
ar
X

iv
:0

80
8.

10
00

v2
  [

cs
.IT

]  
29

 A
ug

 2
00

8

Fitness Landscape Analysis for Dynamic Resource
Allocation in Multiuser OFDM Based Cognitive

Radio Systems
Dong Huang

School of Computer Engineering
Nanyang Technological University

Singapore, Singapore
hu0013ng@ntu.edu.sg

Chunyan Miao
School of Computer Engineering

Nanyang Technological University
Singapore, Singapore

ASCYMiao@ntu.edu.sg

Cyril Leung
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, BC, Canada

cleung@ece.ubc.ca

Abstract— Cognitive Radio (CR) is a promising technique for
improving the spectrum efficiency in future wireless network.
The downlink transmission in a multiuser Orthogonal Frequency
Division Modulation (MU-OFDM) based CR system is investi-
gated. Optimal allocating transmit power, bits and subcarriers
among cognitive radio users (CRUs) can achieve high throughput
while satisfying the given quality of services (QoS) requirement.
The problem of dynamic resource allocation in multiuser OFDM
based CR systems is a combinatorial optimization problem and is
computationally complex. In order to solve the resource allocation
problem efficiently, efficient and simple algorithms are needed.
It has been shown that memetic algorithms (MAs) outperform
other traditional algorithms for many combinatorial optim ization
problems. On the other hand, the performance of MAs is highly
dependent on choice of local search and evolutionary operators.
In order to achieve better performance, we need to choose
appropriate local search method and evolutionary operators for a
memetic algorithm. The local search and evolutionary operators
selection should be based on the properties of a given problem.
Fitness landscape is an important technique for analyzing the
behavior of combinatorial optimization problems. We apply the
fitness landscape to analyze the optimization problem proposed in
this paper. Appropriate local search and evolutionary operators
are derived for the proposed MA. Numerical experiments show
that the performance of the proposed memetic algorithm is better
than other existing algorithms.

I. I NTRODUCTION

With the fast development of wireless techniques, wireless
applications and services are becoming more affordable for
most people. The number of wireless applications, servicesand
users is growing rapidly. However, as the available spectrum
is scarce and specified by the government agencies, it is
impossible to increase the spectrum arbitrarily for a wireless
network. Even many different techniques have been proposed
to improve the efficiency of spectrum utilization, the spectrum
still turns to be scarce compared with the fast increasing
number of wireless applications, services and users. For ex-
ample, the cellular network has been developed from FDMA
system to WCDMA system and the efficiency of spectrum
utilization has been improved drastically. However, it is still
hard to accommodate the continuously increasing number of
subscribers. On the other hand, according to the FCC report

[1], many of the frequency bands currently licensed for other
services are grossly under-utilized.

Cognitive radio (CR) is a novel concept for improving the
overall utilization of spectrum bands by allowing unlicensed
secondary users (also referred to as CR users or CRUs) to ac-
cess those frequency bands which are not currently being used
by licensed primary users (PUs). Therefore, it can improve
the efficiency of spectrum utilization and mitigate spectrum
scarcity. However, when CRUs access to the PUs’ frequency
bands, the interfere to the PUs must satisfy given constraints.
Therefore, CRUs have to sense the environment and rapidly
adapt their transmission parameter values. Orthogonal fre-
quency division multiplexing (OFDM) is a good modulation
candidate for a CR system due to its flexibility in allocating
resources among CRUs.

For a OFDM based wireless system, adaptive adjustment
of the transmission parameters, such as transmit power, bits
and subcarriers, according to the wireless environment can
improve the performance. However, the resource allocation
problem is a combinatorial optimization problem and the steps
to find the optimal resource allocation among CRUs grows
exponentially with the size of subcarriers. Even for the case
of ignoring the mutual interference between PUs and CRUs,
the problem of optimal allocation subcarriers, bits and transmit
powers among users in a multiuser (MU) OFDM system is
still computationally complex [2]. In order to reduce compu-
tational complexity, the resource allocation problem of a MU-
OFDM system is solved into two steps by many suboptimal
algorithms [3]-[6]: (1) determine the allocation of subcarriers
to users. (2) determine the allocation of bits and transmit
powers to users. Most of these algorithms are based on greedy
approaches. When the variables are independent, a simple
greedy algorithm can find the global optimal solution with
low complexity. However, for the resource allocation problem
in MU-OFDM systems, the variables are interdependent. In the
worst case, the final solution obtained by these algorithms may
be a local optimal solution far away from the global optimal
solution. When considering the mutual interference between
PUs and CRUs, the problem turns to be more complex.
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Memetic algorithms (MAs) have been shown to outperform
other traditional algorithms for many combinatorial problems
[7]. Especially for many NP-hard problems such as travelling
sales man problem (TSP) and quadratic assignment problem
(QAP). MAs have been applied to combinatorial optimiza-
tion problems widely. Normally, a genetic algorithm (GA)
combined with a local search method is called a memetic
algorithm. Compared with GAs, MAs are more effective and
more efficient [8]. In this paper, we propose a memetic
algorithm for the resource allocation problem in MU-OFDM
based CR systems. However, the performance of a MA for a
given problem is highly dependent on the selection of genetic
operators and local search. Good local search and genetic
operators will improve the results greatly. However, thereis
still little work on the choice of a good local search and genetic
operators for a memetic algorithm. According to the “no free
lunch” theorem, the selection of local search and genetic
operators should be based on the given problem. Therefore, in
order to choose appropriate local search and genetic operators,
we need to analyze the resource allocation problem first.
Fitness landscape, which was originally proposed for analyzing
the evolutionary theory in [9], has been applied to understand
the behavior of combinatorial optimization algorithms and
predict their behaviors [10]-[12]. We apply fitness landscape
to analyze the resource allocation problem in MU-OFDM
based cognitive radio systems. Then we derive appropriate
local search and genetic operators for the proposed memetic
algorithm.

The paper is organized as follows: The system model
and resource allocation problem is formulated in Section II.
A SAMA algorithm for subcarrier allocation is proposed
in Section III. Fitness landscape analysis on the resource
allocation problem and the selection of local search and genetic
operators are discussed in Section IV. For the bits allocation
problem, a simple while efficient memetic algorithm is derived
in Section V. The simulation is showed in Section VI and
Section VII is the conclusion.

II. SYSTEM MODEL

The system model used in this paper is the same as that in
[13]. A description is provided below for the convenience of
the reader.

We focus on the forward link in a multiuser OFDM CR
system in which a base station (BS) transmits to one PU and
K CRUs. The PU and CRUs occupy neighboring frequency
bands as shown in Fig. 1.

The PU band has a width ofWp Hz and hasN/2 sub-
carriers, each occupying a band of widthWs Hz, on either
side. The BS allocates subcarriers, subcarrier powers and bits
to the CRUs dynamically. The channels from the BS to all
users are modelled as slowly time-varying, i.e. they do not
change appreciably between successive allocations. The BSis
assumed to have perfect channel state information (CSI) for
all users and subcarriers.

The power spectral density (PSD) of thenth subcarrier

Fig. 1. Primary user band of widthWp and secondary user sub-bands, each
of width Ws.

signal is assumed to have the form [14]

Φn(f) = PnTs

(

sin πfTs

πfTs

)2

, (1)

wherePn denotes the subcarriern transmit signal power and
Ts is the symbol duration. The resulting interference power
spilling into the PU band is given by

In(dn, Pn) =

∫ dn+Wp/2

dn−Wp/2

|gn|
2Φn(f)df = PnIFn (2)

wheregn is the subcarriern channel gain from the BS to the
PU, dn is the spectral distance between subcarriern and the
center frequency of the PU band andIFn is the interference
factor for subcarriern.

The interference power introduced by the signal destined
for the PU, hereafter referred to as the PU signal, into the
band of subcarriern at userk is

Snk(dn) =

∫ dn+Ws/2

dn−Ws/2

|hnk|
2ΦRR(ejw)dw, (3)

wherehnk is the subcarriern gain from the BS to userk and
ΦRR(ejw) is the PSD of the PU signal.

Let Pnk denote the transmit power allocated to subcarriern
of userk. As discussed in [3], the maximum number of bits
per symbol that can be transmitted on this subcarrier is

bnk =

⌊

log2

(

1 +
|hnk|2Pnk

Γ(N0Ws + Snk)

)⌋

, (4)

where⌊.⌋ denotes the floor function,N0 is the one-sided noise
PSD andSnk is given by (3). The termΓ indicates how
close the system is operating to capacity and is set to 1 for
convenience.

From (4), the additional signal power needed to transmit
one extra bit to userk on subcarriern can be expressed as:

∆Pnk =
N0Ws + Snk

|hnk|2
2bnk , (5)

Using (2), we deduce that the additional interference power
generated by such an additional signal power to the PU is

∆Ink = ∆PnkIFn. (6)

Let ank ∈ {0, 1} be a subcarrier allocation indicator
function, i.e.ank = 1 if and only if subcarriern is allocated
to userk. To avoid excessive interference among CRUs, it is



assumed that each subcarrier can be used for transmission to
at most CRU at any given time.

The objective is to maximize the total CRU bit rate,Rs,
subject to limits on the total CRU transmit power and PU tol-
erable interference power. More specifically, the optimization
problem of interest is

maxRs
∆
= Ws

K
∑

k=1

N
∑

n=1

ankbnk (7)

subject to

ank ∈ {0, 1}, ∀n, k (8)
K

∑

k=1

ank ≤ 1, ∀n (9)

Pnk ≥ 0, ∀n, k (10)
K

∑

k=1

N
∑

n=1

ankPnk ≤ Ptotal, (11)

K
∑

k=1

N
∑

n=1

ankPnkIFn ≤ Itotal, (12)

R1 : R2 : · · · : RK = λ1 : λ2 : · · · : λK , (13)

wherePtotal denotes the total CRU power limit andItotal

is the maximum PU tolerable interference power, and

Rk = Ws

N
∑

n=1

ankbnk.∀k = 1, · · · , K (14)

represents the total bit rate ofkth CRU. Inequality (9) reflects
the condition that any given subcarrier can be allocated to at
most one user. Inequalities (11) and (12) correspond to the
power and interference constraints, respectively. (13) reflects
the proportional fair among CRUs.

III. PROPOSEDALGORITHM FOR SUBCARRIER

ALLOCATION

Clearly, the objective function in equation (7) is a combi-
natorial optimization problem with two levels, (i.e., determine
the subcarrier allocation indicatorank and transmit bitsbnk).
The algorithm complexity of searching the optimal solution
grows exponentially with the number of subcarriers. In order
to reduce the algorithm complexity, we propose a simple
algorithm, which is called subcarriers allocation for memetic
algorithm (SAMA), to determine subcarrier allocation. The
pseudo code listings of SAMA algorithm is showed in Fig. 2.
Its algorithm complexity isO(KN), where K denotes the
number of CRUs andN represents the number of subcarriers.
Firstly, we set a threshold to delete some worst subcarriersfor
all users. For the remnant̂N subcarriers, we assume that each
user experiences a channel factor of

Ψk =
1

N̂

N̂
∑

n=1

|hnk|
2

Γ(N0Ws + Snk)
, ∀k = 1, 2, · · · , K(15)

IF =
1

N̂

N̂
∑

n=1

IFn, (16)

A lgor i thm SAMA:
f o r n=1 t o number o f s u b c a r r i e r s

f i n d Ψ(k, n) = max |hnk|
2

Γ(N0Ws+Snk) ;
based onΨ(k, n), Ptotal and Itotal ,
c a l c u l a t e bn t o nth s u b c a r r i e r ;
i f bn > 2

t h e nth s u b c a r r i e r i s a v a i l a b l e ;
e l s e

t h e nth s u b c a r r i e r i sn ’ t a v a i l a b l e ;
e n d i f ;

e n d f o r ;
i n i t i a l i z e t h e number o f s u b c a r r i e r
a l l o c a t e d t o kth u s e r ;
mk = 0 ∀k = 1, 2, · · · , K ;
c a l c u l a t e t h e bk i n e q u a t i o n (17) ;
f o r n=1 t o number o f a v a i l a b l e s u b c a r r i e r s

f i n d t h e kth u s e r such t h a t
mkbk/λk i s t h e s m a l l e s t ;
a l l o c a t e nth a v a i l a b l e s u b c a r r i e r
t o kth u s e r ;

e n d f o r ;

Fig. 2. Pseudo-code for Subcarrier Allocation Algorithm

on each channel, equal interference to PU and equal transmit
power on each channel for all users. Therefore, the available
bits loaded forkth CRU on each channel can be expressed as

bk = min(⌊log2(1 +
ΨkPtotal

N̂
)⌋, ⌊log2(1 +

ΨkItotal

N̂IF
)⌋).

∀ k = 1, 2, · · · , K
(17)

Let kth CRU be allocatedmk subcarriers. Then the objec-
tive is to find a set ofmk subcarriersk = 1, 2, · · · , K which
satisfy

max Rs = Ws

K
∑

k=1

mkbk, (18)

subject to

m1b1 : m2b2 : · · · : mKbK = λ1 : λ2 : · · · : λK , (19)

P ≤ Ptotal, (20)

I ≤ Itotal, (21)

whereP is the total transmit power allocated to all subcarriers
and I represents the total interference power to the PU.
After subcarrier allocation, a bits allocation solution can be
expressed as

b =
[

b1 b2 · · · bN

]

. (22)



IV. F ITNESSLANDSCAPE ANALYSIS FOR BITS

ALLOCATION

A. Bits Allocation Analysis

After applying SAMA algorithm to determine subcarrier
allocation to CRUs, we need to determine the bits allocation
to CRUs. From the bits allocation solution expression in (22),
the bits allocation problem is still a combinatorial optimization
problem. Leťbn be the number of possible bits allocated tonth

subcarrier, then the steps to find the optimal bits allocation is
O(

∏N
n=1 b̌n). Sinceb̌n ≥ 2 for real systems,

∏N
n=1 b̌n ≥ 2N .

Therefore, it is computational complex. In order to make the
problem tractable, we need to find a simple while efficient
algorithm to determine the bits allocation to CRUs.

B. Fitness Landscape Analysis

Though the notion of fitness landscape was first proposed in
[9] for analyzing the gene interaction in biological evolution,
it also was an important technique for analyzing the behavior
of combinatorial optimization problem. Furthermore, it has
been extended to analyze evolutionary algorithms. From [9],
[12], each genotype has a “fitness” and the distribution of
fitness values over the space of genotypes constitutes a fitness
landscape. In our problem, we consider the set of solutions
as a search space, the height of a point denotes the fitness of
the solution associated with the point. Therefore, a heuristic
algorithm can be considered as searching through the search
space to find the highest peak of the landscape.

Normally, for a given combinatorial optimization problem,
we can define a fitness landscape asΩ = (X, f, d), where
the X is the set of solutions,f denotes the objective function
f : X → R and d represents the hamming distance of two
solutions. Based on the measurementd, we also can construct
the fitness landscape as a graph set:G = (V, E), whereV
represents the set of solution (i.e.V = E), E denotes the
set E = {(x, y) ∈ X × X|d(x, y) = dmin} where dmin

is the minimum distance between two points in the setX .
Clearly, the minimum distance in our problem isdmin = 1
and the maximum distance isdmax = N . Accordingly, we can
construct the neighborhood of a pointx as Nk(x) = {y ∈
X |d(x, y) ≤ k}.

For different combinatorial optimization problems, the
structures of their fitness landscapes are also different. There
are several important properties for a fitness landscape. These
properties have been proven to have great effects on the
performance of a memetic algorithm. According to the No
Free Lunch theorem, an algorithm has different performance
on different problems. In order to obtain better results, we
need to select appropriate algorithm and parameters for a given
problem based on domain knowledge. Therefore, analyzing the
structure of a fitness landscape of a given problem is necessary.
In this paper, we focus on the following properties of a fitness
landscape:

• the landscape ruggedness
• the number of local optima in the landscape
• the distribution of the peaks in the search space

• the number of iterations to reach a local optimum
• the structure of the basins of attraction of the local optima

For these properties, some are easy to be determined by
statistical methods but others are difficult to determine. For
example, it is very difficult to understand the properties ofthe
number of local optima and the number of iteration to reach a
local optimum by statistical methods. The NK model proposed
in [12] is an important technique for analyzing these properties.
In the NK model,N refers to the number of parts of a system.
Each part makes a fitness contribution which depends upon
that part and uponK other parts among theN . For example,
suppose a solution vectorx = [x1, · · · , xN ]T to be a binary
vector of lengthN , the fitness function can be expressed as

f(x) =
1

N

N
∑

i=1

fi(xi, xi1, · · · , xik), (23)

where the fitness contributionfi of locus i depends on the
value of genexi and the values ofK other genesxi1, · · · , xik.
The function fi : {0, 1}K+1 → R assigns a uniformly
distributed random number between 0 and 1 to each of its
2K+1 inputs.

In the following, we introduce some related statistical meth-
ods proposed to measure the properties of a fitness landscape.

Autocorrelation functions and random walk correlation
functions have been proposed to measure the ruggedness of a
fitness landscape in [11]. The autocorrelation function reflects
the correlation of solutions with distanced in the search space.
A fitness landscape is said to rugged if there is low correlation
between neighboring points of the landscape, and a landscape
is smooth if there is high correlation between neighboring
points [12]. Therefore, the more rugged a landscape, the harder
the problem for an algorithm. LetX2(d) be the set of all pairs
of solutions in the search space with distanced. X2(d) can be
expressed as

X2(d) = {(x, y) ∈ X × X |d(x, y) = d}, (24)

and let|X2(d)| be the number of pairs in the setX2(d). The
the autocorrelation function can be expressed as

ρ(d) =
E(f(x)f(y))d(x,y)=d − E2(f)

E(f2) − E2(f)
, (25)

whereE(·) denotes the expectation function. In addition, the
random walk function can be defined as

r(s) =
E(f(xt)f(xt+s)) − E2(f)

E(f2) − E2(f)
. (26)

Based on autocorrelation function and random walk correlation
function, the correlation lengthℓ of the landscape is defined
as

ℓ = −
1

ln(|r(1)|)
= −

1

ln(|ρ(1)|)
, (27)

for r(1), ρ(1) 6= 0. The correlation length directly reflects the
ruggedness of a landscape: the lower the value forℓ, the more
rugged the landscape.



Fitness distance correlation (FDC), which was proposed in
[10] as a measure for problem difficulty for genetic algorithms,
is an important measure. The FDC coefficient is expressed as:

̺(f, dopt) =
cov(f, dopt)

σ(f)σ(dopt)

=
E(fdopt) − E(f) · E(dopt)

√

(E(f2) − E2(f)) · (E(d2
opt) − E2(dopt))

,

(28)
where dopt represents the distance of a point to the nearest
optimum.̺ denotes the correlation of the fitness and distance
of solutions to the nearest optimum in the search space. When
̺ = −1.0, it represents that the fitness and distance to the
optimum are perfectly related. In this case, crossover based
memetic algorithms can find a local optimum approximating to
the global optimum closely. When̺= 1.0, it indicates that the
fitness and distance to the optimum are not related at all. In this
case, mutation based memetic algorithms are more preferable.
However, there is a shortcoming for FDC as we need to
know the global optimum before applying FDC. For most
optimization problems, it is impossible to know the global
optimum due to high complexity. We use a local optimum
obtained by a simple memetic algorithm to approximate the
global optimum when calculate the FDC of a fitness landscape.
In addition, fitness distance analysis (FDA) is also an important
technique for analyzing the correlation between fitness and
distance to nearest optimum. FDA has been applied to analyze
the fitness landscapes of combinatorial optimization problems
[15], [12]. Based on FDA, we get the distribution of local
optima in the search space and decide appropriate search
method for the proposed memetic algorithm.

C. Local Search Analysis

Here we assume that subcarriers have been allocated to
CRUs. we need to allocate bits among subcarriers. A bit
allocation solution can be expressed as in (22). Accordingly,
we define the fitness function to be

f(x) = exp(M(
min Rk/λk

maxRk/λk
− 1))

N
∑

n=1

bnf(I)f(P ), (29)

where

f(I) =

{

1 whenI ≤ Itotal

exp(−M(I/Itotal − 1)) otherwise

f(P ) =

{

1 whenP ≤ Ptotal

exp(−M(P/Ptotal − 1)) otherwise.

with I and P denoting the total interference to PU and total
transmit powers among CRUs, respectively.M is an positive
number large enough such that even small change can have a
great effect on the fitness value.

Let ∇fi be the fitness gain when adding or decreasing
one bit to ith subcarrier. As the distinct characteristics of
wireless communication, the complexity of resource allocation
algorithms can not be too high. In order to find an optimum,

Local−Search Procedu re (x =
[

x1 x2 xN

]

∈ X )
r e p e a t

i f f(I) < 1 or f(P ) < 1
f i n d n = argmax∇fn ∀n = 1, · · · , N ;

e l s e
f i n d k = argmax Rk/λk ;
f i n d n = argmax∇fn , where n ∈ Θk ;

e n d i f ;
upda te xn ;

u n t i l ∇fi ≤ 0 ;
r e t u r n x ;

Fig. 3. Pseudo Code of Local Search Method

Instance Pm Ptotal Itotal K

Instance 1 3 0.8 0.006 4
Instance 2 5 1.2 0.009 4
Instance 3 7 1.6 0.012 4
Instance 4 9 2.0 0.015 4
Instance 5 11 2.4 0.018 4
Instance 6 13 2.8 0.021 4

TABLE I

INSTANCESCONSTRUCTION

even a simple greedy local search needs to compareN fitness
gain ∇fi. SupposeΘk to be the set of subcarrier index
corresponding to the subcarriers assigned to thekth CRU.
Based on the fitness definition in (29), we propose a simple
yet efficient local search method for the proposed MA. In each
search loop, when the total transmit power and interference
satisfy the relevant constraints, the algorithm doesn’t need
to compare every subcarrier’s fitness gain and thus is more
efficient. The algorithm is based on (1-opt) method and the
relevant pseudo code of the algorithm is showed in Fig 3. It is
simpler than the original (1-opt) algorithm because it doesn’t
need to search the subcarriers completely in each loop.

In order to get more insight in the resource allocation
problem, we consider 6 instances. These 6 instances are
constructed as table I. When designing a memetic algorithm for
a combinatorial problem, i.e., determining which local search
and which genetic operators are best suited, we need to analyze
its fitness landscape. Based on these instance, we use the
fitness distance correlation to analyze the distribution oflocal
optima in the search space. Initially, we produce 2000 local
optima based on the greedy local search algorithm. In addition,
we also estimate the correlation length based on equation (27).
The local optima are obtained by the proposed local search
method. The results are showed in table II. Wheremin dopt

denotes the minimum distance of the locally optimal solutions
to the expected global optimum,̄dopt is the average distance of
the locally optimal solutions to the expected global optimum,
d̄loc represents the average distance between the local optima,
Nd denotes the number of distinct local optima out of2000
and̺ is the fitness distance correlation coefficient.

According to the NK-landscape theory in [12],K = N −



Instance min dopt d̄opt d̄loc Nd ̺ ℓ

Instance 1 5 11.0145 10.8887 2000 -0.1447 2.3979
Instance 2 4 11.1970 11.1198 2000 -0.0992 2.0019
Instance 3 5 11.1620 10.5577 2000 -0.0112 2.2957
Instance 4 5 10.9370 10.7220 2000 -0.1026 2.2358
Instance 5 5 11.5070 11.6361 2000 -0.0746 2.7233
Instance 6 7 11.7155 10.9887 2000 -0.0820 2.8034

TABLE II

AVERAGE DISTANCE AND FITNESSDISTANCE CORRELATION OFLOCAL

SEARCH
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Fig. 4. Fitness Distance Plots for Local Search Method

1 for the bits allocation problem. There is low correlation
between neighboring points of the landscape. Therefore, the
fitness landscape will be rugged and the number of iteration to
reach a local optimum will be small. From the table, since the
̺ ≪ −1, there is low correlation between fitness and distance.
Compared with the number of total subcarriers,ℓ is too small.
Therefore, the fitness landscape is rugged. According to the
statistical property of̄dopt, the local optima are distributed in
a large range. The experiment results accord with the NK-
landscape theory in [12].

The fitness distance plots for the six instances are shown in
Figure. 4. The plots for these instances are similar and the local
optima of each instance scatter in large range. These properties
accord with the fitness distance correlation analysis in table II.
Since the average distance of the population converges fast
towards zero when crossover operator is exclusively used in
a memetic algorithm. In this case, mutation based memetic
algorithms are better than that of crossover based.

D. The Choice of Genetic Operators

For a memetic algorithm, we need to determine not only
a good local search method, but also good genetic operators
(crossover and mutation). Different experiments have showed
that the effectiveness of these evolutionary operators highly
depends on the distribution of local optimal in the search
space. For the choice of local search method, we have applied
FDC and FDA to analyze the problem. From the analysis
above, we note that the fitness and distance to the global
optimum are highly uncorrelated. Moreover, the distribution of
local optimal scatters in a large range. In this case, crossover
operator may have little effect on the performance of MAs.
Therefore, mutation based MAs will be better in our problem.

V. PROPOSEDMEMETIC ALGORITHM FOR BITS

ALLOCATION

From the experiment results described above, the local
optima are distributed in a large range and the fitness landscape
is rugged. In this case, according to the NK-model theory
in [12], it is hard to obtain a local optimum close to the
global optimum by a suboptimal algorithm. On the other hand,
MAs have been shown outperform other traditional algorithms,
such as greedy algorithm and tabu algorithm, for combinatorial
optimization problems. Based on the fitness landscape analysis
on the bits allocation problem, we propose an efficient memetic
algorithm for bits allocation of the optimization problem in (7).
The pseudo code listings of our algorithm are showed in Fig. 5.

A lgor i thm MA:
1) I n i t i a l i z e P o p u l a t i o n P ; do

P = Local Search(P )
2) f o r i =1 t o Number of Generation do

S = select cm(P ) ;
f o r j =1 t o #crossover do

s e l e c t ia, ib f rom S
f o r c r o s s o v e r
ic = crossover(ia, ib) ;
ic = Local Search(ic) ;

end
add i n d i v i d u a l ic t o P ;
f o r k=1 t o #mutation do

s e l e c t im f rom S f o r mu ta t i on
im = mutation(im) ;
im = Local Search(im) ;

end
add i n d i v i d u a l s im t o P ;
P = select(P ) ;

end

Fig. 5. Pseudo-code for the memetic algorithm

Let xi be theith chromosome in a population.

xi = [xi1, xx2, · · · , xiN ], i = 1, 2, · · · , pop size (30)



wherepop size denotes the population size. The initial integer
solution vectors are randomly created within the region of
admissible solutions. The original objective function of the
optimization problem is evaluated as in (29).

Genetic Operations:
(1) Crossover: For each pair of parentsx1 andx2,

x1 = [x11, x12, · · · , x1p, x1(p+1), · · · , x1N ],

x2 = [x21, x22, · · · , x2p, x2(p+1), · · · , x2N ],

we generate a random integerp = 1, 2, · · · , N − 1, using
one cut point crossover operator to swap the two parents, to
obtain two children

x

′

1 = [x11, x12, · · · , x1p, x2(p+1), · · · , x2N ],

x
”
2 = [x21, x22, · · · , x2p, x1(p+1), · · · , x1N ],

(2) Mutation: We substitute one bit of an individual ran-
domly by an admissible integer for the selected position.

(3) Replacement Strategy: We select the better chromo-
somes among parent and offspring with fitness value. The num-
ber to be selected ispop size and we let these chromosomes
enter the next generation.

VI. SIMULATION

In this section, simulation results for the MA algorithm
described in Section V are presented. Its performance is
compared to that of the RC algorithm in [13] for a number
of different scenarios.

Based on the discussion above, we propose a mutation
based memetic algorithm for our problem. The parameters
are set as: population size=40; generations=20; probability of
crossover=0.05; probability of mutation=0.7.

The simulated system consists of one PU and K = 4 CRUs.
The CRU band is 5 MHz wide and supports 16 subcarriers,
each with a bandwidth, Ws, of 0.3125 MHz. The PU band-
width is Wp = Ws and the OFDM symbol duration isTs =
4µs. Three cases of the bits rate requirements for users with
λ =

[

1 1 1 1
]

,
[

1 1 1 4
]

, and
[

1 1 1 8
]

are
considered. It is assumed that the subcarrier gainshnk and gk

, for n ∈ {1, 2, · · · , N}, k ∈ {1, 2, · · · , K} are outcomes of
independent, identically distributed (i.i.d.) Rayleigh distributed
random variables (rvs) with means equal to 1. The additive
white Gaussian noise (AWGN) PSD,N0, is set to10−8 W/Hz.
The PSD,ΦRR(ejw), of the PU signal is assumed to be that
of an elliptically filtered white noise process. The total CRU
bit rate results are obtained by averaging over 1000 channel
realizations.

Fig.6 shows the average total CRU bit rate,Rs as a function
of the maximum tolerable interference power,Itotal, with a
PU signal powerPm = 5 W, Ptotal = 1 W and K = 4
for the three cases. As expected,Rs increases withItotal.
Moreover, when the bit rate requirements for users are closer to
uniform distribution, the total bit rateRs is higher for different
maximum tolerable interference powerItotal because of the
user diversity.
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Fig. 6. Average total CRU bit rate,Rs, versus maximum tolerable interfer-
ence,Itotal, of the primary user withPtotal = 1 W andPm = 5 W .
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Fig. 7. Average total CRU bit rate,Rs, versus maximum tolerable interfer-
ence,Itotal, of the primary user withPtotal = 1 W andPm = 5 W in the
case ofλ = [1 1 1 1].

Fig. 7 shows the average total CRU bit rate,Rs, as a
function of the maximum tolerable interference power,Itotal,
with Ptotal = 1W, Pm = 5W in the case of bit rate
requirementsλ =

[

1 1 1 1
]

. The bit rate obtained by
the proposed MA is larger than that of RC algorithm in [13].
In the case ofItotal = 0.0003W, the MA provides a30%
improvement inRs.

Fig. 8 and 9 shows the average total CRU bit rate,Rs,
as a function of the maximum tolerable interference power,
Itotal, with Ptotal = 1W, Pm = 5W in the case of bit rate
requirementsλ =

[

1 1 1 4
]

and λ =
[

1 1 1 8
]

,
respectively. The bit rate obtained by the proposed MA in
these two cases are a little higher than that of RC algorithm.

VII. C ONCLUSION

The resource allocation problem in a MU-OFDM based
cognitive radio system is a combinatorial optimization problem
and computational complex. In order to make the problem
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Fig. 8. Average total CRU bit rate,Rs, versus maximum tolerable interfer-
ence,Itotal, of the primary user withPtotal = 1 W andPm = 5 W in the
case ofλ = [1 1 1 4].
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Fig. 9. Average total CRU bit rate,Rs, versus maximum tolerable interfer-
ence,Itotal, of the primary user withPtotal = 1 W andPm = 5 W in the
case ofλ = [1 1 1 8].

tractable, we solve the problem into two steps. Firstly, we
propose a simple algorithm SAMA to determine the subcarrier
allocation. Then propose an efficient memetic algorithm to
determine the bits allocation. On the other hand, the perfor-
mance of MAs for a given problem is highly dependent on
the selection of local search and genetic operators. In order
to choose appropriate local search and genetic operators for
the proposed MA, we apply fitness landscape to analyze the
bits allocation problem. Experiment results show that fitness
landscape of the bits allocation problem is rugged, local optima
are distributed in a large range and the number of iteration to
reach a local optimum is small. In this case, mutation operator
will have more effect on the performance of proposed MA
than that of crossover operator. We also propose a simple
while efficient local search algorithm for the proposed MA.
Compared to the existing algorithm in [13], simulation results
show that the proposed subcarrier algorithm and memetic

algorithm achieve better performance .
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