A problem on unique representation bases

Yong-Gao Chen

Department of Mathematics, Nanjing Normal University, Nanjing 210097, PR China

Received 30 August 2004; accepted 5 October 2005
Available online 15 November 2005

Abstract

In this paper we construct a unique representation basis whose growth is more than $x^{1/2-\varepsilon}$ for infinitely many positive integers x, which solves a problem posed by Nathanson in [M.B. Nathanson, Unique representation bases for the integers, Acta Arith. 108 (2003) 1–8].

MSC: 11B13; 11B34; 11B05

Let A be a set of integers, and let

$$r_A(n) = \#\{(a, b) : a, b \in A, a \leq b, a + b = n\}.$$

A set A of integers is called an additive basis for the integers if $r_A(n) \geq 1$ for all $n \in \mathbb{Z}$, and a unique representation basis if $r_A(n) = 1$ for all $n \in \mathbb{Z}$. A set B of integers is called a Sidon set if $r_B(n) \leq 1$ for all $n \in \mathbb{Z}$. Thus a unique representation basis is a Sidon set that is a basis for the integers. Recently, Nathanson [2] proved that a unique representation basis for the integers can be arbitrarily sparse. An interesting problem is to find a dense unique representation basis. Nathanson [2] constructed a unique representation basis A whose growth is logarithmic in the sense that the number of elements $a \in A$ with $|a| \leq x$ is bounded above and below by constant multiples of $\log x$. Nathanson [3] studied related problems with given representation functions. Let

$$A(y, x) = \#\{a \in A : y \leq a \leq x\}.$$

Nathanson [2] asked the following problem:

(*) Supported by the National Natural Science Foundation of China, Grant No 10471064 and the Teaching and Research Award Program for Outstanding Young Teachers in Nanjing Normal University.

E-mail address: ygchen@njnu.edu.cn.

0195-6698/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
Does there exist a number \(\theta < 1/2 \) such that \(A(-x, x) \leq x^\theta \) for every unique representation basis \(A \) and for all sufficiently large \(x \)?

In this note, we show that the answer to the problem is negative.

Theorem. For any \(\varepsilon > 0 \), there exists a unique representation basis \(A \) for the integers such that for infinitely many positive integers \(x \), we have

\[
A(-x, x) \geq x^{1/2-\varepsilon}.
\]

For a set \(A \) and any integer \(c \), define

\[
A + c = \{a + c : a \in A\}.
\]

Lemma 1. Let \(A \) be a nonempty finite set of integers with \(r_A(n) \leq 1 \) for all \(n \in \mathbb{Z} \) and \(0 \not\in A \).

If \(m \) is an integer with \(r_A(m) = 0 \), then there exists a finite set \(B \) of integers such that \(A \subseteq B \), \(r_B(n) \leq 1 \) for all \(n \in \mathbb{Z} \), \(r_B(m) = 1 \) and \(0 \not\in B \).

Proof. Let \(b = \max\{|a| : a \in A\} \). Take \(c = 4b + |m| \) and

\[
B = A \cup \{-c, c + m\}.
\]

It is easy to verify that the four sets

\[
2A, \quad A - c, \quad A + c + m, \quad \{m, -2c, 2c + 2m\}
\]

are disjoint each other. Hence \(r_B(n) \leq 1 \) for all \(n \in \mathbb{Z} \) and \(0 \not\in B \) by \(c \neq 0 \) and \(c + m \neq 0 \). This completes the proof of **Lemma 1**.

Lemma 2. Let \(A \) be a nonempty finite set of integers with \(r_A(n) \leq 1 \) for all \(n \in \mathbb{Z} \) and \(0 \not\in A \).

Then, for any \(\varepsilon > 0 \) and \(M > 0 \), there exists an integer \(x > M \) and a finite set \(B \) of integers with \(0 \not\in B \), \(A \subseteq B \), \(r_B(n) \leq 1 \) for all \(n \in \mathbb{Z} \) and \(B(-x, x) \geq x^{1/2-\varepsilon} \).

Proof. It is well known that for any positive integer \(m \) there exists a Sidon set \(S \subseteq [1, m] \) with \(|S| \geq \sqrt{m} + o(\sqrt{m}) \) (see [1,4]). Thus there exists an integer \(x > M + (25T)^{1/(2\varepsilon)} \) and a set \(D \) of positive integers with \(r_D(n) \leq 1 \) for all positive integers \(n \) and \(D(1, x/(5T)) \geq \frac{1}{2} \sqrt{x/(5T)} \), where \(T = \max\{|a| : a \in A\} \). Let \(B = A \cup \{5Tb : b \in D\} \). Then \(0 \not\in B \) and

\[
B(-x, x) \geq D(1, x/(5T)) \geq \frac{1}{2} \sqrt{x/(5T)} \geq x^{1/2-\varepsilon}.
\]

It is easy to verify that \(r_B(n) \leq 1 \) for all \(n \in \mathbb{Z} \). This completes the proof of **Lemma 2**.

Proof of the Theorem. We shall use induction to construct an ascending sequence \(A_1 \subseteq A_2 \subseteq \cdots \) of finite sets of integers and a sequence \(\{x_i\}_{i=1}^\infty \) of positive integers with \(x_{i+1} > x_i \) for all \(i \) such that for any positive integer \(k \), we have

(i) \(r_{A_k}(n) \leq 1 \) for all \(n \in \mathbb{Z} \);
(ii) \(r_{A_{2k}}(n) = 1 \) for all \(n \in \mathbb{Z} \) with \(|n| \leq k \);
(iii) \(A_{2k-1}(-x_k, x_k) \geq x_k^{1/2-\varepsilon} \);
(iv) \(0 \not\in A_k \).

Let \(A_1 = \{-1, 1\} \) and \(x_1 = 1 \). Suppose that we have \(A_1, A_2, \ldots, A_{2l-1} \) and positive integers \(x_1 < x_2 < \cdots < x_l \). Let \(m \) be an integer with minimum absolute value and \(r_{A_{2l-1}}(m) = 0 \). If \(l = 1 \), then \(|m| = 1 = l \). If \(l > 1 \), then by \(A_{2l-2} \subseteq A_{2l-1} \) we have \(r_{A_{2l-2}}(m) = 0 \). By the
inductive hypothesis and (ii) we have \(m \geq l \). By Lemma 1 there exists a finite set \(B \) of integers such that \(A_{2l-1} \subseteq B \), \(r_B(n) \leq 1 \) for all \(n \in \mathbb{Z} \), \(r_B(m) = 1 \) and \(0 \notin B \). If \(r_B(-m) = 0 \), then there exists a finite set \(B' \) of integers such that \(B \subseteq B' \), \(r_{B'}(n) \leq 1 \) for all \(n \in \mathbb{Z} \), \(r_{B'}(m) = 1 \) and \(0 \notin B' \). Now, let \(A_{2l} = B \) if \(r_B(-m) \neq 0 \), and let \(A_{2l} = B' \) if \(r_B(-m) = 0 \). Then \(A_{2l} \) satisfies (i), (ii), (iv) and \(A_{2l-1} \subseteq A_{2l} \). By Lemma 2 there exists a finite set \(A_{2l+1} \) of integers and an integer \(x_{l+1} > x_l \) such that (i), (iii) and (iv) hold, and \(A_{2l} \subseteq A_{2l+1} \). Let

\[
A = \bigcup_{k=1}^{\infty} A_k.
\]

By (ii), we have that \(r_A(n) = 1 \) for all \(n \in \mathbb{Z} \). So \(A \) is a unique representation basis for the integers. By (iii), we have

\[
A(-x_k, x_k) \geq x_k^{1/2 - \varepsilon}.
\]

This completes the proof. \(\square \)

Finally, we pose the following open problems:

(1) Does there exist a real number \(c > 0 \) and a unique representation basis \(A \) such that

\[
A(-x, x) \geq c\sqrt{x}
\]

for infinitely many positive integers \(x \)?

(2) Does there exist a real number \(c > 0 \) and a unique representation basis \(A \) such that

\[
A(-x, x) \geq c\sqrt{x}
\]

for all real numbers \(x \geq 1 \)?

(3) Does there exist a real number \(\theta < \frac{1}{2} \) such that for any unique representation basis \(A \) there are infinitely many positive integers \(x \) with \(A(-x, x) < x^{\theta} \)?

Acknowledgement

I am grateful to the referee for his/her comments.

References