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Abstract— In this paper, we propose an optimal gate sizing
and clock skew optimization algorithm for globally sizing syn-
chronous sequential circuits. The number of constraints and
variables in our formulation is linear with respect to the number
of circuit components and hence our algorithm can efficiently find
the optimal solution for industrial scale designs. To the best of
our knowledge our method is the first exact gate sizing algorithm
that can handle cyclic sequential circuits. Experimental results
on industrial cell libraries demonstrate that our algorith m can
yield an average of 12.6% improvement in the optimal clock
period by combining clock skew optimization with gate sizing.
For identical clock period, our algorithm can achieve an average
of 11.3% area savings over a popular commercial synthesis tool.

I. I NTRODUCTION

Synchronous sequential circuits form the core of modern
IC designs. A typical integrated circuit consists of several
combinational logic blocks lying between flip-flops and often
contains feedback paths or cycles. LFSR (linear feedback shift
registers), modulo-N counters and data forwarding logic in
microprocessor cores are some examples of feedback loops in
sequential circuits. Figure 1 shows a typical sequential circuit
with a feedback path.

Given a synchronous sequential circuit with a fixed topol-
ogy, we want to optimize the circuit for delay, power and/or
area by varying the sizes of the gates in the circuit. The goalis
to find a fast exact optimization technique for globally sizing
the whole circuit using accurate delay and power models.

The simplest way to optimize the delay of sequential circuits
is to perform gate sizing of each combinational logic block
separately and then arrive at a clock frequency for the entire
circuit depending on the maximum delay of any combina-
tional logic block. However, this method cannot incorporate
clock skew optimization [1] and leads to suboptimal circuit
performance. By adding an additional degree of freedom to
our optimization using variable clock skews at the flip-flops,
we can achieve better power/performance goals for the design
[2].

While several algorithms were proposed for gate sizing of
combinational circuits, some of which are based on convex
optimization techniques [4], [5], [6], [10], only a handful
of previous works target sequential circuits. Chuang et al.
formulated the sizing problem ofacyclicsequential circuits as
a linear program [2]. However, the piecewise linear models
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Fig. 1. Feedback loop in datapath

they used have limited accuracy in modern designs since
the gate delay is a nonlinear function of the gate size [10].
For larger circuits, this formulation had a prohibitively large
number of constraints and they partitioned the circuit to
solve the problem, while sacrificing the optimality of the
solution. Sathyamurthy et al. formulated the sequential circuit
sizing problem as a nonlinear convex program [3]. They used
the Elmore delay model which is considered to be highly
inaccurate for deep submicron VLSI designs [10]. Again, due
to an extremely large number of tunable variables, they could
not propose an exact method for solving the problem. None
of these techniques can be applied to cyclic sequential circuits
with feedback loops, as they rely on DAG (directed acyclic
graph) representation of the circuit.

In this paper, we propose an optimal gate sizing and clock
skew optimization algorithm for efficiently sizing industrial
library based designs. We use nonlinear convex models for
accurately representing the gate delays and use the Lagrangian
Relaxation technique for solving the formulated optimization
problem. We achieve faster convergence of the problem by
appropriately choosing the constraints and variables (linear
with respect to the circuit components), without sacrificing any
accuracy in modeling. Experimental results on industrial cell
libraries demonstrate that our algorithm can yield an average of
12.6% improvement in the optimal clock period by combining
clock skew optimization with gate sizing. For identical clock
period, our algorithm can achieve an average of 11.3% area
savings over a popular commercial synthesis tool. To the best
of our knowledge, our technique is the first exact gate sizing
algorithm that can handle cyclic sequential circuits.



D Q D Q
21

CK CK

D Q
3

CK

a1 a2 a3

CC1 CC2

delay = 3 delay = 1

Fig. 2. Motivation: Clock skew optimization

II. SIZING AND CLOCK SKEW OPTIMIZATION

A. Clock skew optimization

Clock skew optimization [1] is a technique where the
various flip-flops in a circuit are intentionally given clock
skews to improve the overall performance and reliability of
the circuit. Figure 2 shows combinational circuits blocksCC1
and CC2, having delays of 3 units and 1 unit, respectively.
a1, a2 and a3 are the clock skews at flip-flops1,2 and 3.
The circuit can operate at a minimum clock period of 3 units
without any skew. But if flip-flop 2 receives a skew of+1 unit
(a1 = 0, a2 = +1, a3 = 0), then the circuit can operate at a
clock period of 2 units. By combining gate sizing with clock
skew optimization, we can achieve better power/performance
goals in our design.

B. Problem statement

Given a circuit consisting ofN gates mapped to a technol-
ogy library, find the drive strengths of all the combinational
gates in the circuit, and the clock skews of all the flip-flops in
the circuit, that will minimize the following objective function:

α1C + α2Area + α3Pleakage + α4Pdynamic

consisting of a linear combination of the clock period and the
power and/or area of the circuit, while satisfying all the timing
constraints of a synchronous sequential circuit.

III. I LLUSTRATION WITH AN EXAMPLE

Figure 3 shows a cyclic sequential circuit consisting of
combinational gates and flip-flops, with a feedback loop.
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Fig. 3. A cyclic sequential circuit

TABLE I

NOTATION USED IN THIS WORK

N : Set of all gates in the circuit, consisting of internal
and output gates and excluding inputs

I: Set of all inputs in the circuit
DFF : Set of all flip-flops in the circuit
ai: Arrival time of the signal at the output of gatei

rise andfall superscripts indicate signal rise or fall
C: Clock period of the circuit
Dij : Gate delay from output of gatei to output of gatej
tsetup, thold: Setup and Hold times of flip-flop
in(j): Set of all input pins of gatej
(+)un, (−)un: positive unate andnegative unate

A. Notation

Table I gives a list of the notations used in this work. For the
circuit in figure 3,N = {1, 2, 3, 4, 5}, I = {6} andDFF =
{1, 5}. The flip-flop clock-to-Q delay has been ignored in this
formulation. For flip-flopi the arrival time at the CK pin is
ai which is the clock skew at that flip-flop. The arrival time
at the output of flip-flopi is also equal toai. All arrival times
and skews are relative to a zero skew clock.

B. Convexity of the delay functionDij

Fishburn et al. made a seminal observation that the circuit
delay under the Elmore model is a posynomial function of the
transistor sizes [5]. Under this model, the gate delay could
be represented as a convex function using an exponential
transformation [4]. The Elmore model is currently considered
inaccurate for modern designs, but many convex models with
a high degree of accuracy have been proposed to model the
gate delay [10], [11]. For library cells, the gate delayDij is
a function of the gate input slewsi, the gate load capacitance
Lj and the gate input capacitancecapj and can be modeled
as a convex function using some of the existing techniques.

C. Delay constraints for combinational gates

Let us consider the combinational gate numbered2. If we
assume that input (pin)3 of gate2 is positive unate and input
(pin) 4 is negative unate, then we can write the following
constraints.

arise
3 + Drise

32 (srise
3 , L2, cap2) ≤ arise

2

afall
4 + Drise

42 (sfall
4 , L2, cap2) ≤ arise

2

The above constraints are convex as theDij functions are
convex.

D. Setup time constraints

Let us consider the flip-flop numbered1. To avoid the long
path violations where the signal reaches the flip-flop too late,
we need to set the setup constraints as illustrated in figure 4.
Thus, we need to satisfy the constraint

Max(arise
2 + trise

setup, a
fall
2 + tfall

setup) ≤ a1 + C

We can simplify the above constraint by splitting it into two
constraints as follows:

arise
2 + trise

setup ≤ arise
1 + C

afall
2 + tfall

setup ≤ afall
1 + C
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Fig. 4. Setup constraint and clock skew

The above constraints being linear, are convex constraints[7].

E. Hold time constraints

The hold constraints are necessary to avoid the short path
violations leading to data racing. But these constraints are
non-convex and hence not considered [3]. The constraints are
resolved by adding buffers to increase the delay of short paths.

IV. GENERALIZED PROBLEM FORMULATION FOR

INDUSTRIAL SCALE DESIGNS

After looking at the different types of constraints in our
example, we now provide the generalized problem formulation
PP for circuits synthesized using industrial cell libraries.This
formulation is applicable for both cyclic and acyclic syn-
chronous sequential circuits. The minimized objective function
is a linear combination of the clock periodC and the sum of
the input capacitance of all gates, which is an approximation
for the area of the circuit [5].α1 andα2 are the corresponding
non-negative weights. Note that the objective function being a
sum of linear variables is convex. The clock skews at flip-flops
as well as the input arrival times are bounded by the minimum
and maximum skewsskewmin and skewmax, respectively.
PP is a convex optimization problem as the objective function
as well as the constraints are convex functions as discussed
before. This problem can be solved optimally in polynomial
time to give the optimal set of gate sizes and the optimal
clock skews of the flip-flops by an algorithm we will discuss
in section V.

PP :

minimize α1C + α2

∑
j∈N capj

subject to
∀j∈N∧

j /∈DFF
∀i∈in(j)∧

i∈(+)un(in(j))

arise
i + Drise

ij (srise
i , Lj , capj) ≤ arise

j

afall
i + Dfall

ij (sfall
i , Lj, capj) ≤ afall

j

∀j∈N∧

j /∈DFF
∀i∈in(j)∧

i∈(−)un(in(j))

afall
i + Drise

ij (sfall
i , Lj, capj) ≤ arise

j

arise
i + Dfall

ij (srise
i , Lj, capj) ≤ afall

j

∀j∈N∧

j∈DFF
∀i∈in(j)
i/∈CK

arise
i + trise

setup ≤ arise
j + C

afall
i + tfall

setup ≤ afall
j + C

∀j∈N∧

j∈DFF skewmin ≤ arise
j , afall

j ≤ skewmax

∀i∈I skewmin ≤ arise
i , afall

i ≤ skewmax

∀j∈N∧

j /∈DFF boundlower
j ≤ capj ≤ boundupper

j

V. SOLVING THE NONLINEAR CONVEX OPTIMIZATION

PROBLEM BY LAGRANGIAN RELAXATION

We optimally solve the sequential circuit sizing problem
using the Lagrangian Relaxation technique [6]. We relax the
troublesome constraints ofPP by incorporating them into the
objective function, using non-negative Lagrange multipliers to
form the lagrangian functionLλ. The simple bound constraints
are not relaxed. The exact formulation ofLλ has been omit-
ted due to space limitation. The Lagrangian relaxation sub-
problemLRS/λ associated with a particular value ofλ is:

LRS/λ :

minimize Lλ(a, cap,L, s, C, λ)

subject to skewmin ≤ arise
j , afall

j ≤ skewmax, j ∈ DFF

skewmin ≤ arise
i , afall

i ≤ skewmax, i ∈ I

boundlower
j ≤ capj ≤ boundupper

j , j∈N∧

j /∈DFF

whereλ is the vector of all lagrange multipliers, anda, cap,
L ands are the vectors of arrival time, input capacitance, load
capacitance and input slew, respectively.

From the theory of Lagrangian [7], there exists a vector
valueλ for which the optimal solution ofLRS/λ is equal to
the optimal solution of the original problemPP. If we can
find this λ value, then we can get the optimal solution to the
original problem. For a value ofλ to be correct, the first order
Karush-Kuhn-Tucker (KKT) conditions [7] must hold.

Table II summarizesSEQ SIZE: our algorithm for gate
sizing and clock skew optimization using the Lagrangian
relaxation technique. In step 1, we initialize the lagrange
multipliers and the tunable variables. We use a bound con-
strained optimization solver L-BFGS-B [8] to minimizeLλ

in step 2. In step 3, we use a modified subgradient approach
[9] to update the value of the lagrange multipliers at each
iteration (equations not provided for space reasons). The
projection of the multipliers to satisfy the KKT conditions
(equations not provided) helps in pruning our solution, leading
to a considerable runtime reduction. Finally, after getting the
optimal gate sizes, we discretize our sizes to choose the nearest
available drive strength for each gate from the library.

VI. EXPERIMENTAL RESULTS ON INDUSTRIAL CELL

LIBRARY

We use a0.13µm family standard cell library containing
415 generic core cells and 53 I/O cells. Our sequential circuit



ALGORITHM SEQSIZE:
Output : optimal gate sizes and clock skews
1. k := 1

λ := arbitrary initial vector of lagrange multipliers satisfying
KKT conditions [7]
Initialize all tunable variables

2. SolveLRS/λ by minimizing Lλ(a, cap,L, s, C, λ) using L-BFGS-B
Perform static timing analysis to calculateais, sis and C

3. λnew := multiplier after subgradient multiplier adjustment
Projectλnew to the nearest point satisfying KKT conditions

4. k := k + 1
5. If difference in cost functions ofPP andLRS/λ is greater than

stopping criteria, go to step 2.
6. Discretize gate sizes to available drive strengths

TABLE II

ALGORITHM SUMMARY FOR SEQ SIZE

TABLE III

OPTIMIZED CLOCK PERIOD

Circuit
Optimized Clock period Percent

Sizing + skew Sizing only Improvement
(ns) (ns) %

s27.v 0.341 0.426 19.95
s298.v 0.866 1.269 31.76
s382.v 0.960 1.219 21.25
s386.v 0.902 0.968 6.82
s444.v 1.070 1.192 10.23
s510.v 1.250 1.371 8.83
s820.v 1.693 1.818 6.88

s5378.v 1.990 2.129 6.53
s9234.v 2.558 2.569 0.43

s13207.v 2.718 3.129 13.14

sizing tool is implemented in C++ using our Lagrangian relax-
ation based algorithmSEQ SIZE. We use nonlinear convex
posynomial models [10] for modeling the delay and slew look-
up tables from the library. We conduct our experiments on
ISCAS89 benchmark circuits. All experiments are performed
on a PC with 1.40GHz Pentium IV Microprocessor, 1.00 GB
RAM and 40 GB hard drive running Windows XP.

Table III shows the optimized clock period obtained after
tuning the benchmark circuits. All timing measurements have
been performed using our static timing analyzer in-built within
our gate sizing tool. The second column shows the clock
period obtained by gate sizing coupled with clock skew
optimization, while the third column shows the clock period
obtained using only gate sizing. We can get an average of
12.6% improvement in the optimal clock period by combining
clock skew optimization with gate sizing. Table IV shows
the area of the optimized netlists. The second column shows
the area obtained by synthesizing the same designs using
a popular commercial synthesis tool, by setting the target
clock period for the corresponding circuit from the second
column in table III. The third column gives the netlist area
obtained by combined sizing and clock skew optimization,
whereas the fourth column gives the netlist area obtained by
gate sizing alone. For the same clock period, our sequential
circuit sizer can tune the circuit to achieve an average of 11.3%
area savings over the commercial synthesis tool. These results
demonstrate that our optimal sizing algorithm can efficiently

TABLE IV

AREA OF OPTIMIZED NETLIST

Circuit
Commercial

Sizing + skew Sizing only
Percent

Synthesis tool Improvement
(µm)2 (µm)2 (µm)2 %

s27.v 168 99 103 41.07
s298.v 694 653 650 5.91
s382.v 925 853 836 7.78
s386.v 554 499 499 9.93
s444.v 923 836 831 9.43
s510.v 925 825 816 10.81
s820.v 1183 1011 1010 14.54

s5378.v 7773 7688 7688 1.09
s9234.v 10148 9149 9149 9.84

s13207.v 20730 20283 20306 2.16

tune industrial scale designs to arrive at an optimal clock
period, while satisfying the timing constraints for a sequential
circuit.

VII. C ONCLUSION

In this paper, we propose an optimal gate sizing and clock
skew optimization algorithm for globally sizing synchronous
sequential circuits. To the best of our knowledge our method
is the first exact gate sizing algorithm that can handle cyclic
sequential circuits. We believe that this algorithm will be
useful for efficient chip level optimization of VLSI circuits.
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