LabeledIn: Cataloging labeled indications for human drugs

Ritu Khare \(^a\), Jiao Li \(^b\), Zhiyong Lu \(^a,\ast\)

\(^a\) National Center for Biotechnology Information (NCBI), U.S. National Institutes of Health, 8600 Rockville Pike, Bethesda, USA
\(^b\) Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China

ABSTRACT

Drug–disease treatment relationships, i.e., which drug(s) are indicated to treat which disease(s), are among the most frequently sought information in PubMed\(^*\). Such information is useful for feeding the Google Knowledge Graph, designing computational methods to predict novel drug indications, and validating clinical information in EMRs. Given the importance and utility of this information, there have been several efforts to create repositories of drugs and their indications. However, existing resources are incomplete. Furthermore, they neither label indications in a structured way nor differentiate them by drug-specific properties such as dosage form, and thus do not support computer processing or semantic interoperability. More recently, several studies have proposed automatic methods to extract structured indications from drug descriptions; however, their performance is limited by natural language challenges in disease named entity recognition and indication selection.

In response, we report LabeledIn: a human-reviewed, machine-readable and source-linked catalog of labeled indications for human drugs. More specifically, we describe our semi-automatic approach to derive LabeledIn from drug descriptions through human annotations with aids from automatic methods. As the data source, we use the drug labels (or package inserts) submitted to the FDA by drug manufacturers and made available in DailyMed. Our machine-assisted human annotation workflow comprises: (i) a grouping method to remove redundancy and identify representative drug labels to be used for human annotation, (ii) an automatic method to recognize and normalize mentions of diseases in drug labels as candidate indications, and (iii) a two-round annotation workflow for human experts to judge the pre-computed candidates and deliver the final gold standard.

In this study, we focused on 250 highly accessed drugs in PubMed Health, a newly developed public web resource for consumers and clinicians on prevention and treatment of diseases. These 250 drugs corresponded to more than 8000 drug labels (500 unique) in DailyMed in which 2950 candidate indications were pre-tagged by an automatic tool. After being reviewed independently by two experts, 1618 indications were selected, and additional 97 (missed by computer) were manually added, with an inter-annotator agreement of 88.35% as measured by the Kappa coefficient. Our final annotation results in LabeledIn consist of 7805 drug–disease treatment relationships where drugs are represented as a triplet of ingredient, dose form, and strength.

A systematic comparison of LabeledIn with an existing computer-derived resource revealed significant discrepancies, confirming the need to involve humans in the creation of such a resource. In addition, LabeledIn is unique in that it contains detailed textual context of the selected indications in drug labels, making it suitable for the development of advanced computational methods for the automatic extraction of indications from free text. Finally, motivated by the studies on drug nomenclature and medication errors in EMRs, we adopted a fine-grained drug representation scheme, which enables the automatic identification of drugs with indications specific to certain dose forms or strengths. Future work includes expanding our coverage to more drugs and integration with other resources.

Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Drug–disease treatment relationships are among the top searched topics in PubMed\(^*\) [1,2]. Such relationships are...
established during the drug discovery and development process, which establishes the therapeutic intent of a given drug based on its properties and target patient characteristics. The primary application of such information is to inform healthcare professionals and patients for questions like “what drugs may be prescribed for hypertension” or “what are the indications of Fluoxetine” [3]. These relationships are also used for feeding the Google Knowledge Graph, developing computational methods for predicting and validating results of novel drug indications [4–6] and drug side effects [7], assisting PubMed Health [http://www.ncbi.nlm.nih.gov/pubmedhealth] editors to cross-link drug and disease monographs [8]. More recently, such information is found to be critical in validating patient notes and medication-problem links in electronic medical records (EMRs) [9–11]. Given this variety of applications, it is important to have a comprehensive gold standard of drug–disease treatment relationships, that is (i) accurate and derived from a credible source, and (ii) structured to support computer processing, and (iii) normalized to precise concepts in standard vocabularies, such as UMLS [12] and RxNorm [13], to facilitate semantic understanding and interoperability. The third desired property deserves further explanation. To precisely represent the treatment relationship, it is necessary that diseases and drugs are normalized to the most appropriate abstraction levels:

- Disease Normalization: The diseases should be normalized to the most specific concepts. For instance, if a drug is used for treating “respiratory tract infections,” mapping to the generic concept “infections” would not only be imprecise but also inaccurate since the drug may not treat all kinds of infections.
- Drug Normalization: A drug can be represented at several levels of granularity based on its properties. While the therapeutic intent of a drug is largely determined by its active ingredient (IN), there is evidence showing that it may also be dictated by its dose form (DF) and strength (ST) [10,14,15]. For example, the indications of Ketorolac oral tablet are different from those of the ophthalmic solution (see Table 1).

Several existing knowledge bases such as DrugBank [16] and MedicineNet [17] already contain drug–disease relationships. However, they are unstructured (i.e. described in free text), and thus, do not allow automatic computer analysis. Google’s Freebase [18] is a structured resource, but the drugs are coarsely represented as ingredients, and the diseases are not normalized. The NDF-RT [19] provides structured and normalized information. However, it is found incomplete with respect to the list of drug indications [20,21], and the drug–disease relationships are not separately labeled according to different dose forms or strengths. For instance, the Ketorolac drug is manufactured in multiple dose forms, each serving a different purpose, e.g. injectable solution is used for pain, and ophthalmic solution for conjunctivitis. Despite this, the NDF-RT links all the different forms of this drug to the same set of diseases: inflammation, allergic conjunctivitis, photophobia, and pain.

In addition, there have been multiple attempts to use automated methods for extracting interpretable (i.e. structured and normalized) indication information from existing textual resources (e.g. the DailyMed website [22]) using knowledge-based approaches. SIDER 2 [23] is a public resource focused on identifying adverse drug reactions and indications from the FDA drug labels and public documents. The method used to extract indications is based on a UMLS-based lexicon lookup technique followed by side effects filtering. The October 2012 version of SIDER 2 contains indications for 10319 drug labels. Neveol and Lu [24] used text mining techniques to extract indications from FDA drug labels, and automatically extract 2200 relationships between 1263 ingredients and 581 diseases using SemRep [25] with precision of 73%. Wei and colleagues [26] created an ensemble indication resource called MEDI by integrating information from four resources: SIDER 2, NDF-RT, MedlinePlus, and Wikipedia. A subset of MEDI was sampled and reviewed by two physicians in two rounds to further determine the automatic inclusion strategy for a high precision dataset. The final computer-generated dataset (MEDI-HPS) contains 13304 ingredient-indication pairs corresponding to 2136 ingredients with an estimated 0.92 precision and 0.30 recall. Fung et al. [21] designed a DailyMed-based indication extraction system (SPL-X) for decision support in electronic medical records. SPL-X uses MetaMap [27], negation removal, and semantic reclassification techniques [28,29] for disease concept identification. SPL-X was applied to 2105 unique drug labels, a subset of which was evaluated by seven physicians showing 0.77 in precision and 0.95 in recall.

As found in the abovementioned studies [21,24,26], automatic methods alone are not yet sufficient to deliver a gold standard due to the challenges in natural language processing (NLP), including: (a) the difficulties with automatic disease recognition and normalization [30–32], and (b) the presence of disease mentions other than indications in drug labels. To illustrate these, Table 1 contains the indication fields of two sample drug labels (dl1 and dl2: same ingredient but different dose forms) in DailyMed [22], which houses the most up-to-date drug labels submitted to the FDA by drug manufacturers. Table 1 also shows the disease names found by a state-of-the-art NLP tool (column 3, in italics) and the final indications after human revision (column 4, in italics). As can be seen, recognition of disease mentions is not trivial (“ocular itching” vs. “itching” in dl1; “severe pain” vs. “moderate to severe pain” in dl2). In addition, drug labels could contain negative and irrelevant (“cataract” mention in dl1; “analgesia” mention in dl2) disease mentions.

Unlike previous studies [22,24,25], in this work we resort to human annotation to create a gold standard of drug indications with the aids from automatic text-mining tools, as they have been shown to be useful for assisting manual curation [33,34]. This

<table>
<thead>
<tr>
<th>Drug label</th>
<th>Drug concept</th>
<th>Indications (identified automatically)</th>
<th>Indications (improved using expert judgments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dl1 Ketorolac Ophthalmic Solution (RxNorm CUI: 377446)</td>
<td>ACULAR ophthalmic solution is indicated for the temporary relief of ocular itching due to seasonal allergic conjunctivitis</td>
<td>ACULAR ophthalmic solution is indicated for the temporary relief of ocular itching due to seasonal allergic conjunctivitis</td>
<td></td>
</tr>
<tr>
<td>dl2 Ketorolac Oral Tablet (RxNorm CUI: 372547)</td>
<td>Ketorolac tromethamine tablets are indicated for short term (5 days) management of moderate to severe pain that requires analgesia at the opioid level</td>
<td>Ketorolac tromethamine tablets are indicated for short term (5 days) management of moderate to severe pain that requires analgesia at the opioid level</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Drug with multiple dose forms: Computer Pre-annotations and expert judgments.
study is built on a pilot study [35] in which we evaluated the feasibility of our semi-automated annotation framework on a small set of 100 drug labels with two human annotators. Based on the error analysis of the previous study, we have significantly improved the annotation framework, revised the annotation guidelines, and produced a resource covering 8151 DailyMed drug labels in the current study. Another unique aspect of the current work is that each indication is linked to a specific textual location in the source drug label(s). Not only does this provide evidence and context of selected indications, such as linked textual information, but also can serve as training data for the development of supervised machine-learning methods for automatic indication extraction. Finally, this study uses a finer-grained scheme where each drug is represented as a 3-tuple <Active Ingredient (IN), Dose Form (DF), Drug Strength (ST)> when linking to its labeled indications.

2. Materials and methods

2.1. Overall workflow for annotating drug indications

Fig. 1 shows an outline of our semi-automated approach consisting of three distinct steps: (i) drug label selection; (ii) automatic disease recognition; and (iii) manual indication annotation. Each step is detailed in Sections 2.3–2.5.

2.2. DailyMed: The source of FDA drug labels

DailyMed is a drug database maintained by the National Library of Medicine (NLM) [22]. DailyMed is considered to be the largest resource on marketed drugs containing high-quality information about human and animal drugs including both over-the-counter and prescription drugs. All drug labels are available in HTML and XML formats. Fig. 2 shows the Web version for a drug label. Each label is organized into multiple sections; the “INDICATIONS AND USAGE” section provides information on drug indications in a narrative format. The NLM editors assign normalized drug concepts to the drug labels (see “RxNorm Names” box in Fig. 2), and hence the DailyMed is structured and normalized in terms of drug information. To create the gold standard of drug–disease treatment relationships, the key is to identify the most specific drug indications mentioned in the textual description, normalize them to corresponding UMLS concepts, and link to the associated drug concepts.

2.3. Drug label selection

We accessed DailyMed on September 1 2012, and downloaded its August 24 2012 version, which contained 18324 human prescription drug labels. For each label, we extracted its indication field from the XML file, and the assigned RxNorm concepts from the respective web page. We then applied a set of filters to ensure that a drug label is linked to RxNorm CUIs and its associated indication field is not empty. In this study, we focused on the 250 human prescription ingredients frequently found in access logs of PubMed Health. These 250 drugs correspond to 8151 drug labels. From here, our goal was to minimize annotation efforts without any loss of information downstream. We observed that a drug ingredient can have multiple drug labels in DailyMed (submitted by different manufacturers) with same or different textual descriptions in the indication field. To minimize annotation efforts, we only selected unique drug labels (in terms of indication texts) for annotation study. We grouped similar drug labels and chose a representative drug label from each group. To minimize loss of information, we only grouped highly similar (with text that is almost identical) drug labels together.

First, all 8151 drug labels were grouped based on the linked drug ingredients resulting into 250 groups. Then, each group was further sub-grouped such that all the drug labels in a sub-group are highly similar (i.e. identical) to each other in terms of their indications. We used the Dice co-efficient [36] to measure similarity between drug labels. In particular, we considered two drug labels to be identical if their Dice co-efficient lied above the threshold of 0.87. This threshold was empirically determined using our analysis of 100 drug labels. In this way, we derived 542 sub-groups wherein each sub-group contained drug labels linked to the same ingredient and having highly similar indication descriptions. As shown in Fig. 3, the size of sub-groups (i.e. the number of similar drug labels in sub-groups) ranges from 1 through 131.

We further observed, especially in case of drug labels with shorter lengths, that certain drug labels were identical to each other and were still assigned to different sub-groups. We manually merged these sub-groups resulting into 500 indication based sub-groups. For each sub-group, we randomly chose a drug label to be annotated and used as a representative of the group. In this way, we minimized the annotation effort by 93%, i.e. from 8151 drug labels to 500 drug labels. These 500 drug labels represent 250 INs, 611 < IN, DF > pairs, and 1531 < IN, DF, ST > triplets. The indication descriptions are varied in length ranging from 10 to more than 1000 words, with average of 130 words (±149 words).

2.4. Automatic disease recognition

The goal of this module was to identify all disease mentions as indication candidates from the textual descriptions of a given drug label. For this study, we prepared a disease lexicon using two seed ontologies, MeSH and SNOMED-CT, respectively useful for annotating scientific articles [30,32,37] and clinical documents [31,38,39].
The lexicon consists of 77,464 concepts taken from: (i) the disease branch in MeSH, and (ii) the 11 disorder semantic types (UMLS disorder semantic types excluding ‘Finding’) in SNOMED-CT as recommended in a recent shared task [30].

As for the automatic tool, we applied MetaMap [27], a highly configurable program used for mapping biomedical texts to the UMLS identifying the mentions, offsets, and associated CUIs. We used the 2012 MetaMap Java API release that uses the 2012AB version of the UMLS Metathesaurus. We experimented with multiple settings of MetaMap, and the optimal setting method for this study is illustrated in Fig. 4.

The drug descriptions may contain overlapping disease mentions, e.g. the phrase “skin and soft tissue infections” denotes two specific diseases, “skin infections” and “soft tissue infections.” While the final results by MetaMap do not return such overlapping mentions, these are captured in the intermediate results of MetaMap, known as the Metathesaurus candidates. Hence, we utilized these candidate concepts, as opposed to the final results, in our disease recognition method. MetaMap provides two types of candidates, contiguous and dis-contiguous, e.g. in the phrase “skin and soft tissue infections,” “soft tissue infections” is a contiguous candidate, and “skin + infections” is a dis-contiguous candidate. We found that MetaMap returns different sets of dis-contiguous candidates with and without the term processing feature. Hence, we conducted two runs of MetaMap for comprehensive results. Also, the word sense disambiguation feature was turned on to disambiguate mentions that may map to multiple CUIs, e.g. “depression.” In order to restrict the returned candidates to specific semantic types from two vocabularies as mentioned above, we used a lookup against our custom disease lexicon as opposed to running multiple rounds of MetaMap for the two vocabularies. Finally, candidates with overlapping spans were resolved in the following manner: (i) when both candidates were contiguous, the longer candidate was selected, (ii) when one candidate was dis-contiguous - (a) if the merged span contained conjunctions (e.g. “or,” “and”) or prepositions (e.g. “to”), then the merged span was

![Fig. 2. A snapshot of DailyMed drug label by Allergan Inc. The indication information is provided by manufacturers, and normalized (RxNorm) drug concepts are assigned by NLM curators and editors.](image)

![Fig. 3. An insight into the indication based sub-grouping for 8151 drug labels.](image)
pre-annotated and both CUIs were retained, e.g. the elliptical coor-
dination in “skin and soft tissue infections,” (b) if the two mentions
were related by a parent–child UMLS relationship (e.g., the phrase
“acute bacterial otitis media” maps to hierarchically related con-
cepts “acute + otitis media” and “otitis”), then the longer mention
was retained, else, the shorter mention was retained (e.g. the
phrase “drug hypersensitivity reactions” maps to non-hierarchi-
cally related concepts “drug + reactions” and “hypersensitivity
reactions”).

2.5. Manual indication annotation

The annotation study was conducted with two professional bio-
medical annotators with more than five years of experience work-
ing in an academic medical research institution. The annotators
have an educational background in pharmacology and medicine,
and have been trained in biomedical literature indexing. The indi-
cation section of the drug labels was presented to the two human
annotators by highlighting the disease mentions (i.e., computer
pre-annotations) identified in the previous automatic step. All
mentions (including dis-contiguous) were presented as contiguous
by expanding the spans. At the backend, we maintained a mapping
between the mentions and the associated CUIs. We used a crowd-
sourcing platform (www.crowdflower.com) to build the annotation
interface [35]. The system presented the pre-annotated drug
labels on the annotation interface illustrated in Fig. 5. To facilitate
quick and correct annotation, we leveraged the styling information
available from the XML file and presented the drug label exactly as
it would appear on the Web. The drug labels were presented one at
a time. The human annotation was conducted in two rounds.
During round-1, the annotators were asked to independently anno-
tate the drug labels (Fig. 5a). During round-2, the annotators were
asked to independently update their previous annotations based
on previous disagreements (Fig. 5b).

We conducted the study with 50 drug labels at a time comprising
10 sets for 500 representative labels. The first two sets were
annotated in our pilot study where a ground truth was curated
and annotators' judgments were assessed against it [35]. The
evolved guidelines from that study were used for conducting the
annotation study for the remaining sets. After round-1, the anno-
tators disagreed on average 20 (±4) labels, indicating the size of
workload in round-2. The average human effort spent in double

Legend: Current Selected Not Selected

Diltiazem hydrochloride

Diltiazem hydrochloride extended release capsules USP (once a day dosage) are indicated for the treatment of **hypertension**. It may be used alone or in combination with other antihypertensive medications.

Diltiazem hydrochloride extended release capsules USP (once a day dosage) is indicated for the management of **chronic stable angina** and **angina** due to **coronary artery spasm**.

(a) Round-1 Interface showing Pre-annotations

Legend: Current Selected by YOU Not Selected
Previously Selected by YOU only Previously selected by OTHER ANNOTATOR only

Diltiazem hydrochloride

Diltiazem hydrochloride extended release capsules USP (once a day dosage) are indicated for the treatment of hypertenion. It may be used alone or in combination with other antihypertensive medications.

Diltiazem hydrochloride extended release capsules USP (once a day dosage) is indicated for the management of **chronic stable angina** and **angina** due to **coronary artery spasm**.

(b) Round-2 Interface showing the Exclusive Judgments

Please cite this article in press as: Khare R et al. LabeledIn: Cataloging labeled indications for human drugs. J Biomed Inform (2014), http://dx.doi.org/
10.1016/j.jbi.2014.08.004
computing the Jaccard inter-dard generated by the annotators. Finally, we compared our automatic concept recognition method with respect to the gold stan-

drug–disease relationships at different levels of granu-

ingredient; one ingredient had indications that were ST-
specific (same <IN, DF> but different ST had different indications), e.g. the Finasteride 5 mg oral tablet is indicated for “Benign Prostatic Hypertrophy” whereas its 1 mg counterpart is indicated for “Andro-
genetic Alopecia” (a.k.a. male pattern baldness).

Table 2 Description of the final annotation results (LabeledIn).

<table>
<thead>
<tr>
<th>Drug specificity (size in LabeledIn)</th>
<th>Total annotated drug–disease pairs</th>
<th>Example Drug</th>
<th>Indication(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredient (249)</td>
<td>1318</td>
<td>Diclofenac</td>
<td>Osteoarthritis Rheumatoid arthritis Ankylosing Spondylitis Osteoarthritis of the knee(s) Acute pain Strains Sprains Contusions Pain Actinic keratoses Malignant Aura Inflammation</td>
</tr>
<tr>
<td>Ingredient + dose form (611)</td>
<td>2997</td>
<td>Diclofenac Topical Gel</td>
<td>Osteoarthritis Pain Actinic keratoses</td>
</tr>
<tr>
<td>Ingredient + dose form + strength (1513)</td>
<td>7805</td>
<td>Diclofenac 0.03MG/MG Topical Gel</td>
<td>Actinic keratosis</td>
</tr>
</tbody>
</table>

annotating a drug label in round-1 and round-2 was 3.47 min and 3.98 min, respectively. After each set annotation, we studied the comments provided by annotators and improved the guidelines accordingly. Furthermore, we consulted with a domain expert with a doctoral degree in pharmacy to validate and refine the annotation guidelines. The final version of guidelines is described thoroughly in the supplemental materials. The consensus judged by both annotators was used for deriving the gold standard.

2.6. Evaluation

We evaluated our annotated corpus in several ways. We first computed the size of the gold standard, i.e., the total number of drugs and drug–disease relationships at different levels of granularity. Then we empirically studied the effect of dose form and strength on indications in our annotation results. Next, we computed the Jaccard agreement \(P(A) = \frac{A_i \cap A_j}{A_i \cup A_j} \) (where \(A_i \) and \(A_j \) represent unique indications by the two annotators) and kappa agreement \(\kappa = \frac{P(e) - P(o)}{1 - P(o)} \) (where \(P(e) = \text{probability of chance agreement} \)) to assess the consistency of our annotation results. Then, we measured the precision and recall of the automatic concept recognition method with respect to the gold standard generated by the annotators. Finally, we compared our results with a similar resource by computing the Jaccard inter-source agreement \(\frac{S_1 \cap S_2}{|S_1|} \) (where \(S_1 \) = indications in our source).

3. Results

3.1. Description of final annotation results

We name our final annotation results as “LabeledIn” since it was created from the labeled indications in the DailyMed. Label-
edIn contains the relationships between drugs and indications, and is organized at three levels of granularity as shown in Table 2. It should be noted that out of the 250 ingredients, one ingredient (Varenicline) was not included in the final results because this drug is used for smoking cessation and its corresponding labels did not have any mentions that mapped to a disease concept. On average, each drug label contained 3.43 indications.

We noticed that 136 ingredients in our results were associated with multiple drug labels in DailyMed. Using automatic analysis of <IN, DF, ST> and indication combinations, we found that 68% of these ingredients had indications that were DF-specific (same IN but different DF had different indications). For instance, the Fluticasone topical cream is indicated for “Atopic Dermatitis” whereas the Flucosone nasal inhaler is indicated for “Seasonal and Allergic Rhinitis.” About 11% of the ingredients had indications that were ST-specific (same <IN, DF> but different ST had different indications), e.g. the Finasteride 5 mg oral tablet is indicated for “Benign Prostatic Hypertrophy” whereas its 1 mg counterpart is indicated for “Andro-
genetic Alopecia” (a.k.a. male pattern baldness).

3.2. Inter-annotator agreement and comparison of computer pre-annotations vs. human annotation results

Our annotated text corpus contains 500 drug labels double-annotated in two rounds. The average Jaccard agreements between annotators for round-1 and round-2 were 88.77% and 94.18%, respectively. The average Kappa agreements for round-1 and round-2 were 77.48% and 88.35%, respectively. After round-2, the main cause for remaining differences is that in addition to the main indication, one of the two annotators also selected its generic or related form. Some examples include:

(i) “Primary Prevention of Cardiovascular Disease. CRESTOR is indicated to reduce the risk of stroke and myocardial infarc-
tion”: one annotator selected “Cardiovascular Disease” in addition to “stroke” and “myocardial infarction”

(ii) “PROVIGIL is indicated to improve wakefulness in adult patients with excessive sleepiness associated with Narcolepsy, obstruc-
tive sleep apnea, and shift work disorder. In all cases, careful attention to the diagnosis and treatment of the underlying sleep disorder(s) is of utmost importance”: one annotator selected “sleep disorder(s)” in addition to “excessive sleepiness”

On average, the automatic disease recognition module identified 5.9 pre-annotations per drug label. Compared to the final human annotation results, the automatic method delivered a micro-averaged precision, recall, and \(F_1 \)-measure of 0.55, 0.94, and 0.69 (and macro-averaged 0.67, 0.95, and 0.74), respectively. Fig. 6 shows the overlap between the pre-annotations and the final annotation results, the precision denotes that about 55% of the
computer recommended pre-annotations were accepted by the annotators (overlapping region) and the recall denotes that about 6% of the final results was created using the indications not captured by automated methods but added by the human annotators (yellow region).

3.3. Comparison results with SIDER 2

Among several similar datasets, SIDER 2 is the only one that contains indications extracted from drug labels and provides identifiers of specific drug labels. Therefore, we systematically compared LabeledIn with SIDER 2. Between LabeledIn and SIDER 2 (October 2012 version), there was an overlap of 3877 drug labels, which were reduced to 459 representative drug labels through our grouping method (Section 2.3). We compared the indications concepts for all 459 drug labels and observed micro- and macro-averaged agreements of 0.30 and 0.37, respectively.

The discrepancies in indications were found in 417 drug labels, out of which we randomly selected 50 drug labels to manually study the discrepant (unique) CUIs in both resources and identify the reasons for discrepancies as shown in Fig. 7. Table 3 illustrates the examples from different categories of discrepancies in SIDER 2.

Similarly, the unique CUIs in LabeledIn could be classified as: (i) More Specific and (ii) CUI Different, the counterparts of the Less Specific and CUI Different categories in SIDER 2, respectively, (iii) Discontiguous Mentions, detected due to the use of term processing in MetaMap, e.g. from the phrase “biliary and renal colic,” LabeledIn included “biliary + colic” (a dis-contiguous mention), and (iv) Missed by SIDER, possibly due to their choice of lexicon, e.g. “Zollinger-Ellison syndrome,” “Loeffler’s syndrome,” etc. The two former categories (65%) in LabeledIn could be considered as partial matches with SIDER 2 since they include cases where SIDER 2 results contain a corresponding related disease.

4. Discussion and conclusions

We have conducted a study of annotating FDA drug labels using a semi-automatic method. Deleger et al. [40] previously annotated disease mentions from FDA drug labels. Our study produced a comparable inter-annotator agreement (88%) but differs in that we yielded drug indications as opposed to all the diseases mentioned in a drug label. Distinguishing indications from other disease mentions is a non-trivial problem requiring human judgment as we observed that approximately 45% of automatically identified

Table 3

<table>
<thead>
<tr>
<th>Discrepancy category</th>
<th>Description</th>
<th>Example statement</th>
<th>SIDER 2 Discrepant Annotations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic – overlapping</td>
<td>Includes cases when SIDER 2 annotated both the generic as well as specific indication</td>
<td>“myocardial infarction”</td>
<td>“infarction” (in addition to “myocardial infarction”)</td>
</tr>
<tr>
<td>Other context</td>
<td>Refers to cases when the disease is mentioned in some other context, e.g. risk factor, characteristics, indicated usages of other drugs, etc.</td>
<td>“Amantadine hydrochloride capsules are indicated in the treatment of symptomatic parkinsonism which may follow injury to the nervous system by carbon monoxide intoxication”</td>
<td>“intoxication”</td>
</tr>
<tr>
<td>Less specific</td>
<td>Refers to scenarios when SIDER 2 annotated a less specific disease as compared to the annotation in our results</td>
<td>“Levetiracetam is indicated as adjunctive therapy in the treatment of partial onset seizures in adults”</td>
<td>“seizures” (LabeledIn annotated “partial onset seizures in adults”)</td>
</tr>
<tr>
<td>Non-disease</td>
<td>Includes concepts that were not included in our disease lexicon such as organism names, medical procedures, etc.</td>
<td>“Aspirin may be continued, use of NSAIDs including salicylates has not been fully explored (see PRECAUTIONS, Drug Interactions)”</td>
<td>“Drug Interactions”</td>
</tr>
<tr>
<td>CUI different</td>
<td>Includes mentions that had same spans but were disambiguated differently by the two resources</td>
<td>“Trazodone hydrochloride tablets are indicated for the treatment of depression”</td>
<td>“depression” (SIDER identified as C0011581 – depressive disorder, whereas LabeledIn identified as C0011570 - mental depression)</td>
</tr>
<tr>
<td>Caused/contraindications</td>
<td>Includes contra-indications of the drug and the diseases that are induced or caused, rather than treated or prevented, by the drug</td>
<td>“Phentermine hydrochloride is indicated as a short-term (a few weeks) adjunct in a regimen of weight reduction based on exercise, behavioral modification and caloric restriction in the management of exogenous obesity for patients”</td>
<td>“weight reduction”</td>
</tr>
</tbody>
</table>
Experts in medicine and pharmacy.

The EMRs. Hence, this study regards indications as a function of the theoretical definition of “therapeutic equivalence” suggests that the information about dose form and drug strength is also critical in ensuring effective and correct treatment [15]. Such information is also important in controlling documentation malpractices, including prescription, medication, drug nomenclature errors [8,10,14], and medication-problem linking errors [11], in the EMRs. Hence, this study regards indications as a function of all the key properties of a drug, and represents a drug as a 3-tuple

<Active Ingredient (IN), Dose Form (DF), Drug Strength (ST)>.

Furthermore, the automatic analysis of our annotation results helped identify the candidate drugs in DailyMed for which the indications may in practice be dictated by dose forms and/or strengths. The validation of such advanced information about the candidate drugs, however, requires further analysis by domain experts in medicine and pharmacy.

There are several limitations of the current work. First, LabeledIn currently contains information about 250 highly accessed drugs and covers nearly 50% of the human prescription FDA drug labels accordingly. For future work, we would like to expand to more ingredients and keep LabeledIn current with new releases of DailyMed. As an estimate, we studied the effective differences between the existing version of LabeledIn (August 2012) and the current version of DailyMed (April 2014) for our 250 drugs. We found that only about 53 new drug labels need to be annotated for a period of 20 months. Second, LabeledIn only contains labeled/marketed indications. On the other hand, an existing resource MEDI [26] provides computable information regarding off-label indications from Wikipedia and MedlinePlus, in addition to labeled indications from SIDER 2 and NDF-RT. Hence, in the future we plan to investigate ways to integrate our results with existing resources such as MEDI. Lastly, certain annotated drug indications (e.g. “inflammation” in Table 1) are specific to certain procedures/conditions which are not currently captured. Given LabeledIn is linked to the source drug labels, in future work we plan to extract and organize such information in structured and computable format in order to further enrich our resource. In summary, we have produced LabeledIn, a resource containing the labeled indication information for 250 frequently accessed human drugs. We believe our human annotation results are useful in a wide variety of applications, and are complementary to existing resources.

Data Availability

Funding

This research was supported by the Intramural Research Program of the NIH – National Library of Medicine, the National Key Technology R&D Program of China (Grant No. 2013BAI068B01), and the Fundamental Research Funds for the Central Universities (No. 13R0101).

Acknowledgment

The authors would like to thank the three human annotators for their time and expertise, Chih-Hsuan Wei for his help with testing the annotation interface and the results, and Robert Leaman for his feedback on the annotation interface and for proofreading the manuscript.

References

Please cite this article in press as: Khare R et al. LabeledIn: Cataloging labeled indications for human drugs. J Biomed Inform (2014), http://dx.doi.org/10.1016/j.jbi.2014.08.004

