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Abstract— Cognitive Radio (CR) is a promising technique for
improving the spectrum efficiency in future wireless netwok.
The downlink transmission in a multiuser Orthogonal Frequency
Division Modulation (MU-OFDM) based CR system is investi-
gated. Optimal allocating transmit power, bits and subcariers
among cognitive radio users (CRUs) can achieve high througtut
while satisfying the given quality of services (QoS) requiment.
The problem of dynamic resource allocation in multiuser OFDM
based CR systems is a combinatorial optimization problem ahis
computationally complex. In order to solve the resource atication
problem efficiently, efficient and simple algorithms are neded.
It has been shown that memetic algorithms (MAs) outperform
other traditional algorithms for many combinatorial optim ization
problems. On the other hand, the performance of MAs is highly
dependent on choice of local search and evolutionary operaits.
In order to achieve better performance, we need to choose
appropriate local search method and evolutionary operatos for a
memetic algorithm. The local search and evolutionary opertors
selection should be based on the properties of a given probte
Fitness landscape is an important technique for analyzing e
behavior of combinatorial optimization problems. We apply the
fithess landscape to analyze the optimization problem progsed in
this paper. Appropriate local search and evolutionary opeators
are derived for the proposed MA. Numerical experiments show
that the performance of the proposed memetic algorithm is bter
than other existing algorithms.

|. INTRODUCTION
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[1], many of the frequency bands currently licensed for pthe
services are grossly under-utilized.

Cognitive radio (CR) is a novel concept for improving the
overall utilization of spectrum bands by allowing unliceds
secondary users (also referred to as CR users or CRUS) to ac-
cess those frequency bands which are not currently beingy use
by licensed primary users (PUs). Therefore, it can improve
the efficiency of spectrum utilization and mitigate spectru
scarcity. However, when CRUs access to the PUs’ frequency
bands, the interfere to the PUs must satisfy given consstain
Therefore, CRUs have to sense the environment and rapidly
adapt their transmission parameter values. Orthogonal fre
quency division multiplexing (OFDM) is a good modulation
candidate for a CR system due to its flexibility in allocating
resources among CRUSs.

For a OFDM based wireless system, adaptive adjustment
of the transmission parameters, such as transmit power, bit
and subcarriers, according to the wireless environment can
improve the performance. However, the resource allocation
problem is a combinatorial optimization problem and th@ste
to find the optimal resource allocation among CRUs grows
exponentially with the size of subcarriers. Even for theecas
of ignoring the mutual interference between PUs and CRUs,
the problem of optimal allocation subcarriers, bits andgrait

With the fast development of wireless techniques, wirelespowers among users in a multiuser (MU) OFDM system is
applications and services are becoming more affordable fostill computationally complex [2]. In order to reduce compu

most people. The number of wireless applications, senéoes

tational complexity, the resource allocation problem of &-M

users is growing rapidly. However, as the available spettru OFDM system is solved into two steps by many suboptimal
is scarce and specified by the government agencies, it iglgorithms [3]-[6]: (1) determine the allocation of subgars

impossible to increase the spectrum arbitrarily for a veissl

to users. (2) determine the allocation of bits and transmit

network. Even many different techniques have been proposqubwers to users. Most of these algorithms are based on greedy

to improve the efficiency of spectrum utilization, the speunt

approaches. When the variables are independent, a simple

still turns to be scarce compared with the fast increasingreedy algorithm can find the global optimal solution with
number of wireless applications, services and users. For exow complexity. However, for the resource allocation peshl

ample, the cellular network has been developed from FDMAN MU-OFDM systems, the variables are interdependent.én th
system to WCDMA system and the efficiency of spectrumworst case, the final solution obtained by these algorith@ng m

utilization has been improved drastically. However, it idl s

be a local optimal solution far away from the global optimal

hard to accommodate the continuously increasing number afolution. When considering the mutual interference betwee
subscribers. On the other hand, according to the FCC repoRUs and CRUSs, the problem turns to be more complex.
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Memetic algorithms (MAs) have been shown to outperform
other traditional algorithms for many combinatorial prexnis
[7]. Especially for many NP-hard problems such as travgllin
sales man problem (TSP) and quadratic assignment problem
(QAP). MAs have been applied to combinatorial optimiza- ] Lo
tion problems widely. Normally, a genetic algorithm (GA) i v, 13— s
combined with a local search method is called a memetic
algorithm. Compared with GAs, MAs are more effective and
more efficient [8]. In this paper, we propose a memetiCrig. 1. Primary user band of width/, and secondary user sub-bands, each
algorithm for the resource allocation problem in MU-OFDM of width W.
based CR systems. However, the performance of a MA for a
given problem is highly dependent on the selection of genetisijgnal is assumed to have the form [14]
operators and local search. Good local search and genetic . )
operators will improve the results greatly. However, thire ®,(f) = PuT, (sm was) 1)
still little work on the choice of a good local search and giene wfTs ’

operators for a memetic algorithm. According to the “no freewherePn denotes the subcarrier transmit signal power and

lunch” theorem, the selection of local search and genetie- 5 the symbol duration. The resulting interference power
operators should be based on the given problem. Therefore, Epilling into the PU band is given by

order to choose appropriate local search and genetic apsrat
we need to analyze the resource allocation problem first.
Fitness landscape, which was originally proposed for aiady

the evolutionary theory in [9], has been applied to underbta , ) .
the behavior of combinatorial optimization algorithms andWheregs is the subcarrien. channel gain from the BS to the

predict their behaviors [10]-[12]. We apply fitness langsea PY: d» i the spectral distance between subcamiend the
to analyze the resource allocation problem in MU-OFDM center frequency of the PU band ahd;, is the interference

based cognitive radio systems. Then we derive appropriat@ctor for subcarrien.

local search and genetic operators for the proposed memetic 1he interference power introduced by the signal destined
for the PU, hereafter referred to as the PU signal, into the

wlaty User Bandl primary User Band indary UEer Barid

dn+Wy /2

algorithm. ) -
The paper is organized as follows: The system modepand of subcarrien at userk is
and resource allocation problem is formulated in Sedfion II dntWs/2 ) i
A SAMA algorithm for subcarrier allocation is proposed Sur(dn) :/d _w./2 || "@ R (e )dw, (3)

in Section[dll. Fitness landscape analysis on the resource . . .
allocation problem and the selection of local search aneten Wherehgk is the subcarrien gain from the BS to uset and
operators are discussed in Section V. For the bits allonati ®rr(€’) is the PSD of the PU signal.

problem, a simple while efficient memetic algorithm is dedv Let P, denote the transmit power allocated to subcarrier
in Section[V. The simulation is showed in Section] VI and ©f userk. As discussed in [3], the maximum number of bits
Section V] is the conclusion. per symbol that can be transmitted on this subcarrier is
|hnk|2Pnk
II. SYSTEM MODEL bnk = {IO& (1 + T(NoWs £ 5u0) ) | (4)

The system model used in this paper is the same as that imhere|.| denotes the floor functiory is the one-sided noise
[13]. A description is provided below for the convenience of PSD andS,,;, is given by [8). The ternT indicates how
the reader. close the system is operating to capacity and is set to 1 for

We focus on the forward link in a multiuser OFDM CR convenience.
system in which a base station (BS) transmits to one PU and From [4), the additional signal power needed to transmit
K CRUSs. The PU and CRUs occupy neighboring frequencyne extra bit to usek on subcarriemn can be expressed as:
bands as shown in Fig] 1. N

The PU band has a width d#,, Hz and hasN/2 sub- APy = WTW, ()
carriers, each occupying a band of widii; Hz, on either "
side. The BS allocates subcarriers, subcarrier powers #sd b~ Using [2), we deduce that the additional interference power
to the CRUs dynamically. The channels from the BS to allgenerated by such an additional signal power to the PU is
users are modelled as slowly time-varying, i.e. they do not o
change appreciably between successive allocations. This BS Alu = AFu I En. ©
assumed to have perfect channel state information (CSI) for Let a,, € {0,1} be a subcarrier allocation indicator
all users and subcarriers. function, i.e.a,; = 1 if and only if subcarriem is allocated

The power spectral density (PSD) of thé" subcarrier to userk. To avoid excessive interference among CRUs, it is



assumed that each subcarrier can be used for transmission to _
at most CRU at any given time. Algorithm SAVA:

The objective is to maximize the total CRU bit ra@,, [°F n=1 to number of subzcarrlers
subject to limits on the total CRU transmit power and PU tol- find W(k,n) = max % ;
erable interference power. More specifically, the optiriiza based onU(k,n), Piota and Liotai ,
problem of interest is calculate b, to n'™ subcarrier :
K if b, >2
maXRséWsZZankbnk (7) the n'» subcarrier is available;
k=1n=1 else
subject to the n'* subcarrier isn’'t available;
ane € {0,1}, Vn k ®8) endfi??'f’
X initialize the number of subcarrier
Z“n’f < L ¥n ©)  allocated to Kt user;
mr,=0Vk=1,2,--- , K;
K N Pup 20, Vn, k (10) calculate theb, in equation [I7);
for n=1 to number of available subcarriers
kz::n; GrkFnk < Potal, (1) find the k' user such that
X N mibr/Ar is the smallest;
ZZ ankPorIFn < Tiotal, (12) allocate n'* available subcarrier
= to k' user:
endfor;
Rl:Rg:---ZRK:/\ll)\QZ'-'Z)\K, (13)
where P,,;,; denotes the total CRU power limit arfg,;.; Fig. 2. Pseudo-code for Subcarrier Allocation Algorithm
is the maximum PU tolerable interference power, and
N on each channel, equal interference to PU and equal transmit
Ry =W, Zankbnk-Vk =1, K (14)  power on each channel for all users. Therefore, the availabl
n=1 bits loaded fork*® CRU on each channel can be expressed as
represents the total bit rate bf* CRU. Inequality [D) reflects U.P U
the condition that any given subcarrier can be allocated to & by, = min(|log, (1 + ——21) | |log, (1 + —rt2taly]).
most one user. Inequalitie {11) arid1(12) correspond to the NIF
power and interference constraints, respectivélyl (18¢ats Vk=1,2--,K
the proportional fair among CRUSs. . (17_)
Let k** CRU be allocatedn,;, subcarriers. Then the objec-
I1l. PROPOSEDALGORITHM FOR SUBCARRIER tive is to find a set ofn;, subcarrierse = 1,2, --- , K which
ALLOCATION satisfy
Clearly, the objective function in equatiol] (7) is a combi- X
natorial optimization problem with two levels, (i.e., deténe
the subcarrier allocation indicatar,;; and transmit bitd,,). max fts = W kab’“ (18)
The algorithm complexity of searching the optimal solution =1
grows exponentially with the number of subcarriers. In orde subject to
to reduce the algorithm complexity, we propose a simple
algorithm, which is called subcarriers allocation for méime miby imoby t oo rmgbr = At Ao AR (19)
algorithm (SAMA), to determine subcarrier allocation. The
pseudo code listings of SAMA algorithm is showed in Hij. 2. P < Piotals (20)

Its algorithm complexity isO(K'N), where K denotes the

number of CRUs andVv represents the number of subcarriers.
Firstly, we set a threshold to delete some worst subcarfioers I < Liotat, (21)
all users. For the remnanf subcarriers, we assume that each

: whereP is the total transmit power allocated to all subcarriers
user experiences a channel factor of

and I represents the total interference power to the PU.

1 & s |2 After subcarrier allocation, a bits allocation solutiomcle
Uy, = ﬁ; TNl + 5,0 Vk=1,2,--- ,K(15)  expressed as

1 N b=1[b1 ba -+ bn]. (22)
IF = EZIF,I, (16)
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IV. FITNESSLANDSCAPEANALYSIS FORBITS « the number of iterations to reach a local optimum
ALLOCATION « the structure of the basins of attraction of the local optima

A. Bits Allocation Analysis For these properties, some are easy to be determined by
. . . . statistical methods but others are difficult to determiner F

After applying SAMA algorithm to determine subcarrle_r example, it is very difficult to understand the propertieshaf

humber of local optima and the number of iteration to reach a

local optimum by statistical methods. The NK model proposed

in [12] is an important technique for analyzing these prapsr

. . . . . In the NK model,NV refers to the number of parts of a system.

subcarrier, then the steps to find the optimal bits allocaiso Each part makes a fitness contribution which depends upon

N ¥ . ¥ N i N
O(I1,,=1 bn)- Sinceb,, > 2 for real systems[[,_, b, > 27, part and upodk other parts among tha'. For example,
Therefore, it is computational complex. In order to make the

blem tractabl d to find imole while efficiencUPPOSE & solution vecter = [xq,--- ,2x]7 to be a binary
problem tractable, we need 1o find a simple while € ICIem\/ector of lengthV, the fitness function can be expressed as
algorithm to determine the bits allocation to CRUSs.

to CRUs. From the bits allocation solution expressior{in)(22
the bits allocation problem is still a combinatorial optaaiion
problem. Leth,, be the number of possible bits allocatedits

N
B. Fitness Landscape Analysis flz) = % Z filwi, zin, - zan), (23)
1=1

Though the notion of fitness landscape was first proposed in
[9] for analyzing the gene interaction in biological evatut, ~ where the fitness contributiofi of locus ¢ depends on the
it also was an important technique for analyzing the behraviovalue of gener; and the values o other genes;i, - - - , zjy.
of combinatorial optimization problem. Furthermore, itsha The function f; : {0,1}**! — R assigns a uniformly
been extended to analyze evolutionary algorithms. From [9]distributed random number between 0 and 1 to each of its
[12], each genotype has a “fitness” and the distribution o2%*! inputs.
fitness values over the space of genotypes constitutes adfitne  In the following, we introduce some related statistical et
landscape. In our problem, we consider the set of solutioneds proposed to measure the properties of a fitness landscape
as a search space, the height of a point denotes the fitness of Autocorrelation functions and random walk correlation
the solution associated with the point. Therefore, a hearis functions have been proposed to measure the ruggedness of a
algorithm can be considered as searching through the searéilness landscape in [11]. The autocorrelation functiorectdl
space to find the highest peak of the landscape. the correlation of solutions with distandén the search space.

Normally, for a given combinatorial optimization problem, A fitness landscape is said to rugged if there is low corratati
we can define a fitness landscapefas= (X, f,d), where  between neighboring points of the landscape, and a landscap
the X is the set of solutionsf denotes the objective function is smooth if there is high correlation between neighboring
f : X — R andd represents the hamming distance of two points [12]. Therefore, the more rugged a landscape, thiehar
solutions. Based on the measureménive also can construct the problem for an algorithm. Let?(d) be the set of all pairs
the fitness landscape as a graph &t= (V, E), whereV  of solutions in the search space with distaricé(?(d) can be
represents the set of solution (i.€. = E), E denotes the expressed as
set F = {(z,y) € X x X|d(x,y) = dunin} Where dyin
is the mingr%um) distance b|et$/vee21 two poiits in the Xet X2(d) = {(w,y) € X x X|d(w,y) = d}, (24)
Clearly, the minimum distance in our problemdsin = 1 and let|X2(d)| be the number of pairs in the s&t?(d). The
and the maximum distance ds,.x = N. Accordingly, we can  the autocorrelation function can be expressed as
construct the neighborhood of a pointas Vi (z) = {y € )
X|d(z,y) < k}. o(d) = E(f(2)f(y))a(.y=a — E°(f)

For different combinatorial optimization problems, the E(f2) — E*(f) ’
structures OT their fitness Iandscapes are also differdrere whereE(-) denotes the expectation function. In addition, the
are sev_eral important properties for a fithess landscapesérh random walk function can be defined as
properties have been proven to have great effects on the )
performance of a memetic algorithm. According to the No r(s) = E(f(x) f(xers)) —E°(f) (26)
Free Lunch theorem, an algorithm has different performance E(f2) — E2(f)

on (3|t[ferer|1t pt)roblems._ Itn olrdertr'zo Obtj‘m bettetr resfults, WeBased on autocorrelation function and random walk coriceiat
need o select appropriale algorithim and parameters IMeagl ¢, .o the correlation length of the landscape is defined
problem based on domain knowledge. Therefore, analyzimg th

: . X as
structure of a fitness landscape of a given problem is negessa

(25)

1 1

In this paper, we focus on the following properties of a fitnes (= — - _ , (27)
landscape: In(|r(1)]) In(|p(1)[)
« the landscape ruggedness for r(1), p(1) # 0. The correlation length directly reflects the
« the number of local optima in the landscape ruggedness of a landscape: the lower the valud,ftite more

« the distribution of the peaks in the search space rugged the landscape.



Fitness distance correlation (FDC), which was proposed in
[10] as a measure for problem difficulty for genetic algarity ~ -0c¢al-Search Procedure z(= (21 22 an] € X)
is an important measure. The FDC coefficient is expressed alepeat

if f()<lor f(P)<1
o(f,d, t):CO'U(fdePt) find n=argmaxVf, Vn=1,--- | N;
P a(f)o(dopt) else
B E(fdopt) — E(f) - E(dopt) find k= argmax Ry/\;
- ’ find n=argmaxV/f,, wherenec 0;;
VEG) = E2(F) - (B(dZy) — E(dopa) L nd = argmax Vi
. . (28) update z,;
where d,,; represents the distance of a point to the nearestU ntil V£ <0:
optimum. o denotes the correlation of the fithess and distancereturn xf -
of solutions to the nearest optimum in the search space. When '
0= —1.0, it represents that the f|tqess and distance to the Fig. 3. Pseudo Code of Local Search Method
optimum are perfectly related. In this case, crossoverdase
memetic algo_nthms can find a local optimum approximating to instance | P | Prorar | Tootr T K
the global optimum closely. Whem= 1.0, it indicates that the Instance 1| 3 0.8 | 0.006 | 4
fitness and distance to the optimum are not related at ahis$n t Instance 2| 5 12 | 0009 ] 4
case, mutation based memetic algorithms are more preerabl Instance 3| 7 | 16 | 0012 4
’ : alg p Instance 4| 9 20 | 0015 4

However, there is a shortcoming for FDC as we need to Instance 5| 11 24 | 0018 | 4
know the global optimum before applying FDC. For most Instance 6] 13 28 | 00217 4
optimization problems, it is impossible to know the global TABLE |
optimum due to high complexity. We use a local optimum INSTANCESCONSTRUCTION

obtained by a simple memetic algorithm to approximate the

global optimum when calculate the FDC of a fitness landscape.

In addition, fithess distance analysis (FDA) is also an irtgodr

technique for analyzing the correlation between fitness aneven a simple greedy local search needs to compafiness

distance to nearest optimum. FDA has been applied to analygain V f;. Suppose©; to be the set of subcarrier index

the fitness landscapes of combinatorial optimization mwisl ~ corresponding to the subcarriers assigned to kfe CRU.

[15], [12]. Based on FDA, we get the distribution of local Based on the fithess definition in_{29), we propose a simple

optima in the search space and decide appropriate searght efficient local search method for the proposed MA. In each

method for the proposed memetic algorithm. search loop, when the total transmit power and interference

) satisfy the relevant constraints, the algorithm doesn&dne

C. Local Search Analysis to compare every subcarrier’s fitness gain and thus is more
Here we assume that subcarriers have been allocated #dficient. The algorithm is based on (1-opt) method and the

CRUs. we need to allocate bits among subcarriers. A bitelevant pseudo code of the algorithm is showed in[Fig 3. It is

allocation solution can be expressed as[i (22). Accorgingl simpler than the original (1-opt) algorithm because it aétes

we define the fitness function to be need to search the subcarriers completely in each loop.

In order to get more insight in the resource allocation

. N
f(x) = exp( (mml B/ M 1)) Z bof(I)f(P), (29) problem, we consider 6 instances. These 6 instances are
max Ry /A n=1 constructed as tab[e I. When designing a memetic algoritim f
where a combinatorial problem, i.e., determining which localrsba
and which genetic operators are best suited, we need tozaly
f() = 1 when I_S Ttotal its fitness landscape. Based on these instance, we use the
exp(—M (I/Iiotar — 1)) otherwise fitness distance correlation to analyze the distributiofooél
optima in the search space. Initially, we produce 2000 local
1 when P < Pyl optima basgd on the greedy I_ocal search algorithm. In afditi
f(P)= exp(—M(P/Pisai — 1)) otherwise we also estimate the correlation length based on equaii@n (2

The local optima are obtained by the proposed local search
with 7 and P denoting the total interference to PU and total method. The results are showed in table 1l. Whete d,,,
transmit powers among CRUSs, respectivaly.is an positive denotes the minimum distance of the locally optimal sohgio
number large enough such that even small change can haveathe expected global optimund,,, is the average distance of
great effect on the fitness value. the locally optimal solutions to the expected global optimu

Let Vf; be the fitness gain when adding or decreasingi;,. represents the average distance between the local optima,
one bit toi*" subcarrier. As the distinct characteristics of N; denotes the number of distinct local optima out26f)0
wireless communication, the complexity of resource alioca  and is the fithess distance correlation coefficient.
algorithms can not be too high. In order to find an optimum, According to the NK-landscape theory in [12 = N —



Instance | mindog dopt dioc Ng Y ¢
Instance 1| 5 11.0145 10.8887 2000 | -0.1447 2.3979
Instance 2| 4 11.197Q 11.1198 2000| -0.0992 | 2.0019
Instance 3| 5 11.162Q 10.5574 2000| -0.0112 2.2957
Instance 4| 5 10.937Q 10.722Q 2000| -0.1026 | 2.2358
Instance 5] 5 11.507Q 11.6361 2000| -0.0746 | 2.7233
Instance 6| 7 11.7155 10.9887 2000| -0.0820 | 2.8034
TABLE Il
AVERAGE DISTANCE AND FITNESSDISTANCE CORRELATION OFLOCAL
SEARCH

o 5 10 15 20 25 30 o 5 10 15 20 25
Distance to optimum o, Distance to optimum d,

Fig. 4. Fitness Distance Plots for Local Search Method

D. The Choice of Genetic Operators

For a memetic algorithm, we need to determine not only
a good local search method, but also good genetic operators
(crossover and mutation). Different experiments have sttbow
that the effectiveness of these evolutionary operatorlhig
depends on the distribution of local optimal in the search
space. For the choice of local search method, we have applied
FDC and FDA to analyze the problem. From the analysis
above, we note that the fithess and distance to the global
optimum are highly uncorrelated. Moreover, the distribatof
local optimal scatters in a large range. In this case, ck@sso
operator may have little effect on the performance of MAs.
Therefore, mutation based MAs will be better in our problem.

V. PROPOSEDMEMETIC ALGORITHM FORBITS
ALLOCATION

From the experiment results described above, the local
optima are distributed in a large range and the fitness |apesc
is rugged. In this case, according to the NK-model theory
in [12], it is hard to obtain a local optimum close to the
global optimum by a suboptimal algorithm. On the other hand,
MAs have been shown outperform other traditional algorghm
such as greedy algorithm and tabu algorithm, for combiinetor
optimization problems. Based on the fitness landscape sinaly
on the bits allocation problem, we propose an efficient mamet
algorithm for bits allocation of the optimization problem(id).
The pseudo code listings of our algorithm are showed in[Fig. 5

Algorithm MA:
1) Initialize PopulationP; do
P = Local_Search(P)
2)for i=1 to Number_of_Generation do
S = select_em(P);
for j=1 to #crossover do
select iy, i, from S

1 for the bits allocation problem. There is low correlation
between neighboring points of the landscape. Therefoee, th
fitness landscape will be rugged and the number of iteration t
reach a local optimum will be small. From the table, since the
0 < —1, there is low correlation between fitness and distance.
Compared with the number of total subcarrigrss too small.
Therefore, the fitness landscape is rugged. According to the
statistical property ofl,,, the local optima are distributed in

a large range. The experiment results accord with the NK-
landscape theory in [12].

The fitness distance plots for the six instances are shown in
Figure[4. The plots for these instances are similar ancbite |
optima of each instance scatter in large range. These pireper
accord with the fitness distance correlation analysis ifefHb
Since the average distance of the population converges fast

end

for crossover

ic = crossover(iq,ip) ;

i. = Local_Search(i.);
end
add
for

individual ¢, to P;
k=1 to #mutation do
select i, from S for
im = mutation(ip,) ;

im = Local Search(iy,);

mutation

end

add individualssi,, to P;

P = select(P);

Fig. 5. Pseudo-code for the memetic algorithm

towards zero when crossover operator is exclusively used in Let z; be thei" chromosome in a population.

a memetic algorithm. In this case, mutation based memetic
algorithms are better than that of crossover based.

X = [%‘1,%27 T

S TN, 1 =1,2,--  pop_size (30)



wherepop_size denotes the population size. The initial integer

solution vectors are randomly created within the region of 20
admissible solutions. The original objective function bkt ki
optimization problem is evaluated as [0}29). 18y R G AN
Genetic Operations: L e
(1) Crossover: For each pair of parests andx, I NN
Xl = [‘Tll x12 .. ‘Tl x DI ] E 14 7 /'/
) ) s Llpy L1(p+1)s sy L1IN |y £ *
” AN
X2 = [£C2179€227 T T2y T2(p41)y ,£C2N]7 * Ll
we generate a random integer= 1,2,--- ,N — 1, using
one cut point crossover operator to swap the two parents, to lor —x- M1
. . —A— )=
obtain two children it
% n s s 10 12 1
’ iota (In Watts) x10™
X1 = [(Ell,l’lg, e 7x1p7w2(p+1)a e a‘r?N]a
Xy = [T21, %22, s T2p, T1(pt1), TN, Fig. 6. Average total CRU bit rateRs, versus maximum tolerable interfer-

i i ; PRRATIg ence,l,14;, Of the primary user withP; 1 =1 W and P, =5 W.
(2) Mutation: We substitute one bit of an individual ran- total total

domly by an admissible integer for the selected position.
(3) Replacement Strategy: We select the better chromo-
somes among parent and offspring with fithess value. The num-

22

ber to be selected igop_size and we let these chromosomes 20r
enter the next generation. 18} LT AL TA
- /A/ -
V1. SIMULATION 7 9 e o
= - A
. . . . . = L . P
In this section, simulation results for the MA algorithm g Mok A-
described in Sectioh IV are presented. Its performance is ®12r s

compared to that of the RC algorithm in [13] for a number ok &
of different scenarios.

Based on the discussion above, we propose a mutation
based memetic algorithm for our problem. The parameters or ‘ ‘
are set as: population size=40; generations=20; probabili 2 4 6
crossover=0.05; probability of mutation=0.7.

The simulated system consists of one PU and K = 4 CRUs.

The CRU band is 5 MHz wide and supports 16 Subcarriersl,:ig. 7. Average tota}l CRU bit rat'dis, versus maximum tolerable _interfer-
each with a bandwidth, Ws, of 0.3125 MHz. The PU band-iggg’éﬁgf‘i’ ﬁf{hf E”mafy User WittPiotar = 1 W and Pm =5 W'in the
width is Wp = Ws and the OFDM symbol duration s = '

4us. Three cases of the bits rate requirements for users with

A = [1 1 1 1] ’ [1 1 1 4}7 and [1 1 1 8] are Fig. [@ shows the average total CRU bit ratg,, as a
considered. It is assumed that the subcarrier gajpsand g, function of the maximum tolerable interference powgs..,
,forn e {1,2,--- ,N},k € {1,2,--- ,K} are outcomes of with Py = 1W, P, = 5W in the case of bit rate

independent, identically distributed (i.i.d.) Rayleigtdbuted ~ requirements\ = [1 1 1 1]. The bit rate obtained by
random variables (rvs) with means equal to 1. The additivdhe proposed MA is larger than that of RC algorithm in [13].
white Gaussian noise (AWGN) PSD, is set tol0~8 W/Hz.  In the case oflioia = 0.0003W, the MA provides a30%
The PSD,®zr(e’™), of the PU signal is assumed to be that Improvement inz,.
of an elliptically filtered white noise process. The totallCR  Fig. [ and[® shows the average total CRU bit rafg,
bit rate results are obtained by averaging over 1000 channé@s @ function of the maximum tolerable interference power,
realizations. Liotal, With Py = 1W, P,, = 5W in the case of bit rate
Fig[@ shows the average total CRU bit ral, as a function ~ requirementsA = [1 1 1 4J andX = [1 1 1 8],
of the maximum tolerable interference powér,,.;, with a  respectively. The bit rate obtained by the proposed MA in
PU signal powerP,, = 5 W, Py = 1 W and K = 4 these two cases are a little higher than that of RC algorithm.
for the three cases. As expectell, increases withl;,;;.
Moreover, when the bit rate requirements for users are ctose
uniform distribution, the total bit rat&, is higher for different The resource allocation problem in a MU-OFDM based
maximum tolerable interference powéf,,,; because of the cognitive radio system is a combinatorial optimizationigeon
user diversity. and computational complex. In order to make the problem

VII. CONCLUSION



algorithm achieve better performance .
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Fig. 9. Average total CRU bit rateRs, versus maximum tolerable interfer-
ence,l;,iq;, Of the primary user withP,,¢q; = 1 W and P,, = 5 W in the
case ofA=[1118].

tractable, we solve the problem into two steps. Firstly, we
propose a simple algorithm SAMA to determine the subcarrier
allocation. Then propose an efficient memetic algorithm to
determine the bits allocation. On the other hand, the perfor
mance of MAs for a given problem is highly dependent on
the selection of local search and genetic operators. Inrorde
to choose appropriate local search and genetic operators fo
the proposed MA, we apply fithness landscape to analyze the
bits allocation problem. Experiment results show that fine
landscape of the bits allocation problem is rugged, loctihug

are distributed in a large range and the number of iteration t
reach a local optimum is small. In this case, mutation operat
will have more effect on the performance of proposed MA
than that of crossover operator. We also propose a simple
while efficient local search algorithm for the proposed MA.
Compared to the existing algorithm in [13], simulation Hesu
show that the proposed subcarrier algorithm and memetic
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