Abstract—In this paper, the aerodynamic shape optimization problems with uncertain operating conditions has been addressed. After a review of robust control theory and the possible approaches to take into account uncertainties, the use of Taguchi robust design methods in order to overcome single point design problems in Aerodynamics is proposed. Under the Taguchi concept, a design with uncertainties is converted into an optimization problem with two objectives which are the mean performance and its variance, so that the solutions are as less sensitive to the uncertainty of the input parameters as possible. Furthermore, the Multi-Criterion Evolutionary Algorithms (MCEAs) are used to capture a set of compromised solutions (Pareto front) between these two objectives. The flow field is analyzed by Navier-Stokes computation using an unstructured mesh. The proposed approach drives to the solution of a multi-objective optimization problem that is solved using a modification of a Non-dominated Sorting Genetic Algorithm (NSGA). In order to reduce the number of expensive evaluations of the fitness function a Response Surface Modeling (RSM) is employed to adapt the computational mesh to all the obtained geometrical configurations. The proposed approach is applied to the robust optimization of the 2D high lift devices of a business aircraft by maximizing the mean and minimizing the variance of the lift coefficients with uncertain free-stream angle of attack at landing and takeoff flight conditions, respectively.

I. INTRODUCTION

In spite of the important effect of operating- and manufacturing-uncertainties on the performance, traditional aerodynamic shape optimization has focused on obtaining the best design given a set of deterministic flow conditions. Clearly, it is important to maintain near-optimal performance levels at off-design operating conditions, and to ensure that performance does not degrade appreciably when the component shape differs from the optimal one due to manufacturing tolerances and normal wear and tear. These requirements naturally lead to the idea of robust optimal design wherein the concept of robustness in front of different perturbations is built into the design optimization procedure.

The recognition of the importance of incorporating the probabilistic nature of the variables involved in designing and operating complex systems has led to several investigations in the recent past. Some of the basic principles of robust optimal design are discussed by Egorov et al. [1]. They make the observations that a) robust design optimization is in essence multi-objective design optimization because of the presence of the additional objective (robustness) and, b) the addition of the robustness criterion may result in an optimal solution that is substantially different from that obtained without this criterion. Different approaches to robust optimal design are also mentioned in this paper.

The main objective of this paper is to develop a robust aerodynamic optimization scheme for achieving consistent improvements of the performance over a given range of uncertainty parameters. This scheme has the following two major advantages: (a) it prevents severe degradation in the off-design performance, and (b) it is not sensitive to the number of design points.

The imposition of the additional requirement of robustness results in a multiple-objective optimization problem requiring appropriate solution procedures. Typically the costs associated with multiple-objective optimization are relevant. Therefore, efficient multiple-objective optimization procedures are crucial for the rapid deployment of the principles of robust design in industry. Here, we focus on the applications of an evolutionary algorithm for multiple-objective optimization [2] by using Pareto front concept. Applications of this evolutionary method to some difficult model problems involving the complexities (convex, non-convex, discrete or discontinuous Pareto front) are also presented in Ref. [2].

The computed Pareto-optimal solutions closely approximate the global Pareto front and exhibit good solution diversity. Many of these solutions were obtained with relatively small population sizes.

The final goal of this study is to propose an algorithm to take into account the uncertainties related with fluctuating operating conditions integrating them into an automatic shape optimization problem in aerodynamics. We propose to use Taguchi robust design methods in order to overcome single point design problems. The latter techniques produce solutions that perform well for the selected design point but have poor off-design performance. Under the Taguchi concept, a design with uncertainties is converted into an optimization problem with two objectives which are mean performance and its variance, so that the solutions are as less insensitive to the uncertainty of the input parameters as possible. Furthermore, the Multi-Criterion Evolutionary Algorithms (MCEAs) are used to capture a set of compromised solutions (Pareto front) between these two objectives. The flow field is analyzed by Navier-Stokes computation. In order to reduce the number of expensive evaluations of fitness function, Response Surface Modeling (RSM) is employed to
estimate fitness value using the approximate model. During the solution of the optimization problem a Semi-torsional Spring Analogy is used to adapt a single computational mesh to all geometrical configurations obtained during the optimization process. The proposed approach is applied to the robust optimization of the 2D high lift devices of a business aircraft, by maximizing the mean and minimizing the variance of the lift coefficients under uncertain freestream angle of attack at landing and takeoff flight conditions respectively.

II. ROBUST CONTROL AND TAGUCHI METHODOLOGY

Many products are now routinely designed with the aid of computer models. Given the inputs designable engineering parameters and the parameters representing manufacturing process conditions the model generates the product’s quality characteristics. The quality improvement problem is to choose the designable engineering parameters such that the quality characteristics are uniformly good in the presence of variability of different conditions.

We consider objective functions of the form $f : X \otimes B \rightarrow \mathbb{R}$, where $x \in X$ represents decision variables, inputs (designs) controlled by the engineer, $b \in B$ represents uncertainty, inputs not controlled by the engineer, and $f(x, b)$ quantifies the loss suffered by design x under the uncertain conditions b.

Our (unattainable) goal is to find $x^* \in X$ such that, for every $b \in B$,

$$f(x^*, b) \leq f(x, b) \quad \forall x \in X$$

(1)

The unsolvable problem of finding $x^* \in X$ that simultaneously minimizes $f(x, b)$ for each $b \in B$ is the central problem of statistical decision theory: and a decision rule that simultaneously minimizes risk for every possible state of nature. A standard way (e.g., Ferguson[3]) of negotiating this problem is to replace each $f(x, \cdot)$ with a real-valued attribute of it, e.g.,

Minimax Principle:

$$\min_{x \in X} \phi(x), \quad \text{where } \phi(x) = \sup_{b \in B} f(x; b).$$

(2)

Bayes Principle:

$$\min_{x \in X} \phi(x), \quad \text{where } \phi(x) = \int_B f(x, b)p(b)db$$

(3)

where p denotes a probability density function on B.

The minimax principle is extremely conservative. It seeks to protect the decision-maker against the worst-case scenario. The Bayes principle seeks to minimize average loss in a way that can be customized (via the choice of p) to the application. This formulation of the quality control problem was first proposed by Welch, Yu, Kang, and Sacks[4], although their suggestion appears to have had little effect on engineering practice.

Although the above formulation and proposed solution of the quality improvement problem is modern, the problem itself predates the engineering community’s use of computer models. To motivate our own approach to this problem, and the more general robust design problem, we briefly summarize the contributions of G. Taguchi. See Roy[5] for a broader context and more detailed discussion of Taguchi’s far-ranging contributions to quality engineering.

In the statistical approach, one consider the fluctuating operating conditions $b = (b_i)_{i=1,...,N}$ as samples of random variables $B = (B_i)_{i=1,...,N}$, whose statistical characteristics are known (mean $\mu_B = (\mu^i_B)_{i=1,...,N}$, variance $\sigma^2_B = (\sigma^2^i_B)_{i=1,...,N}$, etc). One also suppose, for the sake of simplicity, that the random variables $(B_i)_{i=1,...,N}$ are independent. The statistical characteristics of operating conditions can be determined by experimental measurements or engineering experience. Gaussian Probability Density Functions (PDFs) or truncated Gaussian PDFs are often used in practice (see [6] for instance).

The main consequence of this assumption is that the cost function of the problem is also a random variable f. According to the Von Neumann-Morgenstern decision theory, the best choice is then to select the design which leads to the best expected fitness. This is known as the Maximum Expected Values (MEV) criterion. The decision or design that minimizes the risk is known as the Bayes’ decision and is solution of the following problem:

$$\text{Minimize } \mu_f = \int_{\Omega(B)} f(x, b)\rho_B(b)db, \quad x \in \mathbb{R}^n, \quad (4)$$

$\Omega(B)$ and ρ_B are the range and the PDF of the random variable B. Then, the MEV criterion just consists in minimizing the statistical mean μ_f of the cost function.

This approach is a significant improvement over previous methods. The robust design problem is now considered with a rigorous statistical framework. This allows to take into account the random fluctuations of the fitness in the optimization problem, but also to take care about the frequency of the occurrence of the events, thanks to PDFs. Then, the most probable events have a larger influence in the decision than extreme and unlikely events.

However, problem (4) does not address the variability of the fitness. The mean value of the fitness is the only criterion that is considered in the Bayes’ decision. For engineering problems, one also would like to select a design for which the fitness is not subjected to large variations when operating conditions fluctuate. Then, a second criterion is often joined to the MEV criterion that relies on the minimization of the variance σ^2_f of the fitness:

$$\text{Minimize } \begin{cases}
\mu_f = \int_{\Omega(B)} f(x, b)\rho_B(b)db \\
\sigma^2_f = \int_{\Omega(B)} (f(x, b) - \mu_f)^2\rho_B(b)db
\end{cases}, \quad x \in \mathbb{R}^n,$$

(5)
This approach aims at determining a trade-off between the expected fitness and the expected fitness variation as operating conditions randomly fluctuate. Although this approach is satisfactory from theoretical and practical viewpoints, its application is not straightforward. Particularly, the estimation of the mean and variance can be tedious for complex CFD applications. This issue is detailed below.

To estimate the mean and variance of the random variable f, one can simply use statistical estimators in a classical Monte-Carlo approach. A sample of operating conditions $(b_i)_{i=1,\ldots,N}$ if size N is generated according to the PDF ρ_B. Then, unbiased estimators of the mean and variance are:

$$M_f = \frac{1}{N} \sum_{i=1}^{N} f(x, b_i),$$

$$S_f^2 = \frac{1}{N-1} \sum_{i=1}^{N} (f(x, b_i) - M_f)^2. \quad (6)$$

This approach does not suffer from point-optimization effect since the sample $(b_i)_{i=1,\ldots,N}$ is generated randomly according to the PDF ρ_B.

III. MULTI-OBJECTIVE GAS

The approach described in the previous section drives to the solution of a multi-objective optimization problem. There exist several variants of GAs for multi-objective optimization problems; see for example Vector Evaluated GAs (VEGAs)[7] and Non-dominated Sorting GAs (NSGAs)[8]. For further information on GAs for multi-objective optimization see Reference [9], [25] and references therein.

The test cases presented in this work have been solved using a modification of a Non-dominated Sorting Genetic Algorithm (NSGA). More recent algorithm such as SPEA2[25], epsilon-MOEAs[26], or NSGA-II[27] (the improvement of NSGA) could also have been chosen. Nevertheless, the main objective of this work is the integration of different tools for the solution of robust design problems. Obviously, any improvement in any of the integrated tools should produce a global improvement of the whole process.

IV. 2D NS SOLVER ON UNSTRUCTURED MESH

In the examples shown at the end of this section we have solved the 2D Navier-Stokes equations by using a Finite-Volume Galerkin method on unstructured meshes. A 2D unstructured mesh has been generated by the pre/post-processing software GID of CIMNE. To solve the Euler part of the equations, a Roe scheme has been used. To compute turbulent flows a $k-\varepsilon$ model has been chosen. Near-wall turbulence has been computed by a two-layer approach. Time dependant problems have been solved using a fourth order Runge-Kutta scheme.

V. RESPONSE SURFACE MODELING METHODS

Since about fifteen years ago, Genetic Algorithms have been introduced in aerodynamics shape design problems (see [12], [13], [14]. The main concern related to the use of genetic algorithms is the computational effort needed for the accurate evaluation of a configuration that might lead to unacceptable computer time if compared with more classical algorithms. Eventhough, fitness function value can be effectively estimated by using an approximated Response Surface Modeling.

One of the most important advantages obtained by using response surface models[15] in optimization is a significant reduction in the computational cost. This allows the user to perform global optimization and reliability-based optimization, which are otherwise prohibitively computationally expensive. In addition, the use of response surface models allows the design engineer to quickly perform a variety of trade-off studies which provide information about the sensitivity of the optimal aircraft design with respect to changes in performance criteria and to off-design conditions.

The reduction in the computational cost of optimization provided by response surface models motivates their use in the modeling of data, despite the fact that, under certain conditions, they can produce some numerical noise.

In many RSM applications, either linear or quadratic polynomials are assumed to accurately model the observed response values. If n_s analysis are performed and $p = 1, \ldots, n_s$, then a quadratic response surface (RS) model has the form

$$y^{(p)} = c_0 + \sum_{1 \leq j \leq n_v} c_j x_j^{(p)} + \sum_{1 \leq s \leq n_v} c_{n_v - 1 + j + k} x_s^{(p)} x_k^{(p)}, \quad (7)$$

where $y^{(p)}$ is the response; $x_j^{(p)}$ and $x_k^{(p)}$ are the n_v design variables; and c_0, c_j, and $c_{n_v - 1 + j + k}$ are the unknown polynomial coefficients. Note that there are $n_t = (n_v + 1)(n_v + 2)/2$ coefficients (i.e., model terms) in the quadratic polynomial. This model polynomial may be written in matrix notation as

$$y^{(p)} = C^T \tilde{X}^{(p)}, \quad (8)$$

where $C = [c_0, c_1, \ldots, c_{n_v-1}]$, and $\tilde{X}^{(p)}$ is the vector of length n_t corresponding to the form of the $x_1^{(p)}$ and $x_k^{(p)}$ terms in the polynomial model (10). For the p^{th} observation this is

$$\tilde{X}^{(p)} = [1, x_1^{(p)}, x_2^{(p)}, \ldots, x_n^{(p)}, (x_1^{(p)})^2, x_1^{(p)} x_2^{(p)}, \ldots, (x_{n_v}^{(p)})^2]. \quad (10)$$

Note that there is a difference between the p^{th} vector of independent variables, $X^{(p)}$, and the p^{th} vector of independent variables mapped into the form of the polynomial model, $\tilde{X}^{(p)}$.

Estimating the unknown coefficients requires n_s analysis, where $n_s \geq n_t$. Under such conditions, the estimation problem may be formulated in matrix notation as

$$Y \approx XC,$$ \quad (11)

where Y is the vector of n_s observed response values,

$$Y = [y^{(1)}, y^{(2)}, \ldots, y^{(n_s)}], \quad (12)$$
and X is the matrix formed by the n_x row vectors \(\bar{X}_r \) which is assumed to have rank n_t. Thus, X may be expressed as

\[
X = \begin{bmatrix}
1 & x_1^{(1)} & x_2^{(1)} & \ldots & (x_{n_x}^{(1)})^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_1^{(n_x)} & x_2^{(n_x)} & \ldots & (x_{n_x}^{(n_x)})^2
\end{bmatrix}.
\] (13)

The unique least squares solution to Equation (14) is

\[
\hat{Y} = \hat{C}^T \hat{X}_r,
\] (15)

where \((X^T X)^{-1}\) exists if the rows of X are linearly independent. When \(C\) is substituted by \(\hat{C}\) into Equation (11), values of the response may be predicted at any location \(x\) by mapping \(x\) into \(\bar{X}_r\). In matrix notation this corresponds to

\[
\hat{Y} = \hat{C}^T \hat{X}_r.
\] (16)

Note that if \(n_x > n_t\) the system of equations is overdetermined. Thus, the predicted response values (from the polynomial model) at the original sample locations may differ from the observed response values at the sampled locations.

Polynomial RS models can be considered as global models in which all of the \(n_x\) observed values of the response are equally weighted in the fitting of the polynomial surface. At an unsampled location in design space, \(x\), response observations that are near to \(x\) (in the sense of Euclidean distance) have an equal influence on the predicted response, \(f(x)\), as the response observations that are far from \(x\). It can be argued that such a global model may not be the best approximation if the true unknown response has many real local optima (as opposed to the artificial local optima created by numerical noise). In such a situation an approximation scheme having local modelling properties may be more attractive, i.e., where \(f(x)\) is more strongly influenced by nearby measured response values and is less strongly influenced by those further away. Such local modelling behavior is characteristic of interpolation models, for which DACE models are one particular implementation.

VI. SEMI-TORSIONAL SPRING ANALOGY FOR MESH MOVEMENT

During any shape optimization process there is a need for a simple, robust and computationally efficient scheme for maintaining element quality during mesh deformation. This can be provided by a spring analogy approach. This scheme must work in both 2D and 3D, be able to handle large deformations, and work well for fully unstructured meshes. Paper [16] presented such a scheme, developed as an extension of the 2D semi-torsional approach. We have used it in our optimization approach to perform 2D Multi-element unstructured mesh movement due to slat/flap position modifications. This has allowed to use the same computational mesh for all the different computational geometries obtained during the solution of the optimization problem.

A. Lineal spring analogy

Spring analogy models consist in considering the mesh as an assembly of springs with a given stiffness for each one. Each of the edges of the mesh is considered as a spring. Then, after the modification of the geometry of the boundary, the new resulting mesh is obtained as the new equilibrated position of the springs network.

The lineal spring stiffness \(k_{ij}\) for a given element edge \(i - j\) takes the following general form:

\[
k_{ij}^n = \frac{\lambda}{[(y_{1,i}^n - y_{1,j}^n)^2 + (y_{2,i}^n - y_{2,j}^n)^2 + (y_{3,i}^n - y_{3,j}^n)^2]^\beta},
\] (17)

where the superscript \(n\) denotes time step, \((y_{1,i}^n, y_{2,i}^n, y_{3,i}^n)\) and \((y_{1,j}^n, y_{2,j}^n, y_{3,j}^n)\) are the spatial coordinates of the two nodes connected by the edge \(i - j\) at time step \(n\), and \(\lambda\) and \(\beta\) are coefficients. The fictitious spring force \(\vec{F}_{ij}^n\) acting on node \(i\) from edge \(i - j\) is

\[
\vec{F}_{ij}^n = k_{ij}^n (\vec{\delta}^n_j - \vec{\delta}^n_i),
\] (18)

where \(\vec{\delta}^n_j\) and \(\vec{\delta}^n_i\) are nodal displacements of node \(j\) and \(i\) at step \(n\) respectively.

The static equilibrium equation for node \(i\) at time step \(n\) is

\[
\sum_{j=1}^{\text{NE},i} k_{ij}^n (\vec{\delta}^n_j - \vec{\delta}^n_i) = 0,
\] (19)

where \(\text{NE},i\) is the number of nodes directly connected to node \(i\) through fictitious springs. A system of equations is derived by applying the equilibrium equation to all nodes in the mesh.

Nodal coordinates are updated by adding the nodal displacements to the old coordinates:

\[
\vec{y}_i^n = \vec{y}_i^{n-1} + \vec{\delta}^n_i.
\] (20)

The coefficient \(\beta\) is often taken to be 0.5, which means that the stiffness is inversely proportional to the length of the edge, and \(\lambda = 1\).

B. Semi-torsional spring analogy

A semi-torsional spring analogy model is similar to the lineal formulation, with angle information incorporated into the spring stiffness. Neither displacement formulation nor force transformation is needed, and this approach is therefore easy to implement [16]. For 2D triangular elements, a semi-torsional stiffness of an edge \(i - j\) was proposed by Blom [17].

\[
k_{ij}^{\text{semi-torsional}} = k_{ij}^{\text{lineal}} \frac{\theta}{\theta},
\] (21)

where \(\theta\) is the angle facing the edge on an element. However, this semi-torsional model is not directly applicable to 3D elements. Moreover, an internal edge in a 2D triangular mesh is attached to two elements, and faces two angles which are usually different in magnitude. The above definition gives different stiffness values to a single edge when it is considered on each of its two attached elements.

To deform 2D/3D unstructured meshes for solving moving boundary problems, we propose a semi-torsional spring...
analogy model based on Zeng’s previous work [16], in which the stiffness of an edge is defined as the sum of its linear stiffness and its semi-torsional stiffness, with the semi-torsional stiffness depending on the angle facing the edge, i.e.

\[k_{ij} = k_{ij}^{\text{linear}} + k_{ij}^{\text{semi-torsional}} \]

\[k_{ij}^{\text{semi-torsional}} = k \frac{N_{E_{ij}}}{\sin^2 \theta_{m}^{ij}} \]

where the lineal stiffness is defined as in Eq. (19), \(N_{E_{ij}} \) is the number of elements sharing edge \(i - j \), and \(\theta_{m}^{ij} \) is the facing angle, defined as the angle that faces the edge \(i - j \) on the \(m \)th element attached to the edge. \(k \) is a coefficient having the dimension of the stiffness. In all our numerical experiments, we set the value of the coefficient to be 1,0.

On a tetrahedron with vertices \(i, j, k \), and \(l \), the angle that faces the edge \(i - j \) is taken as the angle formed between triangle \(\triangle jkl \) and triangle \(\triangle jkl \).

By substituting (24) into (20), the spring forces on nodes \(i \) and \(j \) are expressed as

\[F_{ij} = \left(\frac{\lambda}{l_{ij}} + k \sum_{m=1}^{N_{E_{ij}}} \frac{1}{\sin^2 \theta_{m}^{ij}} \right) \begin{bmatrix} B \end{bmatrix} [u_{ij}], \]

where \([F_{ij}] = [F_{ijx}, F_{ijy}, F_{ijz}]^T, [u_{ij}] = [u_i, v_i, u_j, v_j]^T \) are vectors of spring forces and displacements at nodes \(i \) and \(j \), \([B]\) is a \(6 \times 6 \) matrix whose elements are given by \(B_{pj} = -\delta_{pq} + \delta_{p,q+3} + \delta_{p+3,q} \), with \(\delta_{pq} = 1 \) if \(p = q \) and \(\delta_{pq} = 0 \) if \(p \neq q \).

For a 2D triangular mesh one edge within the mesh shares two elements and Eq. (24) simplifies to

\[k_{ij}^{\text{semi-torsional}} = k \left(\frac{1}{\sin^2 \theta_1} + \frac{1}{\sin^2 \theta_2} \right), \]

where \(\theta_1 \) is the angle facing edge \(i - j \) on the triangle \(\triangle ijk \), \(\theta_2 \) is the angle facing edge \(i - j \) on \(\triangle ijk \) and \(k, l, i \) and \(j \) are the vertices of the elements.

In a 2D triangular mesh, spring forces on the edge \(i - j \) are

\[F_{ij} = \left(\frac{\lambda}{l_{ij}} + k \left(\frac{1}{\sin^2 \theta_1} + \frac{1}{\sin^2 \theta_2} \right) \right) \begin{bmatrix} B^* \end{bmatrix} [u_{ij}], \]

where \([F_{ij}] = [F_{ijx}, F_{ijy}, F_{ijz}]^T, [u_{ij}] = [u_i, v_i, u_j, v_j]^T \), and \([B^*]\) is a \(4 \times 4 \) matrix whose elements are given by \(B^*_{pq} = -\delta_{pq} + \delta_{p,q+2} + \delta_{p+2,q} \).

With the above definition for semi-torsional stiffness, an angle approaching 0 or \(\pi \) makes the edge facing this angle very stiff, which prevents further change in the angle and thus avoids element inversion.

VII. APPLICATION TO HIGH LIFT DEVICE OPTIMIZATION

In order to test the proposed approach the robust optimization of a high lift device has been faced. The goal of the optimization is to maximize \(C_l \) or \(\frac{\theta}{\alpha} \) at landing or takeoff fly conditions by modifying the positions and orientations of slat and flap. The aerodynamic coefficients are computed using N-S flow solver.

Here the design variables are the positions (2 coordinates for each one) and angles of slat and flap, so that we have six design variables in total.

A. Single-point Lift Maximization at Landing Flight Condition

For landing configurations, we only concern about the maximum lift, because in this situation drag is considered as convenient. So that, the optimization problem is defined as

\[\max C_l \quad (25) \]

The nominal operating condition is defined for landing conditions by the free-stream incidence \(\alpha = 15^0 \), Mach number \(M_{\infty} = 0.15 \) and Reynolds number \(Re = 1,8 \times 10^6 \).

Figure 1 shows the convergence history of lift coefficient obtained during the optimization process. The optimized airfoil slat and flap positions are shown in Figure 2 compared with the baseline multi element airfoil. Red one shows the optimized airfoil positions and blue one is the baseline airfoil. The optimized pressure distribution is shown in Figure 3.

Table 1 gives the detailed evolution of the lift coefficient value during the optimization process.

![Image](image-url)

Fig. 1. Convergence history of lift coefficient

<table>
<thead>
<tr>
<th>Generations</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_l)</td>
<td>4.073</td>
<td>4.805</td>
<td>4.816</td>
<td>4.822</td>
<td>4.825</td>
<td>4.827</td>
</tr>
</tbody>
</table>

TABLE I

LIFT COEFFICIENT VALUES OBTAINED DURING OPTIMIZATION

B. Single-point Lift Maximization at Takeoff Flight Condition

For takeoff conditions, we not only concern about maximum lift but also about minimum drag. So, the optimization...
Fig. 2. Optimized multi element airfoil configuration for landing

Fig. 3. Comparison of pressure distributions between optimized and baseline for landing

Fig. 4. Convergence history of lift to drag ratio obtained during optimization

Fig. 5. Optimized multi element airfoil configuration for takeoff

Fig. 6. Streamlines over multi element airfoils optimized for takeoff

problem is defined as

\[\max \frac{C_l}{C_d} \] \hspace{1cm} (26) \]

The nominal operating condition are defined for takeoff conditions by the free-stream incidence \(\alpha = 8^\circ\), Mach number \(M_\infty = 0.15\) and Reynolds number \(Re = 1.8 \times 10^6\).

Figure 4 shows the convergence history of the lift to drag ratio obtained during the optimization process. The optimized airfoil slat and flap positions are shown in Figure 5 compared with the baseline multi element airfoil. Red one shows the optimized airfoil positions and blue one is the baseline airfoil. Streamlines over optimized multi-element airfoil are shown in Figure 6. It is obviously noticed that there is a vortex behind slat. Table 2 gives the detailed lift to drag ratio values obtained during the optimization process.

By comparing the optimized airfoil configurations of the two above optimization problems we can observe that the flap is more slopping down for landing than for takeoff. This is due to the fact that both maximum lift and maximum drag are needed for landing, whereas maximum lift and minimum drag are needed for takeoff.

<table>
<thead>
<tr>
<th>Generations</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_l/C_d)</td>
<td>22.59</td>
<td>34.13</td>
<td>36.20</td>
<td>36.37</td>
<td>36.51</td>
<td>36.55</td>
</tr>
</tbody>
</table>

TABLE II

LIFT TO DRAG RATIO VALUES OBTAINED DURING OPTIMIZATION
C. Lift Maximization With Uncertain Angle of Attack at Landing Flight Condition

In this case we assume that the free-stream angle of attack is subject to random fluctuations. For simplicity, we assume that its PDF is uniform in the interval \([15^0 - 2^0, 15^0 + 2^0]\). The mean angle of attack corresponds to the nominal incidence \(15^0\). Free-stream Mach number is \(M_\infty = 0.15\) and Reynolds number \(Re = 1.8 \times 10^6\). The mathematical formulation of the resulting optimization problem is defined as

\[
\max C_l \quad \text{at } M_\infty = 0.15, \quad \alpha = [15^0 - 2^0, 15^0 + 2^0].
\]

(27)

According to the Taguchi robust control theory, the above design problem with uncertainties can be converted into the following two-objective optimization problem, one objective is the mean value of the lift coefficient, and the other is the variance of lift coefficient over the range of uncertainty.

\[
\begin{align*}
\max f_1 &= \mu C_l = \frac{1}{N} \sum_{i=1}^{N} C_{li} \\
\min f_2 &= \sigma C_l = \frac{1}{N-1} \sum_{i=1}^{N} (C_{li} - \mu C_l)^2
\end{align*}
\]

(28)

where \(N = 5\), \(M_\infty = 0.15\) and \(\alpha_i = [13^0, 14^0, 15^0, 16^0, 17^0]\). The above two-objective optimization problem is solved via Non-dominated Sorting GAs.

Figure 7 shows the compromised Pareto front of the above two-objective optimization problem. Figure 8 illustrates the optimized airfoil slat and flap positions of one solution on Pareto front compared with the baseline and traditional one-point optimized shape. Red one shows the robust optimized airfoil positions, blue one is the baseline airfoil and green one is traditional designed airfoil in section 7.1. Stream lines over optimized airfoil are shown in Figure 9. Two clear vortices appear behind the slat and the flap. The optimized pressure distribution is shown in Figure 10. Red points show the pressure distribution on optimized airfoil and blue ones show baseline pressure distribution.

Figure 11 shows a comparison between one of the obtained robust optimized, the traditional single-point optimized and the baseline airfoils. We can see how the lift coefficient of the robust optimized airfoil is not as sensitive as the single-point optimized one to the fluctuation of the angle of attack. Nevertheless, the cost to be paid for this behavior is that the lift coefficient of the robust design is generally below than the single-point optimized one. It is possible to obtain designs with higher values of lift coefficient, which are the points placed more to the right in Figure 7, but then its behavior is not so much insensitive with respect to the angle of attack.

VIII. Conclusion

The problem of aerodynamic shape optimization with uncertain operating conditions is addressed in this paper. It is solved by using the Taguchi concept converting design with uncertainties into a two-objective optimization problem: one objective is the mean performance, the other one is the variance of the performance. To overcome the difficulty related to the high computational cost required by robust design and GAs, a response surface modeling strategy is proposed that relies on the polynomial approximation, to estimate the fitness value. In addition, a semi-torsional spring analogy is used for the deformation of the computational
Roy RK. Successful optimization of a two-dimensional dynamic unstructured fluid mesh in order to fit it to the different geometries obtained during the shape optimization process. This methodology is demonstrated for a realistic high lift device’s lift maximization in subsonic flow with fluctuation on free stream incidence angle. This optimization problem is solved using the proposed Taguchi robust control method successfully.

ACKNOWLEDGMENT

This work was completed with the partial support of National Science Foundation of China under NSFC-10872093, and with the partial support of the European Comission under the NODESIM FP6 STREP project.

REFERENCES