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Abstract 
 

This study presents a novel computational 
approach to identifying a smoking-associated gene 
signature. The methodology contains the following 
steps: 1) identifying genes significantly associated with 
lung cancer survival, 2)  selecting genes which are 
differentially expressed in smoker versus non-smoker 
groups from the survival genes, 3) from these 
candidate genes, constructing gene co-expression 
networks based on prediction logic for smokers and 
non-smokers, 4) identifying smoking-mediated 
differential components, i.e., the unique gene co-
expression patterns specific to each group, and 5) from 
the differential components, identifying genes directly 
co-expressed with major lung cancer hallmarks. The 
identified 7-gene signature could separate lung cancer 
patients into two risk groups with distinct post-
operative survival (log-rank P < 0.05, Kaplan-Meier 
analysis) in four independent cohorts (n=427). It also 
has implications in the diagnosis of lung cancer 
(accuracy = 74%) in a cohort of smokers (n=164). 
Computationally derived co-expression patterns were 
validated with Pathway Studio and STRING 8. 
 
1. Introduction 

Lung cancer remains the leading cause of cancer 
deaths for both men and women in the United States 
[1]. Non-small cell lung cancer (NSCLC) is the most 
common subtype. Studies have demonstrated that 
smoking contributes to about 90% of all lung cancer 
cases and it appears to be a strong risk factor in the 
development of lung cancer [5-7].  However, smoking 
is not an established prognostic factor in lung cancer as 
its effect in lung cancer progression remains unclear. 
In this study, we sought to identify a smoking-
associated gene signature with implications in lung 
cancer diagnosis and prognosis using genome-wide 
transcriptional profiles from lung cancer patients. 

Most studies in molecular biomarker discovery rank 
genes based on their association with the clinical 
outcome.  The top-ranked genes are then selected as 
signature genes [3, 8, 9]. However, these approaches 
do not account for the interactions among genes. It’s 
known that genes and proteins do not function in 
isolation. Instead, genes function through a series of 
interactions with one another and disease is one 
possible result of aberration in these interactions.  
Furthermore, recent studies suggest that molecular 
network analysis could be used to improve disease 
classification [10-12], and identify disease genes [13], 
novel therapeutic targets [14, 15], and disease related 
sub-networks [16]. Thus, by incorporating the study of 
gene associations with disease outcome and co-
expression networks analysis, it could lead to 
discovery of biomarkers for precise disease prognosis. 

Boolean networks can provide important 
biological insights into regulation functions [17-20].  
The Boolean implication networks presented by Sahoo 
et al. [18] used scatter plots of expression between two 
genes to induce the implication relations. We 
developed an induction algorithm based on prediction 
logic [21] to derive implication relations.  In our 
previous study, implication networks were employed 
to model disease-mediated genome-wide co-expression 
networks for the identification of a prognostic gene 
signature [22]. In this study, implication networks 
were used to infer the relevance to signaling pathways 
in a set of selected genes associated with smoking and 
lung cancer survival. 

We hypothesized that an analysis of genes 
associated with smoking and major lung cancer 
signaling pathways will lead to the identification of a 
gene signature that provides a more accurate diagnosis 
and prognosis of lung cancer. The following steps 
were carried out to test the hypothesis: 1) Genes that 
were significantly associated with lung cancer survival 
were identified from genome-wide expression profiles 
using the training set (n=256). 2)  Genes with 
differential expression in smokers versus non-smokers 



were then selected for further analysis. 3) The 
implication network algorithm was employed to 
construct smoking mediated gene co-expression 
networks. 4) From the differential components that are 
unique to the smoker or non-smoker group, genes that 
had common co-expression with EGF, EGFR, MET, 
KRAS, E2F3, and E2F5 were pinpointed. The 
identified 7-gene signature was then validated in three 
independent cohorts (n=427) for prognostic prediction. 

2. Materials and Methods 
2.1. Implication induction algorithm for pair-
wise coexpression network construction 

An implication network is a directed graph with 
variables as nodes, and adjacent nodes are connected 
with arch representing implications. The first induction 
algorithm for implication network was proposed by 
Liu et al. [23, 24] based on binomial distribution, 
which is suitable for binary datasets.  An alternative 
network induction algorithm was proposed by Guo et 
al. [21] based on prediction logic [25], which is 
applicable for more general applications, including 
multinomial datasets and multi-classification problems. 
Prediction logic reveals the implication relationships 
among variables in a dataset and evaluates 
propositions in formal logic by integrating formal logic 
theory and statistics. The most important aspect of 
prediction logic is the conceptual value of prediction 
analysis in constructing and evaluating useful 
statements, particularly in complex multinomial 
problems with moderate sample sizes. This feature is 
vital for clinical applications, in which many clinical 
parameters are multinomial and the patient sample size 
is small. 

We used prediction logic based on formal logic 
rules relating two dichotomous variables to induce the 
implication network. The six most important 
implication rules relating two dichotomous variables 
are shown in Fig. 1, where each table is a contingency 
table and the shaded cells represent the errors for the 
corresponding implication rule. For example, 

BA ¬∧
A ⇒

is the error cell for the implication 
rule ,  represents the number of error 
occurrences. A modified U-Optimality method [25] 
(Fig. 2) was used to derive the implication relation 
between each pair of variables in the dataset.   

B BA ¬∧N

In the implication induction algorithm (Fig. 2), Up 
is the scope of the implication rule, representing the 
portion of the data covered by the implication relation, 
and  is the precision of the implication rule, 
representing the prediction success of the 
corresponding implication relation. An implication rule 

has high precision when the number of error 
occurrences is a small portion of the data covered by 
the implication rule. The minimum scope and precision 
required by the implication rule are indicated 
respectively by Umin and ∇ , which must be positive 
for a valid implication relation. The induction 
algorithm derives an implication rule if it has the 
maximum scope, Up and it satisfies the constraint that 
its scope, Up and precision,  are greater than the 
required minimum values, Umin and , respectively. 
To simplify the computations of the maximization 
problem, the value of every error cell must be 
greater than that of the non-error cells for the 
corresponding implication rule [21]. 
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where ωij = 1 for error cells; otherwise, ωij = 0. 
This implication induction algorithm is general for 

discrete datasets. With the expansion of the 
contingency table Mij (Fig. 2), implication rules can be 
induced for multinomial datasets, where error cells are 
those with top precision ( values) and satisfying all 
the constraints.  The proposition can then be induced 
according to the error set.       

The complexity of the induction algorithm is 
O(Nv2), where N is the sample size and v is the number 
of variables in the dataset (i.e. nodes in the implication 
networks) [21].  The difference between this algorithm 
and that of Hildebrand et al. [25] is that minimum 
requirements for deriving an implication rule were set 
for both scope (Up) and precision ( ), instead of for 
precision alone.     

Figure 1. Six important implication rules relating two 
dichotomous variables.  



2.2. Microarray profiles and patient samples 
Four sets of published microarray gene expression 

profiles were used in this study. The first set contains 
442 lung adenocarcinoma patient samples obtained 
from a multi-center microarray study of lung cancer 
published by Shedden et al. [2]. The second set 
contains 130 adenocarcinoma and squamous cell lung 
cancer samples published by Raponi et al. [3]. The 
third set contains 111 non-small cell lung carcinoma 
samples published by Bild et al. [4]. The fourth set 
contains samples of airway epithelial cells from 164 
current and former smokers published by Spira et al. 
[5]. Data used in the analysis was quantile-normalized 
and log2 transformed with dChip [26].  

3. Results and Discussions 
3.1. Identification of a smoking-associated gene 
signature 

In this study, the  UM and HLM cohorts from 
Shedden et al. [2] formed the training set (n=256), 
whereas MSK and DFCI formed the test set (n=186). 
Genes with missing values in at least half of the 
samples were removed, which left 19,866 genes for the 
analysis.   
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analysis. These signaling pathways are included in 
human non-small cell lung cancer disease mechanisms 
delineated by the KEGG Pathway Database 
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Survival genes were first selected from the whole 
genome. A total of 2,310 genes were significantly 
associated with overall survival (P < 0.05, univariate 
Cox modeling) in the training data. Second, from this 
set of 2,310 genes, 217 genes showed significant 
differential expression (P < 0.05, t-tests) in smokers 
versus non-smokers in the training data. These 217 

survival and smoking-associated genes as well as six 
major signaling proteins, including EGF, EGFR, MET, 
KRAS, E2F3, and E2F5, were included in the network 
analysis. These signaling pathways are included in 
human non-small cell lung cancer disease mechanisms 
delineated by the KEGG Pathway Database 
(http://www.genome.jp/kegg/pathway/hsa/hsa05223.ht
ml). These six hallmarks were not significantly 
associated with survival nor differentially expressed in 
smokers. 

The Implication Induction Algorithm 
Begin 

Set a significant level and a minimal Umin ∇min
For nodei, i∈ [0, vmax – 1] and nodej, j∈ [i+1, vmax] 

(Note: vmax is the total number of nodes) 
For all empirical case samples N 

Compute a contingency table as in Figure 1 
N11 N12 Mij = 
N21 N22 

For each relation type k out of the six cases, find the 
solution  

To construct implication networks, expression 
profiles in each patient were partitioned into binary 
values using the mean expression profile of each gene 
as the cutoff. If the expression of a gene in a patient 
sample was greater than the mean in the cohort, this 
gene was denoted as up-regulated in this tumor 
sample; otherwise, it was denoted as down-regulated 
in the tumor sample.  Patient samples in the training set 
were separated into two groups: smokers (patients who 
smoked in the past or who are currently smoking) and 
non-smokers (patients who never smoked).  For each 
patient group, co-expression network among the 223 
genes was constructed using the implication induction 
algorithm. Between each pair of the 223 genes, 
possible significant (P < 0.05; z-tests) co-expression 
relations (interactions) were derived in the smoker 
group and the non-smoker group, constituting 
smoking-mediated gene co-expression networks for 
lung cancer. By comparing the implication rules 
between each pair of nodes in the two networks, 
differential network components were identified. 
These differential components are interactions that 
were present in the smoker group but missing in the 
non-smoker group, or conversely, those present in the 
non-smoker group but absent in the smoker group.   

Max Up 
Max Up  ≥ Umin Subject to 

p∇ ≥  ∇min

               > ∇  ∇ cellserror cellserror  -non
If the solution exists, then return a type k relation 

End 

Figure 2. Implication induction algorithm for 
building co-expression networks. 

From the differential components associated with 
the smoker group and the non-smoker group, genes 
having direct interactions with the six lung cancer 
hallmarks were identified.  As a result, six genes were 
identified from the smoker group and one gene was 
identified from the non-smoker group.  This 
constituted the smoking-associated 7-gene signature 
for lung cancer prognosis. 

3.2. Prognostic evaluation of the signature  
We sought to study if the gene signature identified 

could provide accurate prognostic prediction of 
survival for lung cancer patients.  The six hallmarks 
were not fitted in the model as they were not 
significantly associated with survival.  On the training 
cohort, the original continuous expression profiles of 
the seven probes were fitted into a Cox proportional 
hazard model as covariates.  A survival risk score was 
generated for each patient in the training set.  To 
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identify the best patient stratification scheme, various 
cutoff values of the risk scores were evaluated on the 
training set.  The cutoff value that gave the shortest 
distance to the point of perfect prediction, i.e., point 
[0,1] in the 3-year ROC curve (Fig. 3A), produced the 
best patient stratification in the training set (Fig. 3B).  
Therefore, the training model and cutoff value were 
applied to the test set (Fig. 3C). In both training and 
test sets, this classification scheme generated 
significant patient stratifications (log-rank P<0.007, 
Kaplan-Meier analysis).    

To evaluate the statistical significance of the 
signature identified from the proposed network 
analysis, a set of seven genes from the 217 survival 
and smoking-associated genes were randomly selected 
and constructed as a classifier using the same approach 
with the Cox proportional hazard model. Results 
showed that the identified signature gave significantly 
(P < 0.04) better prognosis compared with 1,000 
random gene sets. 

3.3. Smoking association and smoking 
cessation 

To evaluate the association of the identified 7-gene 
signature with smoking, we evaluated the performance 
of the prognostic signature on smokers in the studied 
cohorts.  Results showed that the signature gave 
accurate prognostic prediction in smokers in the test 
cohort (log-rank P < 0.01, Kaplan-Meier analysis) 

(Fig. 3D) but not in non-smokers (log-rank P < 0.12, 
Kaplan-Meier analysis, results not shown).  In 
addition, gene expression-defined high- and low-risk 
groups showed significant association with smoking (P 
< 0.02, Chi-square tests) and smoking cessation (P < 
0.00001, Chi-square tests) (Table 1). Specifically, 
smokers were significantly associated with high-risk 
group compared with non-smokers, and current 
smokers showed a stronger association with the high-
risk group compared with former smokers. 

Table 1. Associations between smoking status and 
gene expression-defined prognostic risk groups. 
 Low-

risk 
High
-risk Chi-square Test 

Smoker 143 157 
Non-smoker 33 16 

Smoking association 
 χ2  = 5.76 (P = 0.02) 

Current Smoker 3 29 

Former Smoker 140 128 

Smoking cessation 
χ2 = 19.37 (P = 
1.08e-5) 

3.4. Prognostic validation on other histology 
subtypes of NSCLC 

The prognostic performance of the 7-gene signature 
was further evaluated on Raponi [3] and Bild [4] 
cohorts including squamous cell lung cancer. Due to 
small sample size, patient samples in the studied cohort 
were randomly partitioned into separate training and 
test sets. Then, a prognostic classifier was constructed 

Figure 3. Prognostic prediction of patient survival by the smoking-associated gene signature. On the cohorts 
from  Shedden et al. [2], the risk score giving the best prediction on the 3-year ROC curve was identified as the 
cutoff for patient stratification (A).  This cutoff value generated significant patient stratification on the training set 
(B), test set (C), and smokers of test set (D) in Kaplan-Meier analyses. Significant patient stratifications were also 
obtained in the training and test sets on cohorts from Raponi et al. [3] (E, F) and Bild et al. [4] (G, H).  Log-rank 
tests were used to assess the significance of the difference between survival probabilities in two prognostic groups.  



on training set using the Cox proportional hazard 
model and validated on the test set without re-
estimation of parameters.  In both training and test sets, 
the 7-gene signature stratified patients into two distinct 
survival groups (Fig. 3E-3H).  

3.5. Early detection of lung cancer 
We further evaluated whether the 7-gene signature 

could be used for the diagnosis of lung cancer in 
smokers. The smoking cohort from Spira et al. [5] was 
separated into a training set (n=77) and two 
independent test sets (n=52 and n=35). With the 
nearest neighbor algorithm implemented in WEKA 
[27], the classifier could accurately identify lung 
cancer patients from normal patients with an overall 
accuracy greater than 73% in both test sets (Table 2). 
Furthermore, the 7-gene signature’s performance was 
significantly (P < 0.002) better than that of random 
seven genes using the same classifier in 1,000 tests, on 
the same training and test sets. 

Table 2. Prediction of lung cancer risk in smokers.  
 Sensitivity 

(lung cancer) 
Specificity 
(normal) 

Overall 
Accuracy 

Training  
(10-fold CV) 74% (26/35) 57% (24/42) 65% (50/77) 

Test 1 72% (18/25) 74% (20/27) 73% (38/52) 
Test 2  72% (13/18) 76% (13/17) 74% (26/35) 

3.6. Confirmation of network topology 
The co-expression network topology was evaluated. 

To increase the reproducibility, common differential 
network components that were present in both training 
and test sets were retrieved. These co-expression 
relations represent the smoking-mediated gene co-
expressions in lung cancer patients. There were 17 
common interactions specifically associated with 

smokers (Fig. 4A) and one interaction specifically 
associated with non-smokers (Fig. 4B). Statistical 
significance of the 18 interactions commonly found in 
both training and test sets was evaluated as P < 0.18 in 
1000 permutation tests based on a metric, S. The 
metric S represents the proportion of the number of 
common interactions found in both training and test 
sets over the number of interactions found in the 
training set.  Null distribution of the metric (S) was 
generated by permuting the class labels in the test set. 

In order to confirm the biological relevance of the 
derived co-expression relations, literature-reported 
interactions related to these genes were retrieved by 
inputting these genes into bioinformatics tools 
including Pathway Studio (Fig. 4D) and other curated 
signal pathway databases. Three interactions specific 
to smokers that were derived from the implication 
network have been validated in experiments (Fig. 4A). 

4. Conclusions and future work 
This study identified a smoking-associated 7-gene 

signature that co-expressed with major lung cancer 
signaling pathways.  The identified 7-gene signature 
could potentially be used for prognostic categorization 
and screening of lung cancer risk in smokers.  The 
gene expression signature showed strong association 
with smoking and smoking cessation.   

The results indicate that the implication network 
methodology based on prediction logic could identify 
biologically relevant co-expression patterns. The 
implication networks successfully revealed biological 
interactions reported in the literature.  Currently, we 
are carrying out experiments to validate smoking 
mediated gene expression and the perturbation of 
signaling pathway mechanisms. 

Figure 4. Interactions among the smoking-associated signature genes and lung cancer hallmarks. Gene co-
expression patterns specific to smokers (A) and non-smokers (B) derived by the implication network algorithm (P < 
0.05) commonly present in both training and test sets. The biological interpretation of the implication relations are 
described in (C). Interactions reported in literature were also retrieved from Pathway Studio (D). 
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