1, & g_{02}(x_2) &= 2, & g_{03}(x_3) &= 3
\end{align*} \tag{47} \]

The following known smooth functions are used for nonlinear damping terms:

\[\begin{align*}
d_{\Delta_1}(x_1) &= x_1, & d_{\Delta_2}(x_1) &= x_1^2 \\
d_{\Delta_2}(x_2) &= x_1x_2, & d_{\Delta_2}(x_2) &= x_1^2 + x_2^2 \\
d_{\Delta_3}(x_3) &= x_3, & d_{\Delta_3}(x_3) &= x_1^2 + x_2^2 + x_3^2
\end{align*} \tag{48} \]

Design parameters are given as follows.

\[\begin{align*}
c_1 = c_2 = c_3 &= 5, & \tau_2 &= 0.015, & \tau_3 &= 0.01 \\
\kappa_11 = \kappa_14 &= 4, & \kappa_12 = \kappa_13 &= 2 \\
\kappa_21 = \kappa_22 &= \kappa_23 &= 1, & \kappa_14 &= 2 \\
\kappa_31 = \kappa_32 &= \kappa_33 &= 1
\end{align*} \tag{49} \]

Two controllers are implemented. The first one is a fixed robust controller without parameter adaption, whose results are shown in figure 1. It can be verified that all the internal signals are bounded.

The second one is a partially adaptive robust controller where only the first subsystem’s nonlinear functions are updated adaptively. The nonlinear functions are approximated by RBF networks where the numbers of the basis functions are chosen as \(M_{f1} = M_{g1} = 15 \). The adaptive gains are chosen as \(\gamma_{a1} = 80, \gamma_{a2} = 2 \). It can be found in figure 2 that the tracking error \(S_1 \) is significantly reduced with satisfactory transient behaviour.

\section*{REFERENCES}

