Generalizations of E-convex and B-vex functions

Yu-Ru Syaua, Lixing Jiab, E. Stanley Leec,*

a Department of Information Management, National Formosa University, Huwei Township, Yunlin, 632, Taiwan
b Department of Mathematics & Computer Science, Chicago State University, Chicago, IL 60628, United States
c Department of Industrial & Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506, United States

ARTICLE INFO

Article history:
Received 16 February 2009
Accepted 14 April 2009

Keywords:
Generalized convexity
B-vex functions
E-convex functions
E-quasiconvex functions
E-B-vex functions

ABSTRACT

A class of functions called E-B-vex functions is defined as a generalization of E-convex and B-vex functions. Similarly, a class of E-B-preinvex functions, which are generalizations of E-convex and B-preinvex functions, is introduced. In addition, the concept of B-linear functions is also generalized to E-B-linear functions. Some properties of these proposed classes are studied. Furthermore, the equivalence between the class of E-B-vex functions and that of E-quasiconvex functions is proved.

1. Introduction

Convexity and generalized convexity play important roles in optimization theory. Various generalizations of convexity have appeared in the literature. A significant generalization of convex functions is preinvex functions, introduced by Hanson and Mond [1] but so named by Jeyakumar [2]. Recently, another generalization of convex functions, called B-vex functions, was introduced by Bector and Singh [3]. Later, Suneja et al. [4] introduced a class of functions called B-preinvex functions which are generalizations of preinvex and B-vex functions. Li et al. [5] proved that the class of B-vex functions is equivalent to that of quasiconvex functions.

Youness [6] introduced a class of sets and a class of functions, called E-convex sets and E-convex functions, which generalize the definitions of convex sets and convex functions based on the effect of an operator E on the sets and domain of definition of the functions. The initial results of Youness [6] inspired a great deal of subsequent work which has greatly expanded the role of E-convexity in optimization theory; see for example [7–11]. In an earlier paper [10], we introduced a class of functions, called E-quasiconvex functions, which are a generalization of E-convex functions and quasiconvex functions. Fulga and Preda [9] extended the classes of preinvex and E-convex functions to E-prequasiinvex functions.

Motivated both by earlier research works [3,9,4,10,6] and by the importance of convexity and generalized convexity, we introduce a class of functions called E-B-vex functions which are generalizations of E-convex and B-vex functions, and a class of E-B-preinvex functions which are generalizations of E-convex and B-preinvex functions. In addition, the concept of B-linear functions is also generalized to E-B-linear functions. Some properties of these proposed classes are studied. Furthermore, the equivalence between the class of E-B-vex functions and that of E-quasiconvex functions is proved.

* Supported by the National Science Council of Taiwan under contract NSC 96-2221-E-150-012.

* Corresponding author.

E-mail address: eslee@ksu.edu (E. Stanley Lee).

0898-1221/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
2. Preliminaries

Let \(\mathbb{R}^n \) denote the \(n \)-dimensional Euclidean space; let \(X \) be a nonempty subset of \(\mathbb{R}^n \); let \(\mathbb{R}^a \) denote the set of nonnegative real numbers; let \(b : X \times X \times [0, 1] \rightarrow \mathbb{R}^n \), with \(\lambda b(x, y, \lambda) \in [0, 1] \) for all \(x, y \in X \) and \(\lambda \in [0, 1] \).

Following along the lines of Bector and Singh [3], the definitions of \(B \)-vex and \(B \)-linear functions can be given as follows.

Definition 2.1 ([Ref. 5]). Let \(C \subseteq X \) be a nonempty convex set. A function \(f : C \rightarrow \mathbb{R}^1 \) is said to be:

1. \(B \)-vex on \(C \) with respect to (w.r.t. in short) \(b(x, y, \lambda) \) if for all \(x, y \in C \) and \(\lambda \in [0, 1] \),
 \[
 f(\lambda x + (1 - \lambda) y) \leq \lambda b(x, y, \lambda)f(x) + (1 - \lambda b(x, y, \lambda))f(y);
 \]
2. \(B \)-linear on \(C \) w.r.t. \(b(x, y, \lambda) \) if for all \(x, y \in C \) and \(\lambda \in [0, 1] \),
 \[
 f(\lambda x + (1 - \lambda) y) = \lambda b(x, y, \lambda)f(x) + (1 - \lambda b(x, y, \lambda))f(y).
 \]

For the sake of brevity, we shall omit the argument of \(b \) unless it is needed for specification.

Recall [12] that, by definition, a set \(K \subseteq \mathbb{R}^n \) is called an invex set w.r.t. a given mapping \(\eta : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) if

\[
\lambda \eta(x) + (1 - \lambda)\eta(y) \in M, \quad \forall x, y \in M, \quad \forall \lambda \in [0, 1].
\]

In what follows, let \(E : \mathbb{R}^n \rightarrow \mathbb{R}^n \) and \(\eta : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) be two fixed mappings. Now, we state the concept of \(E \)-invex sets which are generalizations of invex and \(E \)-convex sets.

Definition 2.2 ([Ref. 9, Definition 2.2]). A set \(A \subseteq \mathbb{R}^n \) is said to be \(E \)-invex w.r.t \(\eta \) if

\[
x, y \in A, \quad \lambda \in [0, 1] \implies E(y) + \lambda \eta(E(x), E(y)) \in A.
\]

Let \(S \) be a nonempty subset of \(\mathbb{R}^n \); \(E(S) \) is defined as follows:

\[
E(S) = \{ E(x) : x \in S \}.
\]

Lemma 2.1 ([Ref. 6, Proposition 2.2]). Let \(M \subseteq \mathbb{R}^n \) be a nonempty \(E \)-convex set; then \(E(M) \subseteq M \).

Lemma 2.2 ([Ref. 9, Lemma 2.1]). Let \(A \subseteq \mathbb{R}^n \) be a nonempty \(E \)-invex set; then \(E(A) \subseteq A \).

Finally, we describe several generalized convex functions, viz. preinvex, \(B \)-preinvex, \(E \)-convex, \(E \)-quasiconvex, and \(E \)-preinvex.

Definition 2.3 ([Ref. 12]). Let \(K \subseteq \mathbb{R}^n \) be a nonempty invex set w.r.t. \(\eta \). A function \(f : K \rightarrow \mathbb{R}^1 \) is said to be preinvex on \(K \) w.r.t. \(\eta \), if for all \(x, y \in K \) and \(\lambda \in [0, 1] \),

\[
f(y + \lambda \eta(x, y)) \leq \lambda f(x) + (1 - \lambda)f(y).
\]

Definition 2.4 ([Ref. 4]). Let \(K \subseteq \mathbb{R}^n \) be a nonempty invex set w.r.t. \(\eta \). A function \(f : K \rightarrow \mathbb{R}^1 \) is said to be \(B \)-preinvex on \(K \) w.r.t. \(\eta, b \), if for all \(x, y \in K \) and \(\lambda \in [0, 1] \),

\[
f(y + \lambda \eta(x, y)) \leq \lambda b(x, y, \lambda)f(x) + (1 - \lambda b(x, y, \lambda))f(y).
\]

Definition 2.5 ([Refs. 10, 6]). Let \(M \subseteq \mathbb{R}^n \) be a nonempty \(E \)-convex set. A function \(f : M \rightarrow \mathbb{R}^1 \) is said to be:

1. \(E \)-convex on \(M \) if for all \(x, y \in M \) and \(\lambda \in [0, 1] \),
 \[
f(\lambda E(x) + (1 - \lambda) E(y)) \leq \lambda f(E(x)) + (1 - \lambda)f(E(y));
 \]
2. \(E \)-quasiconvex on \(M \) if for all \(x, y \in M \) and \(\lambda \in [0, 1] \),
 \[
f(\lambda E(x) + (1 - \lambda) E(y)) \leq \max\{f(E(x)), f(E(y))\};
 \]
3. \(E \)-quasiconcave on \(M \) if for all \(x, y \in M \) and \(\lambda \in [0, 1] \),
 \[
f(\lambda E(x) + (1 - \lambda) E(y)) \geq \min\{f(E(x)), f(E(y))\}.
 \]

Definition 2.6 ([Ref. 9, Definition 2.3]). Let \(A \subseteq \mathbb{R}^n \) be a nonempty \(E \)-invex set w.r.t. \(\eta \). A function \(f : A \rightarrow \mathbb{R}^1 \) is said to be \(E \)-preinvex on \(A \) w.r.t. \(\eta \) if for all \(x, y \in A \) and \(\lambda \in [0, 1] \),

\[
f(E(y) + \lambda \eta(E(x), E(y))) \leq \lambda f(E(x)) + (1 - \lambda)f(E(y)).
\]
3. Basic results

First, a class of E-B-vex functions is introduced as a generalization of E-convex and B-vex functions, and the concept of B-linear functions is also generalized to E-B-linear functions.

Definition 3.1. Let $M \subseteq X$ be a nonempty E-convex set. A function $f : M \rightarrow R^1$ is said to be:

1. E-B-convex on M w.r.t. b if $x, y \in M$ and $\lambda \in [0, 1],$
 \[f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \]
2. E-B-linear on M w.r.t. b if $x, y \in M$ and $\lambda \in [0, 1],$
 \[f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y) \]

Theorem 3.1. Let $M \subseteq X$ be a nonempty E-convex set. A function $f : M \rightarrow R^1$ is well defined.

Remark 3.1. Let $M \subseteq R^n$ be a nonempty E-convex set. It follows from **Lemma 2.1** that $E(M) \subseteq M$. Hence, for any $f : M \rightarrow R^1$, the restriction $\tilde{f} : E(M) \rightarrow R^1$ of $f : M \rightarrow R^1$ to $E(M)$ defined by
 \[\tilde{f}(\tilde{x}) = f(x) \quad \text{for all } \tilde{x} \in E(M) \]
is well defined.

Let $M \subseteq X$ be a nonempty E-convex set. Direct examination of the definition of E-B-vex (resp. E-B-linear) functions shows that the set of E-B-vex (resp. E-B-linear) functions on M w.r.t. the same b is closed under addition and nonnegative scalar multiplication. This is formalized in the following theorem.

Theorem 3.1. Let $M \subseteq X$ be a nonempty E-convex set, and let $\alpha \geq 0$. If f and g are E-B-convex (resp. E-B-linear) functions on M w.r.t. the same b, then $f + g$ and αf are E-B-convex (resp. E-B-linear) functions on M w.r.t. b.

Corollary 3.1. Let $M \subseteq X$ be a nonempty E-convex set. Let $f_j, j = 1, 2, \ldots, N$ be E-B-convex (resp. E-B-linear) functions on M w.r.t. the same b. Then the function $f : M \rightarrow R^1$ defined by
 \[f(x) = \sum_{j=1}^{N} k_j f_j(x), \quad k_j \geq 0, \]
is E-B-convex (resp. E-B-linear) on M w.r.t. b.

Next, we introduce a new class of functions called E-B-preinvex functions by relaxing the definitions of E-convex and B-preinvex functions.

Definition 3.2. Let $A \subseteq X$ be a nonempty E-invex set w.r.t. η. A function $f : A \rightarrow R^1$ is said to be E-B-preinvex on A w.r.t. η, b, if for all $x, y \in A$ and $\lambda \in [0, 1],$
 \[f(\lambda y + (1 - \lambda)x) \leq \lambda f(y) + (1 - \lambda)f(x) \]

Remark 3.2. Let $A \subseteq R^n$ be a nonempty E-invex set. It follows from **Lemma 2.2** that $E(A) \subseteq A$. Hence, for any $f : A \rightarrow R^1$, the restriction $\tilde{f} : E(A) \rightarrow R^1$ of $f : A \rightarrow R^1$ to $E(A)$ defined by
 \[\tilde{f}(\tilde{x}) = f(x) \quad \text{for all } \tilde{x} \in E(A) \]
is well defined.

An analogous result to **Theorem 3.1** for the E-B-preinvex case is as follows.

Theorem 3.2. Let $A \subseteq X$ be a nonempty E-invex set w.r.t. η, and let $\alpha \geq 0$. If f and g are E-B-preinvex functions on A w.r.t. the same η, b, then $f + g$ and αf are E-B-preinvex functions on A w.r.t. η, b.

Corollary 3.2. Let $A \subseteq X$ be a nonempty E-invex set. Let $f_j, j = 1, 2, \ldots, N$ be E-B-preinvex functions on A w.r.t. the same η, b. Then the function $f : A \rightarrow R^1$ defined by
 \[f(x) = \sum_{j=1}^{N} k_j f_j(x), \quad k_j \geq 0, \]
is E-B-preinvex on A w.r.t. η, b.

Finally, we derive a property of E-preinvex functions.

Theorem 3.3. Let $A \subseteq X$ be a nonempty E-invex set w.r.t. η. Suppose that $f : A \rightarrow R^1$ is E-preinvex on A w.r.t. η, and that $\phi : R^1 \rightarrow R^1$ is nondecreasing and convex. Then $\phi \circ f : A \rightarrow R^1$ is E-preinvex on A w.r.t. η.

Proof. Since $f : A \to R^1$ is E-preinvex on A w.r.t. η, and $\phi : R^1 \to R^1$ is nondecreasing and convex, we have, for any $x, y \in A$ and $\lambda \in [0, 1]$,
\[
\phi \circ f(E(y) + \lambda \eta(E(x), E(y))) = \phi(f(E(y) + \lambda \eta(E(x), E(y)))) \\
\leq \phi(\lambda f(E(x)) + (1 - \lambda)f(E(y))) \\
\leq \lambda \phi(f(E(x))) + (1 - \lambda)\phi(f(E(y))) \\
= \lambda \phi \circ f(E(x)) + (1 - \lambda)\phi \circ f(E(y)).
\]
That is, $\phi \circ f : A \to R^1$ is E-preinvex on A w.r.t. η. □

4. Main results

We first study the relations between E-B-vex and B-vex (resp. E-quasiconvex) functions.

Theorem 4.1. Let $M \subseteq X$ be a nonempty E-convex set, and let C be a nonempty convex subset of $E(M)$. If $f : M \to R^1$ is E-B-vex on M w.r.t. b, then the restriction $\hat{f} : C \to R^1$ of $f : M \to R^1$ to C defined by
\[
\hat{f}(\hat{x}) = f(\hat{x}) \text{ for all } \hat{x} \in C
\]
is a B-vex function on C w.r.t. b.

Proof. Let $f : M \to R^1$ be E-B-vex on M w.r.t. b, and let C be a nonempty convex subset of $E(M)$. Then for $\hat{x}, \hat{y} \in C$ (\hat{x} and \hat{y} may not be distinct), there exist $x, y \in M$ such that $\hat{x} = E(x)$ and $\hat{y} = E(y)$. Since $\lambda \hat{x} + (1 - \lambda)\hat{y} \in C$, it follows from the E-B-vertex of f on M that
\[
\hat{f}(\lambda \hat{x} + (1 - \lambda)\hat{y}) = f(\lambda E(x) + (1 - \lambda)E(y)) \\
\leq \lambda b(E(x), E(y), \lambda)f(E(x)) + (1 - \lambda)b(E(x), E(y), \lambda)f(E(y)) \\
= \lambda b(\hat{x}, \hat{y}, \lambda)\hat{f}(\hat{x}) + (1 - \lambda)b(\hat{x}, \hat{y}, \lambda)\hat{f}(\hat{y})
\]
for all $\lambda \in [0, 1]$, which implies that $\hat{f} : C \to R^1$ is a B-vex function on C w.r.t. b. □

Corollary 4.1. Let $M \subseteq X$ be a nonempty E-convex set, and let $f : M \to R^1$ be E-B-vex on M w.r.t. b. If $E(M)$ is a convex set, then the restriction $\hat{f} : E(M) \to R^1$ of $f : M \to R^1$ is a B-vex function on $E(M)$ w.r.t. b.

Theorem 4.2. Let $M \subseteq X$ be a nonempty E-convex set such that $E(M)$ is convex. Then a function $f : M \to R^1$ is E-B-vex on M w.r.t. b if and only if its restriction $\hat{f} : E(M) \to R^1$ is B-vex on $E(M)$ w.r.t. b.

Proof. The direct implication is true due to Corollary 4.1. Conversely, suppose that $\hat{f} : E(M) \to R^1$ is a B-vex function on $E(M)$ w.r.t. b, and that $x, y \in M$. Then $E(x), E(y) \in E(M)$, and by the convexity of $E(M)$ follows $\lambda E(x) + (1 - \lambda)E(y) \in E(M)$ for all $\lambda \in [0, 1]$. Since $\hat{f} : E(M) \to R^1$ is B-vex on $E(M)$ w.r.t. b, we have
\[
f(\lambda E(x) + (1 - \lambda)E(y)) \leq \lambda b(E(x), E(y), \lambda)f(E(x)) + (1 - \lambda)b(E(x), E(y), \lambda)f(E(y))
\]
for all $\lambda \in [0, 1]$, which implies that $f : M \to R^1$ is E-B-vex on M w.r.t. b. This completes the proof. □

The following result can be easily established.

Theorem 4.3. Let $M \subseteq X$ be a nonempty E-convex set, and let $\{f_j : j \in J\}$ be an arbitrary nonempty collection of E-B-vex functions on M w.r.t. the same b such that for each $x \in M$, $\sup_{j \in J} f_j(x)$ exists in R^1. Then the function $f : M \to R^1$ defined by
\[
f(x) = \sup_{j \in J} f_j(x) \text{ for each } x \in M,
\]
is E-B-vex on M.

The following theorem which can be established along the lines of Theorem 2.1 of Li et al. [5] presents the equivalence between the class of E-B-vex functions and that of E-quasiconvex functions. For the convenience of reading, the proof will be given.

Theorem 4.4. Let $M \subseteq X$ be a nonempty E-convex set. The following conditions are equivalent:

(1) $f : M \to R^1$ is E-B-vex on M w.r.t. some b.

(2) $f : M \to R^1$ is E-quasiconvex on M.

Proof. (1) \(\Rightarrow\) (2) Let \(f \) be E-B-vex on \(M \) w.r.t. \(b \). Noting that \(\lambda b(E(x), E(y), \lambda) \in [0, 1] \) for all \(x, y \in M \) and \(\lambda \in [0, 1] \), we have
\[
f(\lambda E(x) + (1 - \lambda)E(y)) \leq \lambda b(E(x), E(y), \lambda)f(E(x)) + (1 - \lambda b(E(x), E(y), \lambda))f(E(y)) \leq \max \{ f(E(x)), f(E(y)) \},
\]
for all \(x, y \in M \) and \(\lambda \in [0, 1] \). This shows that \(f : M \to R^1 \) is E-quasiconvex on \(M \).

(2) \(\Rightarrow\) (1) Define \(b : X \times X \times [0, 1] \to R^* \) by
\[
b(x, y, \lambda) = \begin{cases} 1/\lambda, & \text{if } \lambda \in (0, 1) \text{ and } f(x) \geq f(y); \\ 0, & \text{if } \lambda = 0 \text{ or } f(x) < f(y). \end{cases}
\]
It follows that \(\lambda b(x, y, \lambda) \in [0, 1] \) for all \(x, y \in X \) and \(\lambda \in [0, 1] \), and that
\[
\lambda b(E(x), E(y), \lambda)f(E(x)) + (1 - \lambda b(E(x), E(y), \lambda))f(E(y)) = \max \{ f(E(x)), f(E(y)) \}
\]
for all \(x, y \in X \) and \(\lambda \in (0, 1) \). Then, by E-quasiconvexity of \(f \) on \(M \), we have
\[
f(\lambda E(x) + (1 - \lambda)E(y)) \leq \max \{ f(E(x)), f(E(y)) \}
\]
along the lines of \(\lambda \). This completes the proof. \(\square \)

Theorem 4.5. Let \(M \subseteq X \) be a nonempty E-convex set. The following conditions are equivalent:

1. \(f : M \to R^1 \) is E-B-linear on \(M \) w.r.t. some \(b \).
2. \(f : M \to R^1 \) is both E-quasiconvex and E-quasiconcave on \(M \).

The following theorem which is an analogous result to Theorem 4.1 for the E-B-preinvex case can be easily established along the lines of Theorem 4.1.

Theorem 4.6. Let \(A \subseteq X \) be a nonempty E-invex set w.r.t. \(\eta \), and let \(K \) be a nonempty invex subset of \(E(M) \) w.r.t. \(\eta \). If \(f : A \to R^1 \) is E-B-preinvex on \(A \) w.r.t. \(\eta, b \), then the restriction \(\hat{f} : K \to R^1 \) of \(f : A \to R^1 \) to \(K \) defined by
\[
\hat{f}(\hat{x}) = f(\hat{x}) \quad \text{for all } \hat{x} \in K
\]
is a B-preinvex function on \(K \) w.r.t. \(b \).

Corollary 4.2. Let \(A \subseteq X \) be a nonempty E-invex set w.r.t. \(\eta \), and let \(f : A \to R^1 \) be E-B-preinvex on \(A \) w.r.t. \(\eta, b \). If \(E(A) \) is an invex set w.r.t. \(\eta \), then the restriction \(\hat{f} : E(A) \to R^1 \) of \(f : A \to R^1 \) is a B-preinvex function on \(E(A) \) w.r.t. \(b \).

The following theorem which is an analogous result to Theorem 4.2 for the E-B-preinvex case can be easily established along the lines of Theorem 4.1.

Theorem 4.7. Let \(A \subseteq X \) be a nonempty E-invex set w.r.t. \(\eta \) such that \(E(A) \) is invex w.r.t. \(\eta \). Then a function \(f : A \to R^1 \) is E-B-preinvex on \(A \) w.r.t. \(\eta, b \) if and only if its restriction \(\hat{f} : E(A) \to R^1 \) is a B-preinvex function on \(E(A) \) w.r.t. \(b \).

The following result can be easily established.

Theorem 4.8. Let \(A \subseteq X \) be a nonempty E-invex set w.r.t. \(\eta \). If \(\{ f_j : j \in J \} \) is an arbitrary nonempty collection of E-B-preinvex functions on \(A \) w.r.t. the same \(\eta, b \) such that for each \(x \in A \), \(\sup_{j \in J} f_j(x) \) exists in \(R^1 \), then the function \(f : A \to R^1 \) defined by
\[
f(x) = \sup_{j \in J} f_j(x) \quad \text{for each } x \in A,
\]
is E-B-preinvex on \(A \) w.r.t. \(\eta, b \).

References