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Abstract—In this paper, we propose an optimal gate sizing
and clock skew optimization algorithm for globally sizing s/n-
chronous sequential circuits. The number of constraints ad
variables in our formulation is linear with respect to the number
of circuit components and hence our algorithm can efficient} find
the optimal solution for industrial scale designs. To the bst of
our knowledge our method is the first exact gate sizing algotihm
that can handle cyclic sequential circuits. Experimental esults
on industrial cell libraries demonstrate that our algorithm can
yield an average of 12.6% improvement in the optimal clock
period by combining clock skew optimization with gate sizim.
For identical clock period, our algorithm can achieve an aveage Fig. 1. Feedback loop in datapath
of 11.3% area savings over a popular commercial synthesis ob

. INTRODUCTION they used have limited accuracy in modern designs since

Synchronous sequential circuits form the core of modethe gate delay is a nonlinear function of the gate size [10].
IC designs. A typical integrated circuit consists of seler&or larger circuits, this formulation had a prohibitivebrge
combinational logic blocks lying between flip-flops and aftenumber of constraints and they partitioned the circuit to
contains feedback paths or cycles. LFSR (linear feedbaittk sisolve the problem, while sacrificing the optimality of the
registers), modulo-N counters and data forwarding logic #plution. Sathyamurthy et al. formulated the sequentiali
microprocessor cores are some examples of feedback loopsi#ing problem as a nonlinear convex program [3]. They used
sequential circuits. Figure 1 shows a typical sequentiaLidi the Elmore delay model which is considered to be highly
with a feedback path. inaccurate for deep submicron VLSI designs [10]. Again, due

Given a synchronous sequential circuit with a fixed topolo an extremely large number of tunable variables, theyctoul
ogy, we want to optimize the circuit for delay, power and/ogiot propose an exact method for solving the problem. None
area by varying the sizes of the gates in the circuit. The igoalof these techniques can be applied to cyclic sequentialitirc
to find a fast exact optimization technique for globally sigi With feedback loops, as they rely on DAG (directed acyclic
the whole circuit using accurate delay and power models. graph) representation of the circuit.

The simplest way to optimize the delay of sequential ciecuit In this paper, we propose an optimal gate sizing and clock
is to perform gate sizing of each combinational logic blockkew optimization algorithm for efficiently sizing induistr
separately and then arrive at a clock frequency for the eentlibrary based designs. We use nonlinear convex models for
circuit depending on the maximum delay of any combinaccurately representing the gate delays and use the Lagrang
tional logic block. However, this method cannot incorperatRelaxation technique for solving the formulated optimizat
clock skew optimization [1] and leads to suboptimal circupproblem. We achieve faster convergence of the problem by
performance. By adding an additional degree of freedom appropriately choosing the constraints and variablesdlin
our optimization using variable clock skews at the flip-flopswvith respect to the circuit components), without sacrificamy
we can achieve better power/performance goals for the Wesagrcuracy in modeling. Experimental results on industré&l ¢
[2]. libraries demonstrate that our algorithm can yield an ayect

While several algorithms were proposed for gate sizing 4P.6% improvement in the optimal clock period by combining
combinational circuits, some of which are based on convelock skew optimization with gate sizing. For identical aito
optimization techniques [4], [5], [6], [10], only a handfulperiod, our algorithm can achieve an average of 11.3% area
of previous works target sequential circuits. Chuang et &avings over a popular commercial synthesis tool. To thé bes
formulated the sizing problem @ftyclic sequential circuits as of our knowledge, our technique is the first exact gate sizing
a linear program [2]. However, the piecewise linear mode#dgorithm that can handle cyclic sequential circuits.



TABLE |
NOTATION USED IN THIS WORK

N: Set of all gates in the circuit, consisting of internal
and output gates and excluding inputs

I: Set of all inputs in the circuit

DFF: Set of all flip-flops in the circuit

a;: Arrival time of the signal at the output of gate
rise and fall superscripts indicate signal rise or fall

C: Clock period of the circuit

Fig. 2. Motivation: Clock skew optimization Dij: Gate delay from output of gateto output of gatej

tsetups thold: Setup and Hold times of flip-flop

in(j): Set of all input pins of gatg

(+H)un, (—=)un:  positive_unate andnegative_unate

[1. SIZING AND CLOCK SKEW OPTIMIZATION
A. Clock skew optimization A. Notation

he Table | gives a list of the notations used in this work. For the
ieireuit in figure 3, N = {1,2,3,4,5}, I = {6} and DF'F" =
o{fl’ 5}. The flip-flop clock-to-Q delay has been ignored in this

the circuit. Figure 2 shows combinational circuits blo¢ks'l formu]atiqn. For flip-flopi the arrivalltime at the CK. pin.is
and CC2, having delays of 3 units and 1 unit, respectively' which is the C.IOCk skgw at that flip-flop. The_arr|\{al time
a1, ay and az are the clock skews at flip-flops,2 and 3. at the output of fI|p-f_Iop is also equal ta;. All arrival times
The circuit can operate at a minimum clock period of 3 unit%nd skews are relative to a zero skew clock.

without any skew. But if flip-flop 2 receives a skew-¢fl unit B. Convexity of the delay functiab;;

(a1 = 0,az = +1,a3 = 0), then the circuit can operate at 8 Fishhyrn et al. made a seminal observation that the circuit
clock period of 2 units. By combining gate sizing with clockye|ay under the Elmore model is a posynomial function of the

skew optimization, we can achieve better power/perforangnsisior sizes [5]. Under this model, the gate delay could
goals in our design. be represented as a convex function using an exponential

transformation [4]. The Elmore model is currently consater
B. Problem statement inaccurate for modern designs, but many convex models with
Given a circuit consisting o gates mapped to a technol-2 high degree of accuracy have been proposed to model the
ogy library, find the drive strengths of all the combinatibnadate delay [10], [11]. For library cells, the gate delBy; is
gates in the circuit, and the clock skews of all the flip-flaps @ function of the gate input slew;, the gate load capacitance

the circuit, that will minimize the following objective feion: L @nd the gate input capacitancép; and can be modeled
as a convex function using some of the existing techniques.

Clock skew optimization [1] is a technique where t
various flip-flops in a circuit are intentionally given cloc
skews to improve the overall performance and reliability

a1C + agArea + a3 Pieakage + aPaynamic C. Delay constraints for combinational gates

consisting of a linear combination of the clock period and th L&t us consider the combinational gate numbetetf we
power and/or area of the circuit, while satisfying all thentng @Ssume that input (piry) of gate2 is positive_unate and input

constraints of a synchronous sequential circuit. (pin) 4 is negative_unate, then we can write the following
constraints.

[1l. I LLUSTRATION WITH AN EXAMPLE a%is® 4 D515 Lo, caps) < ah'®®
. . . . . . fall rise( fall rise
Figure 3 shows a cyclic sequential circuit consisting of ay”” + D5’ (s34, Lo, cap2) < aj
combinational gates and flip-flops, with a feedback loop. The above constraints are convex as g functions are
Convex.

D. Setup time constraints

Let us consider the flip-flop numberédTo avoid the long
path violations where the signal reaches the flip-flop toe, lat
we need to set the setup constraints as illustrated in figure 4
Thus, we need to satisfy the constraint

Ma:z:(a;ise  ¢rise aga” T )<a1+C

setup’ setup

We can simplify the above constraint by splitting it into two
constraints as follows:

rise

Fig. 3. A cyclic sequential circuit a5 + togtn, < ai”* +C

agall + tfall < a{all +C

setup —



rise fall rise . . fall
D Q " o D Q a; + Dij (Sz ’LJ’ Cap]) < aj
i Combinational ogic i V]GN/\
oK oK JEDFF a;ise + frise < a;ise +C

Vicin(j) setup —
A 3 i¢CK
Y N § ol < 4 O
c ™ Jvej%]}\,i% skewmin < a;ise, a;}ca” < skewmaz
T e viel  skewpin < al®e, a{'a” < skewmaz
5 max com 09y —— —¢ Jvé%];{% boundé-"“’er < cap; < bound;™""

Fig. 4. Setup constraint and clock skew
V. SOLVING THE NONLINEAR CONVEX OPTIMIZATION

PROBLEM BY LAGRANGIAN RELAXATION

We optimally solve the sequential circuit sizing problem
using the Lagrangian Relaxation technique [6]. We relax the
E. Hold time constraints troublesome constraints P by incorporating them into the

The hold constraints are necessary to avoid the short pffj€ctive function, using non-negative Lagrange mukifsito
violations leading to data racing. But these constraints aP'M the lagrangian functiof,. The simple bound constraints
non-convex and hence not considered [3]. The constraigts &€ NOt relaxed. The exact formulation bf has been omit-

resolved by adding buffers to increase the delay of shohspatted due to space limitation. The Lagrangian relaxation sub-
problem LRS /) associated with a particular value &fis:

The above constraints being linear, are convex constrpihts

IV. GENERALIZED PROBLEM FORMULATION FOR
INDUSTRIAL SCALE DESIGNS

LRSS/ :
After looking at the different types of constraints in our . . .
. ) S minimize Ly(a,cap,L,s,C,\)
example, we now provide the generalized problem formutatio Fall _
a; < skewmae, j€ DFF

PP for circuits synthesized using industrial cell librarig#is subjectto  skewmin < aj*,

formulation is applica_lble_ for both_c_yc_lic and_ ac_yclig syn- skewmin < a™,al™" < shewpaz, i€ 1
chronous sequential circuits. The minimized objectivecfion boundéower < cap; < bou”d;{ppfi?“7 j_éED]\%/\F

is a linear combination of the clock perigd and the sum of
the input capacitance of all gates, which is an approximatig/here is the vector of all lagrange multipliers, amd cap,

for the area of the circuit [5jx; anda. are the corresponding L ands are the vectors of arrival time, input capacitance, load
non-negative weights. Note that the objective functiompei Ccapacitance and input slew, respectively.

sum of linear variables is convex. The clock skews at flipglop From the theory of Lagrangian [7], there exists a vector
as well as the input arrival times are bounded by the minimuyalue A for which the optimal solution o£RS/A is equal to
and maximum skewskew,,i, and skew,q., respectively. the optimal solution of the original proble®P. If we can
PP is a convex optimization problem as the objective functiofind this A value, then we can get the optimal solution to the
as well as the constraints are convex functions as discus§éinal problem. For a value of to be correct, the first order
before. This problem can be solved optimally in polynomidfarush-Kuhn-Tucker (KKT) conditions [7] must hold.

time to give the optimal set of gate sizes and the optimal Table Il summarizesSEQ_SIZE: our algorithm for gate

clock skews of the flip-flops by an algorithm we will discus$izing and clock skew optimization using the Lagrangian
in section V. relaxation technique. In step 1, we initialize the lagrange

multipliers and the tunable variables. We use a bound con-
strained optimization solver L-BFGS-B [8] to minimizk,

PP in step 2. In step 3, we use a modified subgradient approach
minimize oa1C + as ZjeN cap; [9] to update the value of the lagrange multipliers at each
subject to itergtio_n (equations n_ot_ provided _for space reason;)_. The
ViENA projection of the multipliers to satisfy the KKT conditions
J¢DFE (equations not provided) helps in pruning our solutiongieg
viein(j)A . . . .

ie(+)un(in(y)) to a considerable runtime reduction. Finally, after gettihe
ayise + Dlrjise(slrise, Lj, cap;) < a;z‘se optimal gate sizes, we discretize our sizes to choose thestea
' available drive strength for each gate from the library.
aifall X Diqull(sgall’Lj’capj) < a]fall g g y
VjENA VI. EXPERIMENTAL RESULTS ON INDUSTRIAL CELL
J¢DFE LIBRARY
Vigin(j)A
ie(=)un(in(j)) We use a0.13um family standard cell library containing

al™ + ijse(sf“”, Ly, cap;) < a}*>® 415 generic core cells and 53 1/O cells. Our sequential itircu



ALGORITHM SEQSIZE: TABLE IV
Output: optimal gate sizes and clock skews AREA OF OPTIMIZED NETLIST
1.k:=1
A := arbitrary initial vector of lagrange multipliers satisfig
KKT conditions [7 Commercial . . Percent
Initialize all tuna[bI]e variables Cireuit | Synthesis tool Sizing * jkew Sizing oznly Improvement
2. Solve LRS /X by minimizing L (a, cap, L, s, C, \) using L-BFGS-B (pm) (pm) (um) %
Perform static timing analysis to calculatgs, s;s and C ggg"’ égi 69593 égg 451'9017
3. Anew := multiplier after subgradient multiplier adjustment 23821 95 953 o5 =5
Project A\new to the nearest point satisfying KKT conditions 5386.v 557 799 799 9‘93
4 k:=k+1 - -
. . . . 444, 923 836 831 0.43
5. If difference in cost functions PP and LRS/X is greater than §510.z 975 805 316 10.81
stopping criteria, go to step 2. ) s820.v 1183 1011 1010 14.54
6. Discretize gate sizes to available drive strengths S5378.v 7773 7688 7688 1.09
s9234.v 10148 9149 9149 0.84
TABLE Il s13207.v 20730 20283 20306 2.16
ALGORITHM SUMMARY FORSEQSIZE
TABLE Ill tune industrial scale designs to arrive at an optimal clock
OPTIMIZED CLOCK PERIOD period, while satisfying the timing constraints for a seufisd
circuit.
Optimized Clock period Percent
Circuit [ Sizing + skew | Sizing only | Improvement VII. CONCLUSION
(ns) (ns) % . . .
STV 0.341 0.426 19.95 In this paper, we propose an optimal gate sizing and clock
$298.v 0.866 1.269 31.76 skew optimization algorithm for globally sizing synchramso
s382.V 0.960 1.219 21.25 L
<386V 0902 0968 587 sequential circuits. To the best of our knowledge our method
s444.v 1.070 1192 10.23 is the first exact gate sizing algorithm that can handle cycli
S510.v 1.250 1371 8.83 . PR . : . :
<520V 1593 1518 588 sequential c!r(_:uns. We beheve_ that _thls algorlthm w_|II be
S5378.v 1.990 2.129 6.53 useful for efficient chip level optimization of VLSI circuit
59234V 2.558 2.569 0.43
s13207.v 2.718 3.129 13.14 REFERENCES
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