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HOW DO HETEROGENEITIES IN OPERATING ENVIRONMENTS

AFFECT FIELD FAILURE PREDICTIONS AND TEST PLANNING?

By Zhi-Sheng Ye∗,1, Yili Hong†,2 and Yimeng Xie†,2

Hong Kong Polytechnic University∗ and Virginia Tech†

The main objective of accelerated life tests (ALTs) is to predict
fraction failings of products in the field. However, there are often dis-
crepancies between the predicted fraction failing from the lab testing
data and that from the field failure data, due to the yet unobserved
heterogeneities in usage and operating conditions. Most previous re-
search on ALT planning and data analysis ignores the discrepancies,
resulting in inferior test plans and biased predictions. In this paper
we model the heterogeneous environments together with their effects
on the product failures as a frailty term to link the lab failure time
distribution and field failure time distribution of a product. We show
that in the presence of the heterogeneous operating conditions, the
hazard rate function of the field failure time distribution exhibits a
range of shapes. Statistical inference procedure for the frailty models
is developed when both the ALT data and the field failure data are
available. Based on the frailty models, optimal ALT plans aimed at
predicting the field failure time distribution are obtained. The devel-
oped methods are demonstrated through a real life example.

1. Introduction.

1.1. Motivation. Most commercial products are sold with warranties.
Before a new product is launched to the market, it is extremely impor-
tant to accurately estimate the proportion of field returns within a given
warranty period in order to determine the monetary reserves for covering
future warranty claims. The failure information can be obtained through
pre-launch accelerated life tests (ALTs) in a timely fashion. In an ALT,
a number of samples are tested under harsh conditions, for example, a com-
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bination of high voltage, temperature, pressure, use rate, etc., which yields
information on product reliability within a reasonable time frame. Failure
time data from the test are collected, analyzed and extrapolated to estimate
lifetime characteristics of interest at nominal use conditions based on some
stress-life models. There is a bulk of literature on ALT data analysis and
optimal design of ALT experiments. See Pascual (2006), Ma and Meeker
(2008), Guo and Liao (2012) and Liu (2012), among others. The use condi-
tions are implicitly assumed to be homogeneous (same for all customers) in
most ALT research, including the above references.

After the product is sold to customers with a warranty, units that fail
within the warranty period are returned to the manufacturer for repair or
replacement, which are known as warranty claims. These warranty claim
data reflect failure behaviors of the product under actual use conditions.
Analysis of these warranty return data is useful because it validates the
results from ALT data analysis, and can be used to improve the accuracy
of parameter estimation from the ALT. See Blischke, Karim and Murthy
(2011) for an overview of this topic.

However, large discrepancies between the results of ALT data analysis and
field failure data analysis are often found. Analysis of field failure data tends
to suggest higher variability in the product’s failure times compared with
the result based on ALT data analysis. Conceivably, this is because prod-
ucts in the field are usually exposed to heterogeneous usage and operating
conditions. A motivating example is as follows.

Meeker, Escobar and Hong (2009) described an application involving an
appliance, which is called Appliance B. Appliance B contains a turbine de-
vice which has two major failure modes: crack failure modes and wear failure
modes. Engineering knowledge suggests that it is reasonable to assume that
these two failure modes are independent. For illustration, we only consider
the wear failure mode, accounting for around 80% of the total field fail-
ures. Appliance B was sold with a two-year warranty. Before its entry into
the market, an ALT was conducted to obtain reliability information of the
product, in which 10 units were subject to a wear test. Field failure data
were also available during the subsequent warranty tracking study of 4708
units with 93 wear failures. More details can be found in Meeker, Escobar
and Hong (2009).

According to the analysis in Section 5, the Weibull distribution provides
a good fit to the failure data from ALT, but it does not provide an adequate
fit to the field data. As we will argue, the discrepancy is largely due to the
varying operating conditions in the field. When varying operating conditions
are taken into account, theory suggests the use of other distributions for the
field data, such as the Burr-XII distribution, which do fit well.

1.2. Heterogeneous operating conditions. The operating conditions are
dynamic in a number of ways. First off, products are used in different ge-
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ographical areas because of customer locations. Therefore, the operating
environments (e.g., temperature, humility, etc.) are heterogeneous for units
across the product population. Second, different users have different usage
behaviors. In a two-dimensional warranty analysis, it is commonly assumed
that the use rate of a customer is constant and it varies across the customer
population [Lawless, Crowder and Lee (2009), Ye et al. (2013)]. Yang (2010)
also observed that the field stress level may vary over the product popu-
lation. Moreover, the usage profile can be time dependent. As an example,
Nelson (2001) reported a problem where the stress profile, for example, pres-
sure and temperature, over time for a seal in brake cylinders is stochastic.
The presence of variable operating conditions significantly influences failures
of the product. As suggested from consumer reports in February 1991 [Pad-
manabhan (1995)], the percentage of washer–dryer machines that ended up
with a warranty claim went up from 14% among those who reported an aver-
age of one to four laundry loads per week to 25% among those who reported
an average in excess of eight loads per week. Furthermore, this pattern was
observed across brands consistently.

In the presence of heterogeneous operating conditions of the product pop-
ulation, direct prediction of the proportion of warranty returns from ALT
data analysis can be highly biased. In principle, the failure time distribution
of the in-lab testing units can be linked to that of the field population by
taking into account information about these dynamics in environments. The
information includes the types of significant dynamic environmental factors,
the distributions for these factors as well as the acceleration relationships
that relate each factor to the failure process. Among these environmental
factors, information about the use rate may be the easiest to collect. For
example, Meeker, Escobar and Hong (2009) and Yang (2010) focused on
modeling the effects of usage rates. Both studies assumed a constant us-
age rate for an individual unit and a lognormal distribution for usage rates
across the product population. However, the field failure time distribution in
Yang (2010) does not have closed-form expressions, which makes analysis of
field return data and verification of model assumptions (e.g., the lognormal
assumption of the usage rate distribution) very difficult, and which greatly
complicates the ALT planning for a new vintage of the product under sim-
ilar environments. Even if the distribution of the usage rate is available,
say, from a customer survey, the models in these two studies still ignore
other influential factors such as heterogeneous customer locations. In fact,
it is almost impossible to directly collect information (i.e., distributions for
each environmental factor and their respective effects on the failure process)
about all heterogeneous environmental factors other than the usage rate.

1.3. Objectives and overview. This paper is an endeavor to answer the
question of how heterogeneities in operating environments affect predictions
of field failures and planning of ALTs. We treat the unobservable operating
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factors as well as their effects on the product failure process as a “frailty,”
through which the lab failure time distribution of a product can be linked to
the field failure time distribution. The “frailty” is an unobservable random
variable used to account for heterogeneities caused by unobservable covari-
ates. In its simplest form, the frailty is an unobserved random proportion-
ality factor that modifies the baseline failure rate function of an individual,
which is similar to the multiplicative effect of a covariate on the failure rate
in Cox’s proportional hazard model. In biostatistics, lifetime models with
frailties have attracted much attention, for example, see Hanagal (2011) for
a book length treatment on this area. In reliability engineering, the frailty is
often called a random effect and also receives some applications, for exam-
ple, see Stefanescu and Turnbull (2006), Lawless and Crowder (2010) and
Ye and Chen (2014), among others. However, one challenge of using frailty is
that the resulting marginal distribution is often mathematically intractable.

This paper develops tractable frailty models that relate ALT failures to
warranty failures. We show that in the presence of the frailty, the hazard
rate of a field unit exhibits various shapes. An appropriate distribution for
the frailty can be determined through joint modeling of both ALT data and
warranty return data. Detailed procedures to analyze the data and to collate
the frailty distribution are developed. The results enable the prediction of
field failures for a future product through analysis of ALT data. We also
derive optimal designs of ALT experiments for a new vintage and show how
the heterogeneities affect the optimal ALT design.

The remainder of the paper is organized as follows. Section 2 introduces
the gamma frailty model for linking lab test data and field failure data and
investigates possible shapes of the field failure rate. In Section 3 a procedure
for statistical inference of the frailty model is developed. We also extensively
discuss the model validation through hypothesis testing. Optimal ALT plans
under the frailty model are obtained in Section 4. Section 5 applies the frailty
model to the Appliance B example. Section 6 concludes the paper.

2. Linking lab failures and field failures. Under the stable lab testing
conditions, we assume the lifetime X of the product follows a Weibull dis-
tribution, which is one of the most commonly used lifetime distributions.
However, existence of the heterogeneous operating conditions influences life-
time of a field unit. The basic idea is to introduce into the hazard rate an
additional random parameter Z that accounts for the heterogeneities. The
frailty Z links the distribution of X to that of the field failure time T .
In this section, the frailty model is developed and the hazard rate of T is
investigated.

2.1. Failures in lab testing. As suggested by the extreme value theory,
the Weibull distribution is an appropriate lifetime model when the failure
is caused by the weakest flaw/link in a unit. It has been widely used for
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modeling lifetime of products and components. The failure time X of a lab
testing unit is assumed to follow a Weibull distribution with the respective
cumulative distribution function (c.d.f.) and probability density function
(p.d.f.) given by

FX(x) = 1− exp

[

−

(

x

α

)β]

, x > 0

and

fX(x) =
β

α

(

x

α

)β−1

exp

[

−

(

x

α

)β]

, x > 0,(1)

where α > 0 is the scale parameter and β > 0 is the shape parameter. The
hazard rate function of X is given by

hX(x) =
β

α

(

x

α

)β−1

.(2)

It is well known that the hazard rate function is monotone increasing when
β > 1 and monotone decreasing when 0< β < 1.

2.2. Field failures: A gamma frailty model. When the product is sold
to customers, the operating conditions are heterogeneous and unobservable.
The unobservable effects are described by a frailty Z. The frailty Z is con-
stant for a unit and varies across the product population. Conditional on
Z, the lifetime of a field unit follows the Weibull distribution with a hazard
rate function given by

hT (t;Z) = ZhX(t) = Z ×
β

α

(

t

α

)β−1

.(3)

Because the baseline distribution is Weibull, this frailty model is similar
to assuming a random scale parameter α [Meeker and Escobar (1998), page
457]. Previously, Meeker, Escobar and Hong (2009) and Yang (2010) adopted
such method to accommodate information on the heterogeneities. However,
the reason we do not use a random scale parameter is that it is difficult,
if not impossible, to find a distribution for α such that the resulting field
failure time distribution has a closed form.

The distribution of Z depends on the heterogeneities of the field environ-
ments as well as the effects of the random environments on the product. For
example, when the heterogeneities are caused by the random use rate U ,
previous research suggests that the effect of U on product failures can be
empirically described by a power law relation Z = aU b, a, b > 0 are param-
eters, while the use rate distribution tends to be unimodal and positively
skewed. This leads to a unimodal and positively skewed distribution for aU b.
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Therefore, distributions like the gamma [Majeske (2007), Lawless, Crowder
and Lee (2009)], lognormal [Lawless, Hu and Cao (1995), Meeker, Escobar
and Hong (2009)] and inverse Gaussian distributions are appropriate for
Z. Occasionally, the uniform distribution is also recommended [Iskandar,
Murthy and Jack (2005)]. The frailty Z includes the random usage rate
and, thus, it is reasonable to assume that it is also unimodal and positively
skewed. To specify a distribution family for the frailty Z, it is of advantage
that the resulting field failure distribution is tractable. This is because when
the distribution of Z has a closed form, we can easily collate the validity of
the frailty distribution through data analysis. We find that the families of
gamma, inverse Gaussian and uniform distributions for the frailty result in
tractable distributions for T . In the motivating example described in Sec-
tion 1.1, the frailty is found to be well described by the gamma distribution.
Therefore, this paper focuses on the gamma frailty model. Development of
the inverse Gaussian frailty model and the uniform frailty model is put in
the supplemental material [Ye, Hong and Xie (2013)]. In fact, as suggested
by Singpurwalla (2006), the gamma distribution is highly flexible to reflect
p.d.f.s of most shapes and, thus, the gamma frailty model is applicable to
similar problems other than the Appliance B example.

In this section, we consider the gamma distribution with a threshold pa-
rameter in order to demonstrate the fact that the hazard rate function of
T exhibits various shapes. The three-parameter gamma distribution with a
threshold parameter γ has a p.d.f. given by

ϕ(z) =
µk(z − γ)k−1

Γ(k)
exp[−µ(z − γ)], z > γ.(4)

When the frailty follows a distribution specified by (4), it can be shown by
marginalizing Z out of (3) that the c.d.f. and p.d.f. of T are, respectively,
given by

FT (t) = 1− [(t/α)β/µ+ 1]−k exp[−γ(t/α)β ],

fT (t) =
β

α

(

t

α

)β−1[(t/α)β

µ
+ 1

]−k{

γ + k

[(

t

α

)β

+ µ

]−1}

(5)

× exp

[

−γ

(

t

α

)β]

.

It is interesting to note that when γ = 0, model (5) reduces to the Burr-XII
distribution. The Burr-XII distribution has been used in reliability analy-
sis by a few researchers, for example, see Zimmer, Keats and Wang (1998),
Shao (2004), Soliman (2005) and Wang and Cheng (2010), to name a few.
However, the Burr-XII distribution is much less popular than the lognormal
distribution. Nevertheless, this distribution has several advantages over the
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lognormal distribution. Similar to the lognormal distribution, the Burr-XII
distribution also has a unimodal hazard rate. But compared with the log-
normal distribution, the Burr-XII distribution is more flexible in analysis of
survival data. For example, parameters of the Burr-XII distribution can be
determined through a simple probability plotting procedure [Zimmer, Keats
and Wang (1998)]. In addition, it has greater mathematical tractability when
dealing with censored data which are very common in lifetime data analysis.
The contribution of a right-censored observation to the likelihood is equal
to the value of the survival function at the time of censoring, which can be
evaluated explicitly for the Burr-XII distribution, but not for the log-normal
distribution.

When γ = 0, the mean and variance of the frailty variable Z are k/µ
and k/µ2, respectively. If we fix k/µ at a constant and let µ → ∞, then
the distribution of Z will degenerate to a single point, and the Burr-XII
distribution will also degenerate to a Weibull distribution. This is legitimate
because under such circumstance, there is no variation in the frailty. The log-
logistic distribution, a common distribution used in lifetime data analysis,
is also a special case of model (5), when γ = 0 and k = 1.

2.3. Hazard rate for units in the field. In reliability assessment, the shape
of the hazard rate reflects the early failure and aging behavior of the prod-
uct. Therefore, it is important to know the shape with a view to scheduling
preventive maintenance and detecting possible early failure modes. The haz-
ard rate function of Z can be readily obtained by dividing the p.d.f. by the
survival function, that is, 1− FT (t), which gives

hT (t) =
γβ

α

(

t

α

)β−1

+
kβtβ−1

tβ + µαβ
.(6)

The hazard rate of this distribution exhibits various shapes, as can be
checked through the first order derivative of (6) with respect to t. By and
large, the hazard rate could have four possible shapes, as summarized below.

Case 1. β ≤ 1.
The hazard rate hT (t) is decreasing in t. Specifically, when β < 1, hT (t)

decreases from ∞ to 0. When β = 1, hT (t) decreases from γ + k/µ to γ.
This is because a mixture of distributions with decreasing hazard rates has
a nonincreasing hazard rate.

Case 2. γ > 0, β > 1, β2 − β < k
4γµ .

The hazard rate hT (t) exhibits an N-shape.
Case 3. γ > 0, β > 1, β2 − β > k

4γµ .

The hazard rate hT (t) is increasing.
Case 4. γ = 0 and β > 1.
The hazard rate hT (t) has an upside-down bathtub shape.
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Fig. 1. Illustrations of some shapes of the hazard function in (6): (a) γ = 0, α= 1, k = 1;
and (b) γ = 1, α= 1, k = 1.

Some typical curves of the hazard rate are depicted in Figure 1. It is
interesting to see that when β > 1, the hazard rate under lab conditions
is increasing, but the hazard rate of a field unit can be either increasing,
unimodal or N-shape. When the hazard rate of T is unimodal or N-shape,
the initial hazard rate can be very high, as can be seen from the dash dotted
lines in Figure 1. In practice, when a manufacturer observes a high hazard
rate at the early stage, he may suspect that it is the infant mortality caused
by defects. The analysis in this section reveals that early failures can also be
caused by units operated under harsh environments (i.e., large realizations
of Z). These units are more likely to fail and, hence, more “frail” than other
field units.

3. Statistical inference. Information about the distribution of the frailty
can be obtained through a joint analysis of lab data and field data. In the
previous section we adopt the three-parameter gamma distribution with a
threshold parameter γ for the frailty Z to set forth the fact that the field
hazard rate can have various shapes in the presence of heterogeneous oper-
ating conditions. In reality, the frailty Z often ranges from zero to infinity.
Thus, this section focuses on the case when the frailty follows a regular two-
parameter gamma distribution (i.e., γ = 0), under which the field failure
time T follows the Burr-XII distribution.

Suppose that n units are tested in the lab and xi is the observed failure
time or censoring time for the ith unit. Further, let δi be the censoring
indicator, where δi = 0 when the unit is right censored and 1 otherwise.
Therefore, for the ith lab unit, we observe (xi, δi). Similarly, suppose we
observe the failure times of N field units (tj , δ̃j), j = 1,2, . . . ,N , where the
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field-data censoring indicator δ̃j = 0 when the jth unit is right censored and
1 if it fails and is returned as a warranty claim.

3.1. Estimation and hypothesis tests. Given the lab testing data and
the warranty return data for the same product, we develop a procedure to
analyze the data by capitalizing on the model in Section 2. In this procedure,
we need to first collate the Weibull distribution (1) for the ALT data, and
then check if the warranty return data conform to the Burr-XII distribution
with c.d.f.

G(t) = 1− [(t/λ)β +1]−k, t > 0.(7)

It is noted from (1) and (7) that when the gamma frailty model holds, the
Weibull shape parameter in (1) should be equal to β in the Burr-XII dis-
tribution (7), and λ = αµ1/β . Given λ, α is a power function of µ. With
field data only, we can only estimate λ, which results in identifiability issues
for α and µ. This happens in bio and medical statistics [Hanagal (2011)].
In our problem, however, α can be estimated from ALT data, after which
µ is uniquely determined. Therefore, our problem is free of the identifia-
bility issue. In addition, the equality of β provides us a means to collate
the correctness of the gamma frailty model. Details of the procedure are as
follows.

Step 1. Fit the lab test data using the Weibull model with c.d.f. given by
(1). To underscore the fact that the shape parameter β is estimated from
the lab data, we replace it with βL in the following presentation. The maxi-
mum likelihood (ML) estimate of (α,βL), denoted as (α̂, β̂L), is obtained by
maximizing the log-likelihood function (up to a constant)

lL(α,βL|Lab Data) =

n
∑

i=1

[δi(lnβL + βL lnxi − β lnαL)− (xi/α)
βL ].(8)

Assess goodness of fit of the Weibull model. If the Weibull distribution
provides a good fit to the lab data, then proceed to step 2.

Step 2. Fit the field return data with the Burr-XII distribution. Here, β
in (7) is replaced with βW to stress the fact that this parameter is estimated

from field data. The ML estimate of (λ,βW , k), denoted as (λ̂, β̂W , k̂), is
obtained by maximizing the log-likelihood function (up to a constant)

lW (λ,βW , k|Field Data)

=

N
∑

j=1

δ̃j{ln(kβW ) + βW ln(tj/λ)− ln[(tj/λ)
βW + 1]}(9)

−
N
∑

j=1

k ln[(tj/λ)
βW + 1].
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Assess the goodness of fit of the Burr-XII distribution. If it provides a good
fit, proceed to step 3.

Step 3. Test the hypothesis H0 :k = 1 versus the alternative hypothesis
k 6= 1. If we accept the null hypothesis, the frailty follows an exponential
distribution and the field failure time follows a log-logistic distribution, so
we can fit the field data with the log-logistic distribution. If the hypothesis
is rejected, stick to the Burr-XII distribution.

Step 4. Test the hypothesis H0 :βL = βW versus the alternative hypoth-
esis βL 6= βW . If the null hypothesis is accepted, then there are statistical
evidences that the frailty follows a gamma/exponential distribution, and
then we can proceed to step 5.

Step 5. Estimate the parameters in the gamma frailty model (5) by com-
bining the lab test data and field return data. The ensemble log-likelihood
function is

l(α,β,λ, k|All Data) = lL(α,β|Lab Data) + lW (λ,β, k|Field Data).(10)

To test the hypothesis in step 3, we can use either the likelihood ratio
test or the score test. These two tests are expected to be accurate, as the
size of field return data is often large. However, these two tests may not be
accurate enough when testing the hypothesis in step 4, insofar as the lab
test data are often limited. When both the ALT data and the field return
data are complete or Type II censored, the following theorem shows that
β̂L/β̂W is a “pivotal statistic”—that is, its distribution is independent of
the unknown parameters α,λ and β. This ratio and its distribution will
therefore be helpful in testing the hypothesis that βL = βW in step 4.

Theorem 1. Suppose the lab failure times follow a Weibull distribution
given by (1), while the field failure times conform to a Burr-XII distribution
given in (7). Consider the hypothesis H0 :βL = βW ≡ β versus the alternative
hypothesis βL 6= βW and assume the parameter k in (7) is known. When
both the lab test data and field failure data are complete or Type II censored,
β̂L/β̂W is a pivotal statistic independent of (α,λ,β).

Proof of this theorem is in the Appendix. The proof is based on the fact
that β̂L/β and β̂W /β are pivotal statistics under the Type II censored (or
complete) lab data and field data, respectively. The constant k assumption
is meaningful for the log-logistic distribution where k = 1. When k 6= 1 and
k is estimated from field data, we can treat k̂ as the true value of k. This
approximation should work well because the field data are often abundant
and, thus, the estimation error of k is small. Theorem 1 is not restricted
by the problem of limited ALT data and, hence, it is expected to perform
better for testing the hypothesis of βL = βW compared with the likelihood
ratio test. In a real-life application, we would recommend conducting both
tests. When the results of both tests tally, there is sufficient evidence to
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accept or reject the hypothesis. When the results differ, we shall stick to
the test based on Theorem 1. The distribution of β̂L/β̂W can be obtained
through simulation as follows.

Algorithm 1.

1. Generate n samples fromWeibull(1, 1) andN samples from BXII(1,1, k).
For Type II censoring, the number of events will be the same as the number
of events in the data sets. For Type I censoring, the expected number of
events will be the same as the number of events in the data sets.

2. Estimate β̂∗
L and β̂∗

W from these two data sets separately.

3. Repeat the above two steps B times to get β̂∗i
L /β̂∗i

W , i= 1,2, . . . ,B.
4. Use the B samples to estimate the empirical c.d.f. and sample quantiles

of β̂L/β̂W .

In Algorithm 1, one can use k̂ as the value of k in the simulation. The per-
formance of this substitution will be evaluated through simulation. During
the lab test, both Types I and II censoring are common. For warranty return
data, Type I censoring or progressive Type I censoring are more common
due to staggered entries and warranty limits. Under this scenario, β̂L/β̂W is
an approximate pivotal.

Theorem 2. Suppose the lab test data follow a Weibull distribution
given by (1), while the field failure data conform to a Burr-XII distribution
given in (7). Consider the hypothesis H0 :βL = βW ≡ β versus the alternative
hypothesis βL 6= βW and assume the parameter k in (7) is known. When the

lab test data and/or field failure data are Type I censored, then β̂L/β̂W is
an approximate pivotal statistic.

Under Type I censoring, the distribution of β̂W /βW depends on the un-
known fraction failing at the censoring time [e.g., Jeng and Meeker (2001)].
Thus, it is an approximate pivotal. The approximation improves as the sam-
ple size increases. Because the sample size of field return data is often large,
the performance of the approximation of β̂W /βW is typically satisfactory.
On the other hand, according to the type of lab test data, we have the
following two discussions:

• When the lab test data is Type II censoring, then β̂L/β is an exact piv-

otal. Thus, β̂L/β̂W = (β̂L/β)/(β̂W /β) is an approximate pivotal because

β̂W /βW is an approximate pivotal.

• When the lab test data is Type I censoring, then β̂L/β is an approximate

pivotal. Thus, β̂L/β̂W = (β̂L/β)/(β̂W /β) is also an approximate pivotal.

Algorithm 1 can still be used to do the test and the performance will be
evaluated by simulations in the next subsection.
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3.2. Simulation study. In this section we conduct simulation studies to
show the performance of the statistics proposed in Theorems 1 and 2. In
particular, we consider three scenarios:

• Scenario I: Type II censoring for lab data and Type II censoring for field
data.

• Scenario II: Type II censoring for lab data and Type I censoring for field
data.

• Scenario III: Type I censoring for lab data and Type I censoring for field
data.

We assume that the ALT uses 10 testing units whose lifetime follows a
Weibull distribution. For Scenarios I and II of the simulation, the test is
run until 8 of the units fail (i.e., Type II censoring). For Scenario III, the
expected number of failures is 8 out of 10 testing units in the ALT (the
censoring time is 733 in the simulation). For the field data, N units of the
same product are sold to customers and the environmental frailty follows
Gamma(k,µ). For the Type II censoring setting (Scenario I), we stop the
follow-up when 0.1N failures have been observed. For the Type I setting
(Scenarios II and III), the failure times are censored at τ . The censoring
time τ is so chosen that the expected proportion of field failures is 10%.
In the simulation, we use α = 534, k = 1, µ = 19 and τ = 878. We examine
N = 2000,5000 and β = 1.5,2.0.

Under each combination of (β,N), we replicate the simulation 2000 times.
In each replication, we compute the likelihood ratio statistic and the statistic
in Theorem 1. The hypothesis is rejected or accepted according to the α̃
level. The estimated Type I error is obtained as the proportion of incorrect
rejections. To obtain the distribution of the pivotal, we use B = 5000 in each
run. In the simulation, we use normal approximation to simulate β̂∗i

W and

use the distribution of β̂∗i
W /β̂W to approximate the distribution of β̂W /βW .

In particular, β̂∗i
W is simulated from N (β̂W , σ2

β̂W

), where σ2

β̂W

is the large

sample approximate variance estimate of β̂W .
Table 1 shows the estimated Type I errors of the test procedure in The-

orem 1 and the likelihood ratio test procedure, under three different sce-
narios. The nominal Type I errors that are considered in the simulation are
α̃ = 0.1,0.05 and 0.01. Under all scenarios, the estimated Type I errors of
the testing procedure in Theorem 1 are closer to the nominal ones compared
with the likelihood ratio statistic. In addition, the magnitude of N tends to
have little effect on the Type I errors of the likelihood ratio statistic. This is
best explained by our conjecture that the bias/error of the likelihood ratio
statistic is attributed to the small lab testing samples. Overall, we can see
that the performance of the approximate pivotal is satisfactory.
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Table 1

Estimated Type I error of the test procedure in Theorem 1 and the likelihood ratio test
procedure, under three different scenarios. The nominal Type I errors are

α̃= 0.1,0.05,0.01

α̃= 0.1 α̃ = 0.05 α̃= 0.01

Scenarios β N Thm LR Thm LR Thm LR

Scenario I 1.5 2000 0.108 0.142 0.057 0.072 0.010 0.016
1.5 5000 0.100 0.149 0.058 0.078 0.008 0.024

2.0 2000 0.098 0.134 0.047 0.078 0.012 0.014
2.0 5000 0.101 0.138 0.052 0.071 0.012 0.020

Scenario II 1.5 2000 0.108 0.128 0.056 0.077 0.014 0.016
1.5 5000 0.092 0.136 0.048 0.080 0.010 0.018

2.0 2000 0.110 0.135 0.056 0.075 0.014 0.018
2.0 5000 0.110 0.146 0.058 0.082 0.014 0.022

Scenario III 1.5 2000 0.101 0.117 0.044 0.062 0.004 0.012
1.5 5000 0.099 0.126 0.050 0.062 0.004 0.014

2.0 2000 0.100 0.116 0.048 0.060 0.008 0.012
2.0 5000 0.094 0.118 0.040 0.060 0.008 0.012

4. Optimal accelerated life tests. Over the course of product evaluation
and customer feedback, the manufacturer will generate a number of design
changes and come up with a new vintage. ALTs can again be used to evaluate
reliability of this new vintage by making use of the frailty information ob-
tained from joint analysis of lab data and field data of previous generations.
The ALTs need to be conducted within stringent cost and time constraints,
and the testing samples need to be used efficiently. In addition, the hetero-
geneous field conditions should be taken into account when estimating life
characteristics of interest. It is expected that the operating conditions and
the effects of the environments on the new generation be approximately the
same. This implies that the new vintage will have the same frailty Z with
the old generation. Based on this fact, optimal ALT plans can be developed.

For the new generation of interest, suppose its lifetime X under the stable
lab testing conditions follows a Weibull distribution specified by (1). Let S0

be the nominal design stress (say, the same as the old generation) and SH

be the highest allowable test stress that has been pre-specified. For conve-
nience, the stress is re-parameterized as ξ = (S−SH)/(S0−SH). It is noted
that under the nominal stress S0, ξ = 1. When X follows a Weibull dis-
tribution, Y = lnX conforms to a smallest extreme value distribution with
the location parameter η = lnα and the scale parameter σ = 1/β. Following
the convention of ALT design for the Weibull distribution [e.g., Meeker and
Escobar (1998), Chapter 17], we work with the extreme value distribution
whose Fisher information matrix has a closed form, and assume that the
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scale parameter σ is a constant independent of the stress while the location
parameter η depends on the stress through a linear stress-life model

η(ξ) = υ0 + υ1ξ.

Usually, the optimal test plans use only two test stresses with the higher
stress being the highest allowable stress SH . Therefore, an ALT plan is
specified by the lower stress level ξL and the proportion of units π for this
stress. The combination (ξL, π) is called a test plan. The purpose of the
ALT design is to find out the optimal test plan (ξ∗L, π

∗) in order to optimize
a certain index of interest. When we are interested in life characteristics
under the nominal conditions (i.e., characteristics based on X) and ignore
the heterogeneous field operating conditions, optimal constant-stress ALTs
for the extreme value distribution have been well studied, for example, see
Nelson and Meeker (1978) for the optimal Type I censoring plan and Escobar
and Meeker (1986) for the Type II censoring case. In the presence of the
heterogeneities, however, the criteria of ALT planning should be based on
field failure times T and, thus, the existing plans are no longer optimal.
Optimal plans that take the frailty Z into account will be developed in
this section. Denote I(ξL, π) as the Fisher information matrix for (υ0, υ1, σ)
under the test plan (ξL, π). The matrix I(ξL, π) has been derived by Nelson
and Meeker (1978) under the Type I censoring scheme and by Escobar and
Meeker (1986) with Type II censoring. Therefore, use will be directly made
of these existing results.

4.1. Minimization of the asymptotic variance of the p-quantile. Consider
the common criterion of ALT planning that minimizes the asymptotic vari-
ance of the ML estimator t̂p of the p quantile of field failure time T . Based
on (5) with γ = 0, the p-quantile of T is given by

tp = α[µ(1− p)−1/k − µ]1/β = exp(υ0 + υ1)[µ(1− p)−1/k − µ]σ.(11)

The asymptotic variance of the ML estimator t̂p is AV (t̂p) = (∇tp)
′I(ξL, π)∇tp,

where ∇tp is the first derivative of tp with respect to (υ0, υ1, σ). The expres-
sion of ∇tp is quite involved. Alternatively, it is not difficult to show that
minimization of AV (t̂p) amounts to minimization of the asymptotic vari-
ance of ln t̂p, which is equivalent to minimizing the asymptotic variance of
t̂p/tp. The asymptotic variance of ln t̂p is AV (ln t̂p) = (∇ ln tp)

′I(ξL, π)∇ ln tp,
where ∇ ln tp is the gradient of ln tp with respect to (υ0, υ1, σ) as

∇ ln tp(1) =
∂ ln tp
∂υ0

= 1,

∇ ln tp(2) =
∂ ln tp
∂υ1

= 1,(12)

∇ ln tp(3) =
∂ ln tp
∂σ

= ln[µ(1− p)−1/k − µ].
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Optimal test plans can be obtained by minimizing AV (ln t̂p) under some
constraints, for example, time constraint, budget constraint or sample size
constraint.

4.2. Minimization of the asymptotic variance of the failure probability.
The p-quantile criterion considered above is often used to determine a suit-
able warranty period for a new product [Ye, Tang and Xie (2011)]. For a
product with a given warranty period τ , what the manufacturer is most con-
cerned with is the proportion of field returns within τ . Therefore, another
rational planning criterion is to minimize the asymptotic variance of p̂τ , the
ML estimate of the probability of warranty failures. This probability is given
by

pτ = 1− [(τ/α)β/µ+ 1]−k = 1−

[

[τ exp(−υ0 − υ1)]
1/σ

µ
+1

]−k

.(13)

The first derivative of p with respect to (υ0, υ1, σ) can be obtained as

∇pτ (1) =
∂p

∂υ0
=−

kΩ1/σ

µσ

(

Ω1/σ

µ
+ 1

)−k−1

,

∇pτ (2) =
∂p

∂υ1
=−

kΩ1/σ

µσ

(

Ω1/σ

µ
+ 1

)−k−1

,(14)

∇pτ (3) =
∂p

∂σ
=−

kΩ1/σ

µσ2

(

Ω1/σ

µ
+ 1

)−k−1

lnΩ,

where Ω = τ exp[−(υ0 + υ1)]. Based on the delta method, the asymptotic
variance is AV (p̂τ ) = (∇pτ )

′I(ξL, π)∇pτ . Optimal test plans can be deter-
mined by minimizing this asymptotic variance subject to possible constraints
on available resources.

5. Illustrative example.

5.1. Weibull fit to lab test data. 10 units of Appliance B were subject
to a lab test. The experiment ended at t= 687 units of time, upon which 8
failures were observed and 2 were censored. In order to demonstrate Theorem
1, we assume that the experiment ended when the 8th failure is observed.
After this modification, the data are Type II censored. The observed failure
times of the 8 failed samples are presented in Table 2.

Table 2

Ordered failure time data observed from the ALT test

99 141 163 300 350 523 602 687
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Fig. 2. Weibull probability plot showing the Weibull fit to the lab data and the 95%
nonparametric SCB.

We use the Weibull model to fit the ALT data, and the ML estimates
(standard errors) of the two parameters are α̂= 529.4 (121.0) and β̂L = 1.55
(0.470), respectively. In order to visualize the goodness of fit, we also fit the
data using the Kaplan–Meier method. The estimated c.d.f.s by means of the
Weibull model and the Kaplan–Meier method are depicted in Figure 2. As
can be seen from this figure, the estimated Weibull c.d.f. passes through the
empirical c.d.f. and falls well within the 95% simultaneous confidence band
(SCB). Therefore, the Weibull model is considered as an appropriate model
for the product under nominal conditions.

5.2. Burr-XII fit to the field failure data. We first use the Weibull dis-
tribution to fit the field return data. The maximum log-likelihood value is
−977.2. The estimated Weibull c.d.f. as well as the empirical c.d.f. using
the Kaplan–Meier method is shown in Figure 3. As can be seen from this
figure, the Weibull distribution cannot capture the curvature of the non-
parametric estimates in the lower tail. We suspect that the inconsistency
between failures in the lab and in the field is caused by heterogeneous op-
erating conditions. Therefore, the gamma frailty model is invoked to solve
the problem.

We apply (5) to fit the data and use the likelihood ratio statistic to test
the threshold parameter γ = 0. The test reveals no evidence to reject the
hypothesis. Therefore, we set γ = 0 in the following analysis. We apply the
Burr-XII distribution to fit the data, and the maximum log-likelihood value
is −973.8. The estimated values of the parameters are λ̂ = 298.6 (83.9),

β̂W = 2.66 (0.452) and k̂ = 0.0223 (0.0109), respectively. We use the Akaike



HETEROGENEOUS ENVIRONMENTS AND FIELD FAILURE PREDICTIONS 17

Fig. 3. Weibull probability plot showing the ML estimates of the Weibull, log-logistic and
Burr-XII fits to the field data and the 95% nonparametric SCB.

information criterion (AIC) to compare the Burr-XII model and the Weibull
model for the field data. The AIC is specified by AIC = −2l + 2m, where
l is the maximum log-likelihood value of a model and m is the number of
parameters in the model. The respective AIC values for the Weibull and the
Burr-XII distributions are 1958.4 and 1953.5. The Burr-XII distribution has
a smaller AIC value, indicating a better fit. As can be seen from Figure 3,
the Burr-XII distribution captures the curvature of the nonparametric es-
timates in the lower tail very well, indicating a better fit than the Weibull
distribution.

We also fit the data by using the log-logistic distribution, leading to a
maximum likelihood value of −977.0. This value is very similar to that of the
Weibull model. Overall, the analysis suggests that the Burr-XII distribution
is more appropriate for the field data than the Weibull model.

5.3. The gamma frailty model. As can be seen from the above analysis,
β̂L is quite close to β̂W . We apply the statistic developed in Theorem 1 to
quantitatively check the correctness of the gamma frailty model by testing
H0 :βL = βW . It is easy to see that β̂L/β̂W = 0.585. By making use of Algo-
rithm 1, the p-value is 0.217. We then apply the likelihood ratio test. The
likelihood ratio statistic is 1.356 with a p-value of 0.244. Both tests suggest
that there is no reason to reject this hypothesis. Therefore, we can believe
that the discrepancies between the lab test data and the field data can be
explained by the frailty model, and the gamma frailty model is appropriate
for the problem.
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Fig. 4. Weibull probability plot showing the ML estimates of Weibull fit to lab data and
Burr-XII fit to the field data with a common β.

At the last step, we estimate the parameters in (5) by combining both the
ALT data and the field failure data. The ensemble of the likelihood function
consists of the Weibull likelihood contributed from the lab data and the
Burr-XII likelihood contributed from the field data. Maximization of this
function yields the ML estimates of the four parameters (standard errors) as

α̂= 545.15 (84.7), β̂ = 2.28 (0.32), λ̂= 385.05 (136.5) and k̂ = 0.0341 (0.019).
Using the invariance property of the MLE, the estimated scale parameter

for the gamma frailty is µ̂= (λ̂/α̂)β̂ = 0.452 with a standard error 0.23. The
estimated c.d.f.s for the lab failure time distribution and the field failure
time distribution can be updated based on these parameter estimates, as
shown in Figure 4.

5.4. Optimal ALT plans. In order to improve product reliability and
cater to market changes, the manufacturer may make a number of changes
to the product and come up with a new generation. The new generation,
if sold to the market, would be operated under the same environments as
the old ones and the environments will have the same effect on the prod-
uct failures. Therefore, we assume the frailty Z follows the same gamma
distribution Gamma(k,µ) with µ= 0.452 and k = 0.0341. Suppose that the
manufacturer is interested in knowing the 5% quantile of the field lifetime
of the new generation, and a maximum test time of 50 is allowed for the
ALT. During the test, all units are run simultaneously. Assume that the
lifetime of the new vintage follows a Weibull distribution under the nominal
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Fig. 5. Contours of the asymptotic standard deviation for the two-stress optimum ALT
plan.

use condition, and the planning values of the ALT are υ0 = 3, υ1 = 3.4 and
β = 2.28. Based on the above settings, optimal test plans can be obtained
by numerically optimizing the asymptotic variance given in Section 4.1. For
example, if the objective is to minimize the asymptotic standard devia-
tion, that is, the square root of the variance, of ln t̂p, then the optimal
test plan is (ε∗, π∗) = (0.338,0.649) and the associated minimal standard
deviation is 3.23. Figure 5(a) shows the contour of the asymptotic stan-
dard deviation with respect to ε and π. This test plan also minimizes the
asymptotic standard deviation of t̂p, as can be seen from Figure 5(b). If we
ignore the heterogeneous field environments, the optimal test plan will be
(ε,π) = (0.419,0.766), which is quite different from (ε∗, π∗).

6. Conclusions. This study has explained the discrepancies between in-
lab failures and field failures through the frailty model. The frailty term
of each field unit represents the unobserved operating conditions and their
complicated effects on the product failures. In the presence of heteroge-
neous operating conditions, we showed that the field failure rate can exhibit
a variety of shapes, and some units may fail very early due to severe work-
ing conditions rather than defects. ALTs should take these heterogeneities
into account. Previous research assumed homogeneous operating conditions,
which will inevitably underestimate the variation of the field failures and, in
turn, underestimate the proportion of field returns. In addition, test plans
derived under the homogeneity assumption may be quite different from the
true optimum due to ignorance of the heterogeneity. We overcame these
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deficiencies and derived the optimal plans by considering the frailty. A pro-
cedure was developed to obtain the frailty information and to collate the
validity of the gamma distribution for the frailty. Instead of using the likeli-
hood ratio statistic to test the equality of βL and βW , we suggested the use of
the statistic β̂L/β̂W . This statistic is pivotal under complete or Type II cen-
sored data. Under Type I censoring, this statistic is approximately a pivotal
quantity and its good performance is demonstrated through a simulation
study. In the supplement, we further developed the inverse Gaussian frailty
models and the uniform frailty models. These two models yield tractable
field failure distributions and supplement the class of frailty models for link-
ing lab failures and field failures. We also proposed an ensemble inference
procedure in consideration of all the gamma, inverse Gaussian and uniform
frailty models in the supplement [Ye, Hong and Xie (2013)].

APPENDIX

Shapes of the hazard rate function of the gamma frailty model. Taking
the first derivative of (6) with respect to t yields

h′(t) =

[

(2βγµ− 2γµ− k)tβ + µαβ(µγ + k)(β − 1) +
(β − 1)γt2β

αβ

]

(15)

×
βtβ−2

(tβ + µαβ)2
.

The second term on the right-hand side of (15) is always larger than 0. So
we can focus on the first term

r(x) = (β − 1)γα−βx2 + (2βγµ− 2γµ− k)x+ µαβ(µγ + k)(β − 1).(16)

Case 1. When β < 1, it is easy to see that r(x)< 0 and, hence, h′(t)< 0.
When β > 1, the minimum of r(x) is achieved at the point

(

−2γµ(β − 1) + k

2(β − 1)γα−β
,
4γµβ(β − 1)− k

4(β − 1)γα−βk−1

)

.

Case 2. When γ > 0, β > 1 and 4γµβ(β − 1)− k < 0, we see from β > 1 that

4γµβ(β − 1)− 2kβ < 0 so 2γµ(β − 1)− k < 0.

This means that

−2γµ(β − 1) + k

2(β − 1)γα−β
> 0 and

4γµβ(β − 1)− k

4(β − 1)γα−βk−1
< 0.

By noting that r(0) = µαβ(µγ+k)(β−1)> 0, we see that when x≥ 0, r(x) is
positive initially, is followed by a negative period, and then becomes positive
again. From (10), we see h′(t) also has this positive–negative–positive sign
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change. Therefore, h(t) increases initially, is followed by a decreasing period,
and then increases again, that is, h(t) has an N-shape.

Case 3. When γ > 0, β > 1 and 4γµβ(β−1)−k > 0, r(x) is always greater
than 0, and so is h′(t). Therefore, h(t) is increasing over [0,∞).

Case 4. When γ = 0 and β > 1, r(x) reduces to r(x) =−kx+(β−1)kµαβ .
This linear function is monotone decreasing with r(0) > 0 and r(∞) < 0.
Therefore, h(t) is increasing at the outset and decreasing afterwards. Hence,
h(t) has an upside-down bathtub shape.

Proof of Theorem 1. Before proceeding to the proof of Theorem 1, two
lemmas are first presented.

Lemma 1. For the Burr-XII distribution given by (7), conditional on k,

β̂W /βW is a pivotal statistic under Type II or complete data.

Proof. Let x = (x1, . . . , xn) be an ordered random sample of size n
from BXII(1,1, k). An ordered random sample t= (t1, . . . , tn) conforming to

BXII(βW , λ, k) can be obtained by taking ti = λx
1/βW

i . Suppose the sample
was censored after the rth observation. The ML estimates of the parameters
in the Burr-XII distribution can be obtained by deriving the score func-
tions, equating them to zero, and solving for the solution. Denote the ML
estimates based on x and t as (β̂W0 , λ̂0) and (β̂W , λ̂), respectively. Now, we

proceed to investigate the relationship between (β̂W0 , λ̂0) and (β̂W , λ̂). The
log-likelihood function based on t, up to a constant, can be written as

L(βW , λ) = r lnβW +
r

∑

i=1

ln(ti/λ)
βW − (k +1)

r
∑

i=1

ln[(ti/λ)
βW +1]

− k(n− r) ln[(tr/λ)
βW + 1].

Therefore, the ML estimator (β̂W , λ̂) satisfies the following equation:

(k +1)

r
∑

i=1

(ti/λ̂)
β̂W ln(ti/λ̂)

β̂W

(ti/λ̂)β̂W +1
− r−

r
∑

i=1

ln(ti/λ̂)
β̂W

+ k(n− r)
(tr/λ̂)

β̂W ln(tr/λ̂)
β̂W

(tr/λ̂)β̂W + 1
= 0,

(k +1)
r

∑

i=1

(ti/λ̂)
β̂W

(ti/λ̂)β̂W + 1
+ k(n− r)

(tr/λ̂)
β̂W

(tr/λ̂)β̂W + 1
− r = 0.

If we substitute ti = λx
1/βW

i into the above two equations, we can obtain

(k+1)
r

∑

i=1

Λi lnΛi

Λi +1
− r−

r
∑

i=1

lnΛi + k(n− r)
Λr lnΛr

Λr +1
= 0,(17)
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(k+1)

r
∑

i=1

Λi

Λi +1
+ k(n− r)

Λr

Λr + 1
− r = 0,(18)

where Λi = (xi/(λ̂/λ)
βW )β̂W /βW . The left-hand sides of the above two equa-

tions are the score functions based on the sample x. Therefore, it is readily
seen that λ̂0 = (λ̂/λ)βW and β̂W0 = β̂W /βW . This means that the distribu-

tion of β̂W /βW is the same as β̂W0 , which does not depend on βW and λ.
�

Lemma 2. For the Weibull distribution specified by (1), β̂L/βL is a piv-
otal statistic under Type II or complete data.

Proof. See Thoman, Bain and Antle (1969). �

Proof of Theorem 1. By using Lemmas 1 and 2 above, we can see

that β̂W /βW

β̂L/βL

is a pivotal statistic. Under the null hypothesis, this pivotal

statistic is exactly β̂L/β̂W , which completes the proof. �
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SUPPLEMENTARY MATERIAL

Supplement to “How do heterogeneities in operating environments affect

field failure predictions and test planning?” (DOI: 10.1214/13-AOAS666SUPP;
.pdf). This supplement develops two additional frailty models, that is, the
inverse Gaussian and the uniform frailty models. An ensemble inference
procedure in consideration of all the gamma, inverse Gaussian and uniform
frailty models is also provided.
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