Feedback vertex sets in star graphs

Fu-Hsing Wang, Yue-Li Wang, Jou-Ming Chang

Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China

Department of Information Management, National Taipei College of Business, Taipei, Taiwan, Republic of China

Received 11 December 2002; received in revised form 15 October 2003

Communicated by Wen-Lian Hsu

Abstract

In a graph \(G = (V, E) \), a subset \(F \subseteq V(G) \) is a feedback vertex set of \(G \) if the subgraph induced by \(V(G) \setminus F \) is acyclic. In this paper, we propose an algorithm for finding a small feedback vertex set of a star graph. Indeed, our algorithm can derive an upper bound to the size of the feedback vertex set for star graphs. Also by applying the properties of regular graphs, a lower bound can easily be achieved for star graphs.

Keywords: Feedback vertex sets; Interconnection networks; Star graphs; Algorithms; Analysis of algorithms

1. Introduction

Let \(G = (V, E) \) be a simple graph, i.e., loopless and without multiple edges, with vertex set \(V(G) \) and edge set \(E(G) \). A set of vertices \(F \subseteq V(G) \) is called a feedback vertex set if the subgraph induced by \(V(G) \setminus F \) is acyclic [7,14], where \(V(G) \setminus F = \{ x \mid x \in V(G) \text{ and } x \notin F \} \). In addition, if the cardinality \(|F| \) is minimum among all possible feedback vertex sets, then \(F \) is called a minimum feedback vertex set. In particular, we use \(F_{\text{min}}(G) \) to denote a certain minimum feedback vertex set of the graph \(G \).

The problem of finding a minimum feedback vertex set is NP-hard for general graphs [7]. The best known approximation algorithm for this problem has approximation ratio 2 [4]. Furthermore, most recent research have been devoted to solving the problem for certain special graphs in polynomial time, e.g., reducible graphs [14], cocomparability graphs [10], convex bipartite graphs [10], cyclically reducible graphs [15], and interval graphs [11]. Recently, the lower and upper bounds to the size of the feedback vertex sets have been established and improved on meshes, tori, butterflies, cube connected cycles, and hypercubes [5,6,12].

The feedback vertex set problem has important applications to several fields, for example, deadlock prevention in operating systems. Once a deadlock has been detected, a strategy is needed to break up the deadlock. Usually, a deadlock in a system can be described by using a wait-for graph [13]. In a wait-for graph, each vertex represents a process, and the existence of an edge \((i, j) \) indicates that process \(i \) is waiting for process \(j \) to release a resource requested...
by process i. A deadlock exists in a system if and only if the corresponding wait-for graph contains a cycle. One of the best-known approaches for solving the deadlock problem can be carried out to abort as less deadlocked processes as possible in the wait-for graph. Using graph-theoretic terminology, the strategy is equivalent to finding a feedback vertex set for such a system.

In this paper, we consider the problem of a particular interconnection network, namely, star graph. Star graphs were proposed as an attractive alternative to hypercubes with many nice topological properties [1,2]. Both star graphs and hypercubes provide attractive interconnection schemes for massively parallel systems. Hence characterizations of these architectures have been widely investigated. Star graphs are vertex and edge symmetric, highly regular, strongly hierarchical, and maximally fault-tolerant for connectivity. Due to their strongly hierarchical structure, star graphs can be defined recursively. Moreover, star graphs have many superior advantages over hypercubes, such as smaller degree and diameter. In this paper, we present a simple algorithm for finding an upper bound of the minimum feedback vertex set on star graphs. In contrast, we also give a lower bound to the problem on star graphs.

2. Main results

A permutation is a sequence of elements in which no element appears more than once. Let $N = \{1, 2, \ldots, n\}$ and $p = [p_1, p_2, \ldots, p_n]$ be a permutation, where $p_i \in N$ for all $1 \leq i \leq n$. The n-dimensional star graph (n-star for short), denoted by S_n, is an undirected graph consisting of $n!$ vertices labeled with distinct permutations $[p_1, p_2, \ldots, p_n]$ from N. For each vertex $v = [p_1, p_2, \ldots, p_n]$, p_i is called the ith number of v. Two vertices are connected by an edge if and only if the label of one vertex can be obtained from the other by swapping the first number and the ith number, where $2 \leq i \leq n$ [1,2]. Note that an n-star is a regular graph of degree $n - 1$. Fig. 1 depicts S_4. Two vertices are connected by an edge indicated by the same symbol. For instance, $[1, 2, 3, 4]$ and $[4, 2, 3, 1]$ are neighbors since their labels differ only in the first and the last positions.

![Fig. 1. A 4-dimensional star graph S_4. The set $F_m(S_4)$ is represented by the circled vertices.](image)

For a permutation $[p_1, p_2, \ldots, p_n]$ the pair p_i and p_j constitute an inversion, if $p_i > p_j$ and $i < j$. A vertex is odd (respectively, even) if the number of inversions in its permutation is odd (respectively, even). Throughout the rest, we use I_e and I_o to denote the sets containing all even vertices and odd vertices of S_n, respectively.

Proposition 1. Permutation $[n, n - 1, \ldots, 1]$ is even if and only if $n \equiv 0, 1 \pmod{4}$.

Proof. The number of inversions for the permutation $[n, n - 1, \ldots, 1]$ is $1 + 2 + \cdots + (n - 1) = \frac{n(n - 1)}{2}$. The inversions-sum formula makes the condition necessary. To prove the converse, suppose $n \equiv 0, 1 \pmod{4}$. For an integer k, if $n = 4k$, then $\frac{n(n - 1)}{2} = 2k(4k - 1)$ is even. For the case where $n = 4k + 1$, the proposition follows from the fact that $\frac{n(n - 1)}{2} = 2k(4k + 1)$ is also even. \qed

An independent set S of a graph G is a set of vertices in which no two vertices of S are adjacent in G. If the cardinality of S is maximum among all possible independent sets, then S is called a maximum independent set of G. Note that a star graph is a bipartite graph with equal partite size and I_e and I_o are the two partite sets [9]. Thus, I_e is a maximum independent set of S_n and $|I_e| = \frac{n}{2}$. Furthermore, the
sets in S_n. Therefore, $V(S_n) \setminus I_e$ is a trivial feedback vertex set.

For $i, j \in N$, let $N_i = N \setminus \{i\}$ and $N_{i,j} = N \setminus \{i, i + 1, \ldots, j\}$, where $i < j$. Define classes of vertex sets in S_n as follows.

$$
\Phi_1 = \{[1, p_2, p_3, \ldots, p_n] | \ \\
\quad \text{if } j, k \geq 2 \text{ and } j \neq k \} \cap I_o,
$$

$$
\Phi_i = \{[i, p_2, p_3, \ldots, p_{n-1}, i-1, i-2, \ldots, 2, 1] | \ \\
\quad \text{for } i = 2, 3, \ldots, n-2, \text{ and } \ \\
\quad \text{if } 2 \leq j, k \leq n-i+1 \text{ and } j \neq k \} \cap I_o,
$$

$$
\Phi_n-1 = \{ \ \\
\quad \text{if } n \equiv 0, 1 \pmod{4}, \ \\
\quad \{[n-1, n-2, n-3, \ldots, 1] \}, \ \\
\quad \text{otherwise}. \}
$$

From the above definition and Proposition 1, Φ_{n-1} is a set containing only one vertex. It is obvious that all Φ_i, $1 \leq i \leq n-1$, are independent sets of S_n since they contain only odd vertices. Consider $G_0 = I_e$ and let $G_i, 1 \leq i \leq n-1$, be the subgraph of S_n induced by $I_e \cup \Phi_1 \cup \Phi_2 \cup \cdots \cup \Phi_i$. We shall show that, for $i = 1, 2, \ldots, n-1$, $V(S_n) \setminus V(G_i)$ is a feedback vertex set and its size is smaller than that of $V(S_n) \setminus V(G_{i-1})$.

The neighborhood $N(v)$ of a vertex v is the set of vertices which are adjacent to v. A vertex $v \in V(G_i)$, $0 \leq i \leq n-2$, is called a port vertex of G_i if there exists a vertex $u \in N(v)$ in Φ_j with $j > i$. We use Fig. 2 as an example to illustrate the above notation. In S_4, $\Phi_1 = \{[1, 3, 2, 4], [1, 2, 4, 3], [1, 4, 3, 2] \}$, $\Phi_2 = \{[2, 3, 4, 1] \}$ and $\Phi_3 = \{[3, 4, 2, 1] \}$. Fig. 2(a) depicts the induced subgraph G_0 of S_4. Consider the induced subgraph G_1 of S_4 in Fig. 2(b). Vertices $[4, 3, 2, 1], [3, 2, 4, 1], [2, 4, 3, 1], [1, 3, 4, 2]$ and $[1, 4, 2, 3]$ are port vertices of G_1 since vertices $[4, 3, 2, 1], [3, 2, 4, 1]$ and $[1, 3, 4, 2]$ are neighbors of vertex $[2, 3, 4, 1]$ in Φ_2 in S_4, and vertices $[2, 4, 3, 1]$ and $[1, 4, 2, 3]$ are neighbors of vertex $[3, 4, 2, 1]$. $G_1 \in \Phi_3$ in S_4. Fig. 2(c) illustrates G_2 of S_4 where vertices $[4, 3, 2, 1], [2, 4, 3, 1]$ and $[1, 4, 2, 3]$ are port vertices of G_2. However, vertices $[1, 3, 4, 2]$ and $[3, 4, 2, 1]$ are not port vertices of G_2 since they are not adjacent to any vertex in Φ_3. Finally, Fig. 2(d) is a maximum acyclic induced subgraph of S_4. Thus, $V(S_4) \setminus V(G_2) = \{[2, 1, 3, 4], [2, 4, 1, 3], [3, 1, 4, 2], [3, 2, 1, 4], [4, 1, 2, 3], [4, 2, 3, 1], [4, 3, 1, 2] \}$ is a feedback vertex set (see Fig. 1). We will show later on that this set is a minimum feedback vertex set.

![Fig. 2](image-url)
A set \(D \subseteq V(G) \) is a dominating set of \(G \) if for every vertex \(u \in V(G) \setminus D \) there exists a vertex \(v \in D \) such that \(u \) is adjacent to \(v \). We also say that \(v \) dominates \(u \) and \(u \) is dominated by \(v \). In particular, we call \(D \) a perfect dominating set if every vertex in \(V(G) \setminus D \) is dominated by exactly one vertex in \(D \) [8]. We call \(D \) an independent dominating set if \(D \) is also an independent set of \(G \). A dominating set \(D \) is independent perfect if it is both independent and perfect. In [3], Arumugam and Kala showed that all vertices in \(S_n \) having the same first number in their labels form a minimum independent perfect dominating set. Note that every \(\Phi_i, i = 1, 2, \ldots, n - 1 \), is a subset of some minimum independent perfect dominating set.

Lemma 2. \(G_1 \) is acyclic and each component of \(G_1 \) has at most one port vertex.

Proof. Let \(u \) and \(v \) be two vertices of \(\Phi_1 \). Since all vertices having 1 as the first number of their labels form a minimum independent perfect dominating set, no vertex is dominated by both \(u \) and \(v \) in \(G_1 \). This means that the component of \(G_1 \) is either an isolated vertex or a nontrivial tree since both \(I_r \) and \(\Phi_1 \) are independent sets. Thus, \(G_1 \) is acyclic. (See Fig. 2(b) for \(S_4 \).) To complete the proof, let \(T \) be a component of \(G_1 \). If \(T \) contains only one isolated vertex, then the lemma holds immediately. For the case where \(T \) is a nontrivial tree, there is only one vertex having 1 as the first number and another vertex having 1 as the \(n \)th number in their labels. However, only one of these two vertices can be a port vertex in \(T \) since, by definition, a port vertex of \(G_1 \) must be adjacent to a vertex of \(\Phi_1 \) for \(i \geq 2 \) and every vertex of \(\Phi_1, i \geq 2 \), has 1 as the last number in its label. Specifically, if \(w \) is the vertex with 1 as the first number in \(T \), then \(w \in \Phi_1 \) and \(w \) is an odd vertex. Thus, \(w \) cannot be adjacent to any vertex of \(\Phi_1, i \geq 2 \). Therefore, \(w \) is not a port vertex and we conclude that the component \(T \) has at most one port vertex in \(G_1 \). \(\square \)

Before proving Lemma 3, we introduce some notation used in the proof. For each vertex \(u = [i, p_2, p_3, \ldots, p_{n-i+1}, i-1, i-2, \ldots, 2, 1] \in \Phi_i \), \(2 \leq i \leq n-2 \), let \(NB_j(u) = [j, p_{j+1}, p_{j+2}, \ldots, p_{n-i+1}, i-1, i-2, \ldots, 2, 1] \) be the \(j \)th neighbor of \(u \). Notice that, by definition, \(NB_j(u), 2 \leq j \leq n \), are port vertices in \(G_{i-1} \) as \(u \in N(NB_j(u)) \) in \(\Phi_i \). Since \(u \) is an odd vertex, all \(NB_j(u), 2 \leq j \leq n \), are even vertices and are contained in \(G_i \). Therefore, the degree of \(u \) in \(G_i \) is \(n-1 \). Let \(T_u \) be the component of \(G_1, 1 \leq i \leq n-2 \), containing vertex \(u \in \Phi_i \). For example, Fig. 2(c) depicts \(G_2 \) of \(S_4 \) where vertex \(u = [2, 3, 4, 1] \) is the only vertex of \(G_2 \) in \(\Phi_2 \). Besides, vertices \([3, 2, 4, 1], [4, 3, 2, 1], \) and \([1, 3, 4, 2] \) are \(NB_2(u), NB_3(u), \) and \(NB_4(u), \) respectively, of vertex \(u \). Thus, the degree of \(u \) is 3. The leftmost tree in Fig. 2(c) is the component \(T_u \) of \(G_2 \). Let us now prove Lemma 3.

Lemma 3. Each component of \(G_k, k = 1, 2, \ldots, n-2 \), has at most one port vertex.

Proof. We prove this lemma by induction on \(k \). The basis \((k = 1) \) follows directly from Lemma 2. For the inductive hypothesis, we assume that the lemma is true for all \(1 \leq k < i \), where \(i < n-2 \). Now, consider \(k = i \). In \(G_i \), the component containing no vertex in \(\Phi_i \) is also a component of \(G_{i-1} \) and, by hypothesis, has at most one port vertex. By contrast, \(T_u, u \in \Phi_i \), intuitively has at most \(n-1 \) port vertices namely \(NB_j(u), j = 2, 3, \ldots, n \). To complete the proof, we now show that there are at least \(n-2 \) neighbors of \(u \) which are not port vertices in \(G_i \). In fact, we want to show that \(NB_j(u), 2 \leq j \leq n \) and \(j \neq n-i+1 \), are not port vertices in \(G_i \). Suppose to the contrary that \(NB_j(u), 2 \leq j \leq n \) and \(j \neq n-i+1 \), is a port vertex in \(G_i \). In such a case, a vertex \(w = [m, p_2, \ldots, p_{n-i}, i, i-1, \ldots, 1] \) in \(G_m, m > i \), exists such that \(NB_j(u) \subseteq N(w) \). Consider the possible positions of the number \(i \) for those vertices of \(N(u) \) and \(N(w) \). Since the first number of \(u \) is \(i \), the first number of \(NB_j(u) \) cannot be \(i \). However, the number \(i \) is either in the first position or the \((n-i+1)\)th position for every neighbor of \(u \). Therefore, \(NB_j(u) \) must have \(i \) as the \((n-i+1)\)th number, i.e., \(j = n-i+1 \). This contradicts the assumption that \(j \neq n-i+1 \). Thus, the lemma follows. \(\square \)

Note that \(G_1 \) is acyclic. We next show that \(G_2, G_3, \ldots, G_{n-1} \) are acyclic.

Lemma 4. \(G_k \) is acyclic, for \(k = 1, 2, \ldots, n-1 \).
Proof. The proof is also by induction on k. The basis ($k = 1$) follows directly from Lemma 2. Assume the lemma is true for all G_k, $1 \leq k < i$, where $i < n - 1$. Now, consider the case $k = i$. We first show that each component of G_i contains at most one vertex of Φ_i. Let u and v be any two distinct vertices of Φ_i. Since Φ_i is a subset of some independent perfect dominating set, $N(u) \cap N(v) = \emptyset$. From the inductive hypothesis and Lemma 3, u and v are in different components of G_i. Further, we show that all components of G_i are acyclic to complete the proof. In G_i, the component containing no vertex in Φ_i is also a component of G_{i-1} and, by hypothesis, is acyclic. It suffices to show that the component T_u containing $u \in \Phi_i$ is acyclic. The number of vertices in T_u is

$$|V(T_u)| = |V(C_2)| + |V(C_3)| + \cdots + |V(C_n)| + 1,$$

where C_j, $j = 2, 3, \ldots, n$, is the component containing $NB_j(u)$ in G_{i-1}. Since the degree of u is $n - 1$ and each component C_i, $2 \leq i \leq n$, is acyclic, the number of edges in T_u is

$$|E(T_u)| = |E(C_2)| + |E(C_3)| + \cdots + |E(C_n)| + (n - 1)$$

$$= (|V(C_2)| - 1) + (|V(C_3)| - 1) + \cdots + (|V(C_n)| - 1) + (n - 1)$$

$$= |V(C_2)| + |V(C_3)| + \cdots + |V(C_n)|.$$

Since T_u is connected and $|E(T_u)| = |V(T_u)| - 1$, T_u is acyclic. This completes the proof. \hfill \Box

Let us now compute an upper bound to the size of the minimum feedback vertex set $F_m(S_n)$. Theorem 5. $|F_m(S_n)| \leq \frac{13}{2}[n! - (n - 1)! - (n - 2)! - \cdots - 2!] - 1$ for $n \geq 3$.

Proof. By Lemma 4, G_{n-1} is acyclic. Thus, $V(G) \setminus V(G_{n-1})$ is a feedback vertex set. Therefore, for a minimum feedback vertex set $F_m(S_n)$ we have the following bound:

$$|F_m(S_n)| \leq |V(G) \setminus V(G_{n-1})|$$

$$= n! - |I_e \cup \Phi_1 \cup \Phi_2 \cup \cdots \cup \Phi_{n-1}|$$

$$= n! - (|I_e| + |\Phi_1| + |\Phi_2| + \cdots + |\Phi_{n-1}|)$$

$$= n! - \left[\frac{n!}{2} + \frac{(n - 1)!}{2} + \frac{(n - 2)!}{2} + \cdots + \frac{2!}{2} + 1\right]$$

$$= \frac{1}{2}[n! - (n - 1)! - (n - 2)! - \cdots - 2!] - 1. \quad \Box$$

The following lemma given in [5] shows a lower bound to the size of a minimum feedback vertex set of G with maximum degree r.

Lemma 6. $|F_m(G)| \geq \frac{|E(G)| - |V(G)| + 1}{r - 1}$.

Note that the n-star has $n!$ vertices and $\frac{n(n - 1)}{2}$ edges and each vertex has degree $n - 1$. The next result directly follows from Lemma 6.

Corollary 7. $|F_m(S_n)| \geq \frac{(n - 3)n + 2}{2(n - 2)}$ for $n \geq 3$.

3. Concluding remarks

By Theorem 5 and Corollary 7, we have found that $\frac{13}{2} \leq |F_m(S_4)| \leq 7$. This implies that $|F_m(S_4)| = 7$. Therefore, our algorithm finds an optimal feedback vertex set of S_4. The equality of Lemma 6 holds only when the subgraph G' induced by $V(G) \setminus F_m(G)$ is a forest that contains the least number of components. Moreover, the lower bound will increase to adapt to the least number of components of G'. Therefore, we are now trying to determine the cardinality of components in G'. It will be helpful to explore the exact value for this problem.

References