Yu-Qiang Ding

Neuroscience

M.D., Ph.D.
40.81

Publications

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute itch is divided into histamine- and non-histamine-dependent subtypes, and our previous study has shown that activation of ERK signaling in the spinal dorsal horn (SDH) is required selectively for histamine-induced itch sensation. Morphological characteristics of pERK-expressing neurons are required for exploring the mechanism underlying spinal itch sensation. To investigate whether pERK-expressing neurons are supraspinally-projecting neurons, we injected Fluorogold (FG) into the ventrobasal thalamic complex (VB) and parabrachial region, the two major spinal ascending sites in rodents. A small number (1%) of pERK-positive neurons were labeled by FG, suggesting that histamine-induced activation of ERK is primarily located in local SDH neurons. We then examined the co-localization of pERK with Calbindin and Lmx1b, which are expressed by excitatory neurons, and found that more than half (58%) of pERK-positive neurons expressed Lmx1b, but no co-expression with Calbindin was observed. On the other hand, approximately 7% of pERK-positive neurons expressed GAD67, and 27% of them contained Pax2. These results support the idea that pERK-expressing neurons serve as a component of local neuronal circuits for processing itch sensation in the spinal cord.
    Scientific Reports 08/2015; 5:12787. DOI:10.1038/srep12787 · 5.58 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fear is crucial for survival, whereas hypermnesia of fear can be detrimental. Inhibition of the Rac GTPase is recently reported to impair the forgetting of initially acquired memory in Drosophila. Here, we investigated whether inhibition of Rac1 activity in rat hippocampus could contribute to the hypermnesia of contextual fear. We found that spaced but not massed training of contextual fear conditioning caused inhibition of Rac1 activity in the hippocampus and heightened contextual fear. Furthermore, intrahippocampal injection of the Rac1 inhibitor NSC23766 heightened contextual fear in massed training, while Rac1 activator CN04-A weakened contextual fear in spaced training rats. Our study firstly demonstrates that contextual fear memory in rats is actively regulated by Rac1 activity in the hippocampus, which suggests that the forgetting impairment of traumatic events in posttraumatic stress disorder may be contributed to the pathological inhibition of Rac1 activity in the hippocampus.
    Molecular Neurobiology 01/2015; DOI:10.1007/s12035-015-9093-6 · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bipolar disorder and unipolar depressive disorder (UD) may be different in brain structure. In the present study, we performed voxel-based morphometry (VBM) to quantify the grey matter volumes in 23 patients with bipolar I depressive disorder (BP1) and 23 patients with UD, and 23 age-, gender-, and education-matched healthy controls (HCs) using magnetic resonance imaging. We found that compared with the HC and UD groups, the BP1 group showed reduced grey matter volumes in the right inferior frontal gyrus and middle cingulate gyrus, while the UD group showed reduced volume in the right inferior frontal gyrus compared to HCs. In addition, correlation analyses revealed that the grey matter volumes of these regions were negatively correlated with the Hamilton depression rating scores. Taken together, the results of our study suggest that decreased grey matter volume of the right inferior frontal gyrus is a common abnormality in BP1 and UD, and decreased grey matter volume in the right middle cingulate gyrus may be specific to BP1.
    Neuroscience Bulletin 12/2014; 31(1). DOI:10.1007/s12264-014-1485-5 · 1.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mammals, pain sensation is initiated by the detection of noxious stimuli through specialized transduction ion channels and receptors in nociceptive sensory neurons. Transient receptor potential (TRP) channels are the key sensory transducers that confer nociceptors distinct sensory modalities. However, the regulatory mechanisms about their expression are poorly defined. Here we show that the zinc-finger protein ZBTB20 regulates TRP channels expression in nociceptors. ZBTB20 is highly expressed in nociceptive sensory neurons of dorsal root ganglia. Disruption of ZBTB20 in nociceptors led to a marked decrease in the expression levels of TRPV1, TRPA1 and TRPM8 and the response of calcium flux and whole-cell currents evoked by their respective specific agonists. Phenotypically, the mice lacking ZBTB20 specifically in nociceptors showed a defect in nociception and pain sensation in response to thermal, mechanical and inflammatory stimulation. Our findings point to ZBTB20 as a critical regulator of nociception and pain sensation by modulating TRP channels expression in nociceptors.
    Nature Communications 11/2014; 5:4984. DOI:10.1038/ncomms5984 · 10.74 Impact Factor
  • Source
    Lei Zhang · Ying Huang · Jia-Yin Chen · Yu-Qiang Ding · Ning-Ning Song
    [Show abstract] [Hide abstract]
    ABSTRACT: Down syndrome cell adhesion molecule (Dscam) is essential for self-avoidance and tiling of dendritic development in sensory neurons in Drosophila. Recent studies also show that DSCAM together with its closely related protein DSCAML1 functions in dendritic self-avoidance of a certain types of intemeuron in mammalian retina. However, the functions of these DSCAMs in developing mammalian cerebral cortex are not well understood. Here we reduced the expression of DSCAM or DSCAML1 in mouse cortical neurons by RNA interference both in vitro and in vivo. We found that knockdown of DSCAM or DSCAML1 increases the complexity of proximal dendritic branching, and impedes the axon growth in cultured neurons. In vivo knockdown experiments showed that both DSCAM and DSCAML1 contribute to normal radial migration and callosal projection during the postnatal development. Our results indicate an important role of DSCAM and DSCAML1 in the development of cortical neural network.
    Brain Research 11/2014; 1594:61-70. DOI:10.1016/j.brainres.2014.10.060 · 2.83 Impact Factor
  • Source
    Yun-Fang Jia · Ning-Ning Song · Rong-Rong Mao · Jin-Nan Li · Qiong Zhang · Ying Huang · Lei Zhang · Hui-Li Han · Yu-Qiang Ding · Lin Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysfunction of central serotonin (5-HT) system has been proposed to be one of the underlying mechanisms for anxiety and depression, and the association of diabetes mellitus and psychiatric disorders has been noticed by the high prevalence of anxiety/depression in patients with diabetes mellitus. This promoted us to examine these behaviors in central 5-HT-deficient mice and those also suffering with diabetes mellitus. Mice lacking either 5-HT or central serotonergic neurons were generated by conditional deletion of Tph2 or Lmx1b respectively. Simultaneous depletion of both central serotonergic neurons and pancreatic islet cells was achieved by administration of diphtheria toxin (DT) in Pet1-Cre;Rosa26-DT receptor (DTR) mice. The central 5-HT-deficient mice showed reduced anxiety-like behaviors as they spent more time in and entered more often into the light box in the light/dark box test compared with controls; similar results were observed in the elevated plus maze test. However, they displayed no differences in the immobility time of the forced swimming and tail suspension tests suggesting normal depression-like behaviors in central 5-HT-deficient mice. As expected, DT-treated Pet1-Cre;Rosa26-DTR mice lacking both central serotonergic neurons and pancreatic islet endocrine cells exhibited several classic diabetic symptoms. Interestingly, they displayed increased anxiety-like behaviors but reduced immobility time in the forced swimming and tail suspension tests. Furthermore, the hippocampal neurogenesis was dramatically enhanced in these mice. These results suggest that the deficiency of central 5-HT may not be sufficient to induce anxiety/depression-like behaviors in mice, and the enhanced hippocampal neurogenesis may contribute to the altered depression-like behaviors in the 5-HT-deficient mice with diabetes. Our current investigation provides understanding the relationship between diabetes mellitus and psychiatric disorders.
    Frontiers in Behavioral Neuroscience 09/2014; 8:325. DOI:10.3389/fnbeh.2014.00325 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Genetic methods for inducibly and reversibly inhibiting neuronal activity of specific neurons are critical for exploring the functions of neuronal circuits. The engineered human glycine receptor, called ivermectin (IVM)-gated silencing receptor (IVMR), has been shown to possess this ability in vitro.ResultsHere we generated a mouse line, in which the IVMR coding sequence was inserted into the ROSA26 locus downstream of a loxP-flanked STOP cassette. Specific Cre-mediated IVMR expression was revealed by mis-expression of Cre in the striatum and by crossing with several Cre lines. Behavioral alteration was observed in Rosa26-IVMR mice with unilateral striatal Cre expression after systemic administration of IVM, and it could be re-initiated when IVM was applied again. A dramatic reduction in neuron firing was recorded in IVM-treated free moving Rosa26-IVMR;Emx1-Cre mice, and neuronal excitability was reduced within minutes as shown by recording in brain slice.Conclusion This Rosa26-IVMR mouse line provides a powerful tool for exploring selective circuit functions in freely behaving mice.
    Molecular Brain 09/2014; 7(1):68. DOI:10.1186/s13041-014-0068-8 · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Renal regeneration approaches offer great potential for the treatment of chronic kidney disease, but their availability remains limited by the clinical challenges they pose. In the present study, we used continuous detergent perfusion to generate decellularized (DC) rat kidney scaffolds. The scaffolds retained intact vascular trees and overall architecture, along with significant concentrations of various cytokines, but lost all cellular components. To evaluate its potential in renal function recovery, DC scaffold tissue was grafted onto partially nephrectomized rat kidneys. An increase of renal size was found, and regenerated renal parenchyma cells were observed in the repair area containing the grafted scaffold. In addition, the number of nestin-positive renal progenitor cells was markedly higher in scaffold-grafted kidneys compared to controls. Moreover, radionuclide scan analysis showed significant recovery of renal functions at 6 weeks post-implantation. Our results provide further evidence to show that DC kidney scaffolds could be used to promote renal recovery in the treatment of chronic kidney disease.
    Biomaterials 08/2014; 35(25):6822–6828. DOI:10.1016/j.biomaterials.2014.04.074 · 8.31 Impact Factor
  • Source
    Ting-Li Dai · Chan Zhang · Fang Peng · Xue-Yuan Niu · Ling Hu · Qiong Zhang · Ying Huang · Ling Chen · Lei Zhang · Weidong Zhu · Yu-Qiang Ding · Ning-Ning Song · Min Liao
    [Show abstract] [Hide abstract]
    ABSTRACT: The canonical Wnt signaling pathway is critical for the development of midbrain dopaminergic (DA) neurons, and recent studies have suggested that disruption of this signaling cascade may underlie the pathogenesis of Parkinson's disease (PD). However, the exact role of the canonical Wnt signaling pathway, including low-density lipoprotein receptor-related protein 5 and 6 (LRP5/6) and β-catenin components, in a mouse model of PD remains unclear. In the present study, the tyrosine hydroxylase (TH)-Cre transgenic mouse line was used to generate mice with the specific knockout of LRP5, LRP6 or β-catenin in DA neurons. Following inactivation of LRP5, LRP6 or β-catenin, TH-immunohistochemical staining was performed. The results indicated that β-catenin is required for the development or maintenance of these neurons; however, LRP5 and LRP6 were found to be dispensable. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, the depletion of LRP5, LRP6 or β-catenin was found to be protective for the midbrain DA neurons to a certain extent. These in vivo results provide a novel perspective for the function of the canonical Wnt signaling pathway in a mouse model of PD.
    Experimental and therapeutic medicine 08/2014; 8(2):384-390. DOI:10.3892/etm.2014.1745 · 0.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits glycolysis and increases the flow of pentose phosphate pathway (PPP), which generates NADPH and pentose. We hypothesized that TIGAR plays a neuroprotective role in brain ischemia as neurons do not rely on glycolysis but are vulnerable to oxidative stress. We found that TIGAR was highly expressed in brain neurons and was rapidly upregulated in response to ischemia/reperfusion insult in a TP53-independent manner. Overexpression of TIGAR in normal mice with lentivirus reduced ischemic neuronal injury, whereas lentivirus-mediated TIGAR knockdown aggravated it. In cultured primary neurons, increasing TIGAR expression reduced oxygen and glucose deprivation (OGD)/reoxygenation-induced injury, whereas decreasing its expression worsened the injury. The glucose 6-phosphate dehydrogenase was upregulated in mouse and cellular models of stroke, and its upregulation was further enhanced by overexpression of TIGAR. Supplementation of NADPH also reduced ischemia/reperfusion brain injury and alleviated TIGAR knockdown-induced aggravation of ischemic injury. In animal and cellular stroke models, ischemia/reperfusion increased mitochondrial localization of TIGAR. OGD/reoxygenation-induced elevation of ROS, reduction of GSH, dysfunction of mitochondria, and activation of caspase-3 were rescued by overexpression of TIGAR or supplementation of NADPH, while knockdown of TIGAR aggravated these changes. Together, our results show that TIGAR protects ischemic brain injury via enhancing PPP flux and preserving mitochondria function, and thus may be a valuable therapeutic target for ischemic brain injury.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 05/2014; 34(22):7458-7471.. DOI:10.1523/JNEUROSCI.4655-13.2014 · 6.75 Impact Factor
  • Source
    Furong Zhu · Lulu Zhang · Yu-qiang Ding · Yingjun Zheng · Jingping Zhao
    [Show abstract] [Hide abstract]
    ABSTRACT: Several lines of evidence have suggested that the dysregulation of immune system is involved in the pathogenesis of schizophrenia. Microglia are the resident macrophage of the brain and the major player in innate immunity in the brain. We hypothesized that microglia activation may be closely associated with the neuropathology of schizophrenia. Neonatal intrahippocampal injection of lipopolysaccharide (LPS), an activator of microglia, was performed in rats at postnatal day 7 (PD7), and they were separately treated with saline or minocycline for consecutive 3 days. Behavioral changes (locomotor activity, social interaction and prepulse inhibition) were examined in adulthood, and the number of microglia was assessed using immunohistochemistry at PD9, PD21 and PD67. The adult rats in LPS-injected group showed obvious behavioral alterations (deficits in social behavior and prepulse inhibition) and a persistently dramatic increase of number of activated microglial cells in the hippocampus, cerebral cortex and thalamus compared to those in saline-injected group. Interestingly, pretreatment with minocycline could significantly rescue the behavioral deficits and prevent microglia activation. Our results suggest that neonatal intrahippocampal LPS injection may serve as a potential schizophrenia animal model, and inhibition of microglia activation may be a potential treatment strategy for schizophrenia.
    Brain Behavior and Immunity 05/2014; 38. DOI:10.1016/j.bbi.2014.01.017 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During embryonic development of the mammalian cerebral cortex, postmitotic cortical neurons migrate radially from the ventricular zone to the cortical plate. Proper migration involves the correct orientation of migrating neurons and the transition from a multipolar to a mature bipolar morphology. Herein, we report that the 2 isoforms of Myosin-10 (Myo10) play distinct roles in the regulation of radial migration in the mouse cortex. We show that the full-length Myo10 (fMyo10) isoform is located in deeper layers of the cortex and is involved in establishing proper migration orientation. We also demonstrate that fMyo10-dependent orientation of radial migration is mediated at least in part by the netrin-1 receptor deleted in colorectal cancer. Moreover, we show that the headless Myo10 (hMyo10) isoform is required for the transition from multipolar to bipolar morphologies in the intermediate zone. Our study reveals divergent functions for the 2 Myo10 isoforms in controlling both the direction of migration and neuronal morphogenesis during radial cortical neuronal migration.
    Cerebral Cortex 05/2014; 24(5):1259-1268. DOI:10.1093/cercor/bhs407 · 8.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mental and neurological illnesses affect one in four people. Whilst genetic linkage analyses have shown an association of Nuclear Distribution Factor E (NDE1, or NudE) and its ohnolog NDE-like 1 (NDEL1, or Nudel) with mental disorders, the cellular mechanisms remain unclear. In the present study, we have demonstrated that Nde1 and Ndel1 are differentially localised in the subventricular zone (SVZ) of the forebrain and the subgranular zone (SGZ) of the hippocampus, two regions where neurogenesis actively occurs in the adult brain. Nde1, but not Ndel1, is localized to putative SVZ stem cells, and to actively dividing progenitors of the SGZ. The influence of these proteins on neural stem cell differentiation was investigated by overexpression in a hippocampal neural stem cell line, HCN-A94. Increasing Nde1 expression in this neural stem cell line led to increased neuronal differentiation while decreasing levels of astroglial differentiation. In primary cultured neurons and astrocytes, Nde1 and Ndel1 were found to have different but comparable subcellular localizations. In addition, we have shown for the first time that Nde1 is heterogeneously distributed in cortical astrocytes of human brains. Our data indicate that Nde1 and Ndel1 have distinct but overlapping distribution pattern in mouse brain and cultured nerve cells. They may function differently and therefore their dosage changes may contribute to some aspects of mental disorders.
    Neuroscience 04/2014; 271(100). DOI:10.1016/j.neuroscience.2014.04.031 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Various signs of activation of microglia have been reported in schizophrenia, and it is hypothesized that microglia activation is closely associated with the neuropathology of schizophrenia. Neonatal intrahippocampal injection of lipopolysaccharide (LPS), an activator of microglia, was performed in rats at postnatal day 7 (P7), and they were separately given saline, risperidone (0.5 mg/kg), minocycline (40 mg/kg) or a combination of both of them at P42 for consecutive 14 days. Behavioral changes (locomotion activity, social interaction, novel object recognition and prepulse inhibition) were examined and the number of microglia was assessed by using immunohistochemistry in adulthood. The adult rats in LPS-injected group showed obvious behavioral alteration (e. g. deficits in social interaction, novel object recognition and prepulse inhibition) and a dramatic increase of number of activated microglial cells in the hippocampus and other brain regions such as cerebral cortex and thalamus compared to those in saline-injected group. Interestingly, application of either minocycline, risperidone or both of them significantly rescued behavioral deficits and attenuated microglia activation. Our results suggest that inhibition of microglia activation may be one of mechanisms underlying the antipsychotic effect of minocycline and risperidone.
    PLoS ONE 04/2014; 9(4):e93966. DOI:10.1371/journal.pone.0093966 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Itch, chronic itch in particular, can have a significant negative impact on an individual's quality of life. However, the molecular mechanisms underlying itch processing in the central nervous system remain largely unknown. We report here that activation of ERK signaling in the spinal cord is required for itch sensation. ERK activation, as revealed by anti-phosphorylated ERK1/2 immunostaining, is observed in the spinal dorsal horn of mice treated with intradermal injections of histamine and compound 48/80 but not chloroquine or SLIGRL-NH2, indicating that ERK activation only occurs in histamine-dependent acute itch. In addition, ERK activation is also observed in 2, 4-dinitrofluorobenzene (DNFB)-induced itch. Consistently, intrathecal administration of the ERK phosphorylation inhibitor U0126 dramatically reduces the scratching behaviors induced by histamine and DNFB, but not by chloroquine. Furthermore, administration of the histamine receptor H1 antagonist chlorpheniramine decreases the scratching behaviors and ERK activation induced by histamine, but has no effect on DNFB-induced itch responses. Finally, the patch-clamp recording shows that in histamine-, chloroquine- and DNFB-treated mice the spontaneous excitatory postsynaptic current (sEPSC) of dorsal horn neurons is increased, and the decrease of action potential threshold is largely prevented by bathing of U0126 in histamine- and DNFB-treated mice but not those treated with chloroquine. Our results demonstrate a critical role for ERK activation in itch sensation at the spinal level.
    Molecular Brain 04/2014; 7(1):25. DOI:10.1186/1756-6606-7-25 · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many studies have suggested that childhood maltreatment increase risk of adulthood major depressive disorder (MDD) and predict its unfavorable treatment outcome, yet the neural underpinnings associated with childhood maltreatment in MDD remain poorly understood. Here, we seek to investigate the whole-brain functional connectivity patterns in MDD patients with childhood maltreatment. Resting-state functional magnetic resonance imaging was used to explore intrinsic or spontaneous functional connectivity networks of 18 MDD patients with childhood neglect, 20 MDD patients without childhood neglect, and 20 healthy controls. Whole-brain functional networks were constructed by measuring the temporal correlations of every pairs of brain voxels and were further analyzed by using graph-theory approaches. Relative to the healthy control group, the two MDD patient groups showed overlapping reduced functional connectivity strength in bilateral ventral medial prefrontal cortex/ventral anterior cingulate cortex. However, compared with MDD patients without a history of childhood maltreatment, those patients with such a history displayed widespread reduction of functional connectivity strength primarily in brain regions within the prefrontal-limbic-thalamic-cerebellar circuitry, and these reductions significantly correlated with measures of childhood neglect. Together, we showed that the MDD groups with and without childhood neglect exhibited overlapping and segregated functional connectivity patterns in the whole-brain networks, providing empirical evidence for the contribution of early life stress to the pathophysiology of MDD. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
    Human Brain Mapping 04/2014; 35(4). DOI:10.1002/hbm.22241 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nde1 (red) is localised to the GFAP-positive (green) stem cell of the subventricular zone of the lateral ventricle, and its overexpression in neural stem cells promotes neuronal differentiation while inhibiting astroglial differentiation.Figure optionsDownload full-size imageDownload high-quality image (18 K)Download as PowerPoint slide
    Neuroscience 01/2014; 271:119–136. · 3.33 Impact Factor
  • Source
    Ying Huang · Ning-Ning Song · Wei Lan · Qiong Zhang · Ling Zhang · Lei Zhang · Ling Hu · Jia-Yin Chen · Chun-Jie Zhao · Lingjiang Li · Lin Xu · Yu-Qiang Ding
    [Show abstract] [Hide abstract]
    ABSTRACT: Sensory input is generally thought to be necessary for refining and consolidating neuronal connections during brain development. We here report that cortical callosal axons in somatosensory cortex require sensory input for their target selection in contralateral cortex. Eliminating sensory input to either hemisphere by unilateral transection of infraorbital nerve (ION) prevents target selection of callosal axons in contralateral cortex. Strikingly, blocking sensory input bilaterally, by simultaneously transecting both IONs, results in rescued callosal projection. In contrast, non-simultaneous bilateral ION transection has the same effect as unilateral transection. Similar results are obtained by lesion of whisker hair follicles. c-Fos-positive neurons in brain slices treated with KCl is decreased more in contralateral cortex with unilateral removal of sensory input, but decreased similarly in both cortices in mice with simultaneous bilateral removal of sensory input. Frequency of sEPSC of cortical neurons is also reduced in contralateral cortex with the unilateral removal of sensory input, but equally reduced on both sides with the bilateral removal of sensory input, suggesting that unbalanced bilateral sensory input might lead to mismatched neuronal activity between the two cortices and contribute to the formation of callosal projection. Our data demonstrate a critical role of balanced bilateral somatosensory input in the formation of callosal connections, and thus reveal a new role of sensory input in wiring brain circuits.
    Molecular Brain 12/2013; 6(1):53. DOI:10.1186/1756-6606-6-53 · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serotonin-1A (5-HT1A) receptors modulate the stress response and have been implicated in the etiology and treatment of depression and anxiety disorders. A reduction in postsynaptic 5-HT1A receptor function in limbic areas has consistently been observed following exposure to chronic stress. To investigate the hypothesis that increased activation of 5-HT1A receptors in rats having reduced 5-HT function may improve stress adaptation and the behavioral sequelae commonly associated with chronic stress. One hundred forty-four Sprague-Dawley rats received injections of para-chlorophenylalanine to partially deplete 5-HT then were given daily systemic pretreatment with the 5-HT1A receptor agonist, 8-hydroxy-2- (di-n-propylamino) tetralin (8-OH-DPAT), the antagonist, WAY 100635, or vehicle prior to either restraint stress (6 h/day for 10 daily sessions) or control conditions. Anxiety- and depressive-like behaviors were then assessed using the open field and sucrose preference tests. Protein level of hippocampal glucocorticoid receptors (GR) and mineralocorticoid receptors was detected by immunohistochemistry and brain-derived neurotrophic factor (BDNF) was determined by in situ hybridization. 8-OH-DPAT pretreatment prior to stress exposure attenuated later stress-induced anxiety- and depression-like behaviors and increased GR and BDNF mRNA expression in the hippocampus relative to vehicle- and WAY 100635-pretreated, stressed animals. The stress-related impairments associated with 5-HT deficiency can be improved by 8-OH-DPAT pretreatment prior to stress exposure and are associated with an augmentation of GR-like immunoreactivity and BDNF mRNA expression in the hippocampus. It suggested that selective activation of 5-HT1A receptors may be a potential treatment strategy for stress-related disorders such as anxiety and depression.
    Psychopharmacology 11/2013; 231(10). DOI:10.1007/s00213-013-3350-z · 3.99 Impact Factor

27 Following View all

127 Followers View all