
Performance Evaluation of an Alert Dissemination Engine based on the AT&T
Enterprise Messaging Network

Huale Huang, Yih-Farn Chen, Matti Hiltunen, Rittwik Jana,
Serban Jora, Radhakrishnan Muthumanickam, Ashish Singh

AT&T Labs - Research
180 Park Ave, Florham Park, NJ, 07932, USA

email: fhuale, chen, hiltunen, rjana, jora, rmuthu, ashksg@research.att.com

Abstract

The recent surge in the variety and number of mobile
devices used as communication end points has created a
significant challenge for messaging applications that aim
to reach their target recipients regardless of their location
and available devices. Alerting services used to notify a
potentially large number of recipients about an emergency,
or other important events, are an important class of appli-
cations enabled by the prevalence of such mobile devices.
A middleware platform that arbitrates content delivery and
adaptation between mobile devices and backend messaging
applications is crucial in reducing the software complexity
on both the client device and server side applications. For
an alerting application, the Quality of Service (QoS) of the
middleware platform becomes crucial - alerts must be de-
livered quickly, reliably, and securely to all their recipients.
As the first step in achieving such QoS, this paper evaluates
the performance of a commercial mobile middleware plat-
form, the AT&T Enterprise Messaging Network (EMN), in
the context of an alerting service. EMN is used as an Alert
Dissemination Engine (ADE) to provision users, dissemi-
nate alerts, collect acknowledgments, and prepare reports
on the status of alert dissemination and acknowledgments.
The evaluation is based on a combination of component
benchmarking and end-to-end benchmarking.

1 Introduction

Alerting emergency personnel, as well as ordinary citi-
zens, of events such as accidents, terrorist attacks, or natu-
ral events (e.g., tsunamis or tornadoes) is quickly becoming
possible thanks to the prevalence of various types of mobile
devices. However, constructing an alerting service that de-
livers alerts to these various devices in various forms (voice,
text, etc.) using various protocols (e.g., SMS, email, fax,

pager) quickly and reliably is a significant challenge. This
paper introduces such an alerting service (Alert Dissemina-
tion Engine - ADE) based on the AT&T Enterprise Messag-
ing Network (EMN) [1]1 service and provides preliminary
results on the performance aspects of the platform.

Performance is critical for an alerting service such as
ADE especially when dealing with public safety. The num-
ber of people to be alerted may potentially be in tens of
thousands or even more, multiple alerts may be sent con-
currently using the same service, and other functions such
as alert acknowledgment collection and reporting also con-
sume the computing resources of the service. Therefore,
the service implementation must be efficient, scalable, and
predictable from the standpoint of performance of a given
hardware configuration of the service. However, EMN is
a relatively complicated system consisting of COTS com-
ponents such as databases, message queue providers, fire-
walls, web servers, and mail servers, as well as proprietary
components developed in-house. The job of processing and
disseminating an alert touches most of these components.

It is important to note that ADE depends on external
providers to complete end to end alert dissemination. For
example, delivering a voice call requires the existence of
the public switched telephone network (PSTN) to complete
the outbound leg of the call. Results obtained in this paper
(dissemination durations etc.) via a series of benchmarking
tests have taken into account these constraints and where
possible simulated these external constraints (exponential
inter-arrival times etc.). Specifically for email delivery, a
sink was constructed within the same high speed test net-
work so as to justify timing only the delays experienced
within ADE and not due to the variable propagation delays
experienced between ADE and a real email sink across the
Internet. This can be interpreted as a lower bound for dis-
semination times.

The performance objective of the ADE design is to

1EMN was formally known as iMobile-EE or AT&T Mobile Network.

“push” messages through the service to the alert recipients
as quickly as possible with the lowest possible overhead.
Towards this objective we have considered several opti-
mizations within ADE for high throughput, low end to end
latency, and resilient delivery mechanisms. In this paper, we
discuss some of these optimizations, including alert split-
ting. In alert splitting, the ADE client segments a very large
alert into smaller segments prior to submission to ADE. The
results indicate that splitting a very large alert into smaller
segments can be handled much more efficiently since it ben-
efits directly from the load balancing between the servers.

This paper is organized as follows. Section 2 provides a
quick system overview. Section 3 presents the performance
testing strategies followed by numerical results. Section 4
highlights a specific optimization technique, alert splitting,
used to reduce the total alert dissemination time. Section 5
discusses future optimizations and related work.

2 System Overview

2.1 AT&T Enterprise Messaging Network

AT&T Enterprise Messaging Network (EMN) consists
of a number of proprietary components, namely EMN gate-
ways and servers, and a number of off the shelf software
components such as databases, mail servers, web servers,
and JMS (Java Message Service)[4] servers. All of these
components are replicated for load balancing and fault tol-
erance. EMN gateways are responsible for providing device
and protocol-specific interfaces for different mobile devices
to access services provided by EMN. In addition, gateways
perform authentication, device profiling, and session man-
agement functions. EMN provides gateways for a multitude
of protocols: email, http, pager, voice, fax, SMS, telnet, and
instant messaging. EMN servers are responsible for imple-
menting the services provided by EMN by performing local
processing and accessing information sources. Each EMN
service is implemented by a component called infolet that
executes in the EMN server. Infolets implement the associ-
ated application logic and usually provide access to one or
more sources of information. We distinguish the notion of
services and infolets. Infolets are targeted towards fulfilling
user related interactions (e.g.,. automatic destination device
transcoding support) whereas services offer a programmatic
interface to a set of functionalities. To be specific ADE
comprises of a set of services mainly provisioning, alerting,
reporting and injection [3].

The overall EMN architecture is presented in figure 1.
Service requests to EMN arrive at the various gateways, the
gateways use database to authenticate the requests and then
forward them to JMS servers. The EMN servers pick up
requests from the JMS servers and process them locally or
use external information sources, and send replies back to

the JMS servers. The gateways pick up replies from the
JMS, match them with requests, and forward the replies to
the correct user. Note that the whole system is protected by
firewalls and load balancers are used to balance the incom-
ing load between different http and mail gateways. Also, the
mail and pager gates use external mail servers for incoming
and outgoing requests and replies and voice gateways use
VoiceGenie[6] servers. The fax and SMS gateways use ex-
ternal service providers to deliver outgoing messages.

Figure 1. EMN Architecture

2.2 Alert Dissemination Engine

The Alert Dissemination Engine (ADE) is a service built
on EMN as a collection of infolets. Specifically, ADE al-
lows an authorized person to submit an alert that will be de-
livered to the different devices of the registered users. The
service allows the users to acknowledge the reception of the
alert and allows the person submitting the alert to keep track
of which of the intended targets have received and acknowl-
edged the alert.

ADE consists of three infolets: provisioning, notifica-
tion, and acknowledgment. The provisioning infolet al-
lows an authorized user to add, delete, and edit alert re-
cipients and their devices. The notification infolet allows
an alert to be submitted. The alert is specified as an XML-
document that contains the identifiers of the intended recip-
ients, the alert message to be delivered, and delivery con-
straints that provide the system additional details on how the
alert should be processed. The recipients can be specified
on different levels of granularity ranging from a predefined
group identifier to a specific user’s specific device address
(e.g., cell phone number). The alert content may be pro-
vided in different formats for different devices, for example,
SMS messages are limited to 160 characters. The issuer of
the alert may also register to be reported about the progress
of the alert dissemination. This is done by providing a call-
back address as a part of the alert submission. ADE will
then send periodic reports as XML-documents. Finally, the

2

acknowledgment infolet allows a user to acknowledge the
reception of an alert.

Alert dissemination is the most performance critical
function provided by ADE. Therefore, in the rest of the pa-
per, we will focus on alert dissemination as well as report-
ing and acknowledgment since they usually overlap with the
dissemination for large alerts. However, since provisioning
typically happens before the system is used for real alerting,
we will not consider provisioning in any more detail. The
processing of an alert is split into two phases: solving and
performing. Since alert processing may take considerable
amount of time, EMN provides two modes for submitting
an alert. In the synchronous mode, the alert is received by
EMN and solved before a reply is sent to the alert issuer. In
asynchronous mode, EMN simply stores the alert request in
a database and returns an alert identifier to the alert issuer.
This identifier can be used to request the status of the alert
and register for reports.

Alert solving includes the verification and expansion of
each of the alert recipients into protocol-specific end point
addresses, for example, the phone number or the email ad-
dress of a person is an end point. The verification of each
recipient involves a database lookup. The recently-checked
recipients are cached by the EMN server to reduce database
access in case many alerts are sent to the same receivers.
Furthermore, alert solving involves the analysis of the de-
livery constraints of the alert and construction of a report
structure for the alert. Alert dissemination is executed by
a series of performers. For every alert there are four kinds
of alert performers: trigger, acknowledgment, timer, and re-
porter. All performers define a set of event types they trigger
inside the engine: for example, trigger events notify about
the execution of the notifications. Trigger performer takes
the input of the trigger solver, a set of trigger procedures,
and runs them through a planner which decides on the tim-
ing of the dissemination process. During the notification,
after sending the forward request towards the gateways, it
updates the alert report entries with the current status. ACK
performer monitors every acknowledgment that is requested
and updates the acknowledgment report entries. Reporter is
responsible for the management of the alert observers and
the notifications they registered for. It has its own built-in
solver that handles the reporting scheme by subscribing to
the required events produced by the other performers. The
reporter manages the report persistence procedures during
the alert lifetime.

Each outgoing alert message flows from the EMN server
through a JMS provider to an appropriate gateway. Each
gateway uses its specific technique to deliver the alert mes-
sage to the user. For example, mail gateways construct an
email message out of the alert and send it to a local COTS
mail server. This mail server will then use the standard
SMTP protocol to deliver the email message to the recipi-

ent’s mail server. The voice gateway uses VoiceGenie to ini-
tiate an outgoing phone call to the recipient’s phone number.
SMS gateway uses the standard SMPP (Short Message Peer
to Peer) protocol to interface with an external SMS bro-
ker for sending and receiving SMS messages. Pager gate-
way uses standard SMTP or SNPP (Simple Network Paging
Protocol)[2] protocols to send and receive pager messages
through paging carriers. The selection of SMTP or SNPP
protocol is based on a device’s addressing scheme and pag-
ing carrier’s interface support.

3 Performance Testing

Our EMN performance testing is based on the combina-
tion of component benchmarking to determine the perfor-
mance characteristics of individual components and end-to-
end benchmarking to determine the overall system capacity
under different application scenarios.

3.1 Component Benchmarking

Benchmarking a component requires our test environ-
ment to be set up in such a way that there are no bottlenecks
in other components that would affect the measurement of
the target component. The EMN architecture allows indi-
vidual components to be replicated for increased perfor-
mance and reliability. Component benchmarking helps us
determine when to add additional instances of a component
to satisfy our Quality of Service (QoS) requirements. The
individual components include the EMN gateways (http,
email, voice, fax, pager, and SMS), EMN server, Voice Ge-
nie, SMTP server, JMS Server, and the Oracle 9i database
server.

Our component benchmarking testbed consists of one
SunFire V240 running SunOS 5.8, one VoiceGenie server,
and four Dell 1750s, two Dell 650s, and two Dell 350s, all
running Red Hat 9.0 Linux. Two of the Dell 1750s are used
as the gateway machines with each of the six EMN gate-
ways (one for each protocol) installed. One Dell 1750 was
used to run one instance of the EMN server. The Oracle
database and Sonic JMS run on the SunFire machine. The
two Dell 650s run two SMTP servers and the two Dell 350s
run a fault-tolerant load balancer (LVS [7]).

3.1.1 Benchmarking the HTTP Gateway

Our target matrix for the HTTP gateway is

� (SOAP alert msg size, number of concurrent alerts)�
HTTP gateway throughput (requests/sec)

The message size of a typical HTTP SOAP alert request
that posts an alert depends on the number of endpoints in

3

Number of Message size
endpoints in bytes
32 49,362
128 191,281
512 764,920
2048 3,071,499

Table 1. Number of endpoints vs. message
size

each alert (see Table 1). As we can see from the table,
the overhead caused by the SOAP message structure can be
significant due to the linear dependency between the num-
ber of endpoints and SOAP message size: a typical alert
with 2K endpoints can result in a 3MB SOAP packet. Note
that the JMS message size limit is 1MB (as recommended
by the vendor). To reduce the communication overhead,
the HTTP gateway compresses each SOAP request before
sending it through JMS and the EMN server decompress
the request before processing it. The typical compression
ratio is roughly 20 to 1.

Listing all endpoints explicitly is only one instance of the
various mechanisms that can be used to specify an alert. Al-
ternatively, we can use the group specification (i.e., group-
id:/channel) to specify an alert. In this case, the overall
SOAP message size stays constant regardless of the number
of endpoints associated with a group. This helps to specify
an alert in a more compact manner.

To measure the raw HTTP gateway performance, we use
a dummy EMN server that simply echoes success when
an alert request arrives. We use a test client that simu-
lates various numbers of threads and endpoints, with each
thread sending 100 requests with the Poisson distribution
(mean=150ms) used for the request arrival interval. Intu-
itively, a thread simulates an affiliation manager (AM), who
is allowed to post alerts. For a typical emergency scenario,
we assume that an AM will send at most 100 successive
requests. During alert splitting (see Section 4), a large
alert sequence may also be simulated by multiple sequen-
tial smaller alerts.

We measured the following parameters in the experi-
ment:

� average request response time (ms)

� total execution time (ms)

� throughput (requests/sec)

Partial results are shown in Table 2, which shows that
the HTTP gateway achieves maximum throughput (57 re-
quests/sec) for alerts of 16 endpoints when there are 40 con-
current threads given the request distribution. Note again

Number of Number of Mail dissem. Throughput
alert requests endpoints time (s) (mails/s)
50 200 612 16.34
50 400 939 21.30
100 200 971 20.60
100 400 1807 22.14

Table 3. Throughput of Mail Dissemination

that the focus of this measurement is on the raw HTTP gate-
way throughput, as a dummy server was used and no email
dissemination time was measured. End-to-end results are
available in Section 3.2.

3.1.2 Benchmarking the Mail Gateway

Our target matrix for the Mail gateway is

� (number of endpoints, message size) � mail through-
put (mails/sec)

To measure the throughput of mail push, we use only one
mail gateway connected to one SMTP server. We also set
up 400 user accounts on a separate SMTP server acting as
receiving clients. No acknowledgments are sent back for
the initial experiment.

Another test client is set up to fire alerts (sequences of
50 or 100) with 200, or 400 mail endpoints continuously.
Size of each email alert is 702 bytes. Table 3 shows the test
results.

After examining the mail gateway logs and the SMTP
server logs, the bottleneck appears to be at the SMTP server
(a Dell 650 server) with a maximum throughput of 22 mes-
sages/sec. Further investigation is necessary to see whether
it’s the hardware or the SMTP server configuration that lim-
its the throughput.

3.2 End-to-End Email testing

For end-to-end benchmarking, we focus on the most typ-
ical application scenario, which consists of sending a typi-
cal alert to different numbers of end points with and without
the alert acknowledgment requirement.

For email alerts, we use our existing staging environment
for performance measurements of alert posting, mail dis-
semination, and acknowledgment processing using the fol-
lowing variable input parameters:

� Email alert message size: 2KB (typical)

� Number of client threads: 1, 2, 4, 8, or 16,

� Number of end points in each alert: 32, 64, 128, 256,
512, 1024, 2048, or 4096.

4

Number of Number of Number of Average Total Throughput
endpoints threads requests response time (ms) time (ms) (requests � threads/s)
16 1 100 48.57 22815 4.383
16 10 100 71.70 24311 41.134
16 40 100 523.95 70163 57.010
16 160 100 10163.74 1292164 12.382
64 1 100 334.50 50146 1.994
64 40 100 10246.26 1045938 3.824
64 160 100 31233.84 4079899 3.922
128 1 100 610.67 77807 1.285
128 40 100 19612.86 1986795 2.013
128 160 100 61218.81 8082589 1.980

Table 2. Measurements of HTTP gateway throughput

Scenario Request Number of Number of
set interval threads endpoints
S1 1 min 1,2,4,8,16 32,64,128,256,512
S2 5 min 1,2,4,8,16 1024,2048
S3 10 min 1,2,4 4096,8192

Table 4. Scenario Sets for End-to-End Mail
Dissemination Test

� Mean request arrival interval: 4, 8, 16, or 32 minutes
used in the Poisson distribution

� Number of successive requests: 1 or 5.

Note, however, that it’s not realistic to have a very short
mean request arrival interval when the number of endpoints
is in the order of 4K - given the kind of QoS guarantees that
we are willing to provide for our platform. Table 4 shows
the scenario sets that we consider to be realistic.

Here are the output parameters that we would like to
measure:

� Min, Mean, Max and variance of initial HTTP(s)
resonse times for each scenario and ensemble.

� Total mail dissemination time: compute throughput for
each scenario and ensemble

� Acknowledgment processing: Measure both cases
when the receiving client acknowledges each arriving
mail alert immediately or with a random delay - with a
mean of 5 minutes before responding.

Table 5 shows some partial results of our initial mea-
surements. For all these tests, only one request per thread
was issued. The results show a clear improvement in
throughput as the concurrency (number of threads) is in-
creased. It also shows the tradeoff between average re-
sponse time and throughput. As the latter increases, the

delay in the HTTP gateway response time (to confirm the
receipt of an alert posting request) for each thread is in-
creased. Note that the test environment has two HTTP gate-
ways, two mail gateways, and two SMTP servers, but only
one EMN server and only one primary Oracle database. The
end-to-end throughput can be limited by either the single
EMN server, the database, or the slow SMTP servers (with
a total capacity of roughly 40-44 mails/s).

4 Alert Splitting

Alert splitting means that the EMN client breaks up
alerts with large number of end points into multiple smaller
alerts, segments, with smaller number of end points. Alert
splitting not only alleviates issues with resource capacity,
but also improve the overall performance of the EMN plat-
form. Very large alerts cause a number of problems, includ-
ing alert messages too large for JMS (JMS package size cur-
rently set to 1MB), too long processing time (HTTP timeout
on the EMN client side is currently set at 90 seconds), and
extensive memory usage at the EMN gateways and servers.
Splitting an alert not only alleviates these issues, but it can
also improve the alert processing and dissemination time
because the alert is processed concurrently at multiple EMN
servers.

The responsibility for alert splitting lies at the EMN
client (such as CHAIN, an Alert Management Platform used
in the CHAIN-EMN service[5] provided by AT&T). The
EMN client submits each alert segment as a separate alert
for EMN and maintain their correlation. EMN handles each
alert segment as an individual alert and does not know that
these segments belong to one large alert. Specifically, EMN
creates a different ID for each such segment whereas the
EMN client uses one alert ID for all the segments in one
alert. EMN provides separate reports for each segment
and the EMN client is responsible for merging these re-
ports based on their alert IDs. The EMN client should also

5

Number of Number of Avg. response Total response Mail dissemination Throughput
endpoints threads time (ms/thread) time (ms) time (ms) (mails/s)
32 1 1416 1416 5907 5.42
32 4 2009 2605 13015 9.83
32 16 7703 8393 19903 25.72
128 1 3024 3024 16868 7.59
128 4 5315 6996 27933 18.33
128 16 20764 22779 68019 30.11
512 1 12710 12710 38658 13.24
512 4 16134 22096 119125 17.19
512 16 88155 92702 292247 28.03
1024 1 37225 37225 396299 2.58
1024 4 57689 70747 277241 14.77
1024 16 293606 294482 681984 24.02

Table 5. End-to-End Mail Dissemination Measurements with a single EMN server

build the application logic for handling partial errors, e.g. if
one of the segments fails during submission, other segments
may continue to function on the EMN side.

Dissemination time (with acknowledgments)

0

500

1000

1500

2000

2500

1 2 4 8 16

Number of segments

T
im

e
(s

ec
o

n
d

s) 1024

2048

4096

8192

Figure 2. Alert dissemination time with ac-
knowledgments

We performed a number of experiments to illustrate the
effectiveness of alert splitting and to attempt to determine
the optimal segment size. The alert processing and dissem-
ination time is expected to reduce when the alert is split
into few segments, but should eventually start growing if
the alert is split into too many segments since EMN must
maintain information for each segment separately and must
generate reports to each segment. For our experiments, we
used an alert message of 2 KB and disseminated this alert
to 1024, 2048, 4096, and 8192 email endpoints using dif-
ferent segment sizes. The reporting frequency was set to
30 seconds and the client submitted all the segments in an

alert sequentially using asynchronous alert submission with
no extra delay between segments. We performed the exper-
iments with and without acknowledgment constraint.

Dissemination time (w/o acknowledgments)

0

200

400

600

800

1000

1200

1 2 4 8 16 32

Number of segments

T
im

e
(s

ec
o

n
d

s) 1024

2048

4096

8192

Figure 3. Alert dissemination time without ac-
knowledgments

The impact of alert splitting on the total alert dissem-
ination time is presented in figures 2 and 3. The figures
show the total alert dissemination time from the time the
first segment is submitted to EMN until the last alert mes-
sage is delivered to the last receivers mail box. In general,
the figures show that alert splitting has a significant impact
on the alert dissemination time, but the benefit of splitting
an alert into smaller segments reduces when the number of
segments gets large and the individual segments get very
small (e.g., 32 end-points in one segment).

Acknowledgments have a significant impact on alert dis-
semination time with and without alert splitting. In general,

6

alert dissemination takes considerably longer when alert ac-
knowledgments are required. For example, disseminating
an alert with 8192 end points without splitting takes almost
2000 seconds when acknowledgments are required, while it
takes less than 1000 seconds if they are not required. This
is because the acknowledgment messages are processed by
the same EMN gateways and servers that are involved in
disseminating the alert notifications and for large alerts, the
acknowledgment processing occurs concurrently with the
alert dissemination. Furthermore, we note that while alert
splitting reduces the dissemination time with and without
acknowledgments, the impact is greater for alerts without
acknowledgments.

We also calculated the throughput of the system in terms
of alert end-points delivered in a time unit. This metric is
calculated simply as the number of end points in an alert di-
vided by the total alert dissemination time. This throughput
is plotted in figures 4 and 5. These throughput figures illus-
trate that alert splitting has a large initial impact on small
alerts, but the system gets eventually saturated and further
splitting can reduce throughput (see figure 5). For larger
alerts with acknowledgments, splitting has a smaller im-
pact on the overall throughput since the system resources
are close to saturated even without splitting.

Throughput (with acknowledgments)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 2 4 8 16

Number of segments

E
n

d
 p

o
in

ts
/s

ec 1024

2048

4096

8192

Figure 4. Alert processing throughput with
acknowledgments

5 Discussion and Insights

Dissemination performance depends on various factors
namely the detail to which an alert is specified, the QoS re-

 Throughput (w/o acknowledgments)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

1 2 4 8 16 32

Number of segments

E
n

d
 p

o
in

ts
/s

ec 1024

2048

4096

8192

Figure 5. Alert processing throughput with no
acknowledgments

quirements and the required levels of personalization. The
way the alert is specified affects directly the request size,
the endpoint solving/expansion process (number of DB re-
quests) and the alert solving process (one global level con-
straint applying to all endpoints vs. similar constraints re-
peated for each endpoint). This influences primarily the re-
sponse time for an alert submission and increases the over-
all load of a server (i.e., more processing cycles and a larger
memory footprint as a result of more Java objects that get
created).

EMN stores client profiles for each service it provides.
One of its options is the ’terminal state’: it refers to the
final message delivery state that should be reported by the
gates. More precise state information (real time delivery
status upon reaching device as compared to best effort “push
and forget” into network) can be obtained and hence allow
for better reporting. This also means that extensive state
information is persisted for longer periods (both in gateways
and servers) ultimately affecting overall performance.

In order to avoid deep copying of entire messages when
they pass through the engine, we have implemented a col-
lection of mechanisms to ensure that only the references of
messages are passed from the ingress point all the way to the
egress channels. Specifically, a packing mechanism exists
while forwarding the same message destined for multiple
recipients from the server to the various egress channels.
This can be viewed as a result of the extent of personal-
ization required. If no personalization is used one version
of the message can suffice for each type of channel which

7

allows for an enhanced level of packing while forwarding
messages from the server to the gates. Full personalization
occurs in which each endpoint gets its own version of the
message and therefore has a higher workload on the servers
as it has to treat each message independently.

In addition, the submitted alert is treated as a stream,
compressed at the ingress gate and transferred to the server
for post processing. Further optimization routines are be-
ing investigated like binary XML. Transmission capacity is
usually more limited and the loudest calls for binary XML
have been among those using XML for message transport
formats, including Web services users. One approach to
achieving XML compression is to adopt a format that is de-
signed for binary formats from the start. The leading can-
didate is ISO/ITU ASN.1, a data transmission standard that
predates XML. ASN.1 is being updated with several XML-
related capabilities that allow XML formats to be reformu-
lated into specialized forms such as ASN.1.

Another optimization is the ’on-the-fly’ compress-
ing/decompressing of the SOAP requests. A request never
exists in the full inside EMN: it is compressed as it arrives
in the HTTP gate and parsed (into Java objects) as it decom-
presses in the server.

6 Conclusions

This paper started off by describing a mobile middleware
platform, the AT&T Enterprise Messaging Network and an
alert dissemination service that uses the platform. The con-
tributing factors that go towards constructing a high perfor-
mance alert dissemination engine were discussed. Specif-
ically, performance testing was based on individual com-
ponent benchmarking and an end to end benchmarking to
determine overall system capacity. This helped to quan-
tify system scalability parameters with respect to a partic-
ular hardware configuration. An alert splitting exercise was
also shown to be promising to handle a very large alert effi-
ciently. Splitting an alert improves the alert processing and
dissemination time as a result of better resource manage-
ment. Similarly the benefit of splitting an alert into smaller
segments reduce when the number of segment increases.
Towards the end we provide insightful comments and ob-
servations that should be used as a rule of thumb while con-
structing such an engine.

Acknowledgments

We would like to acknowledge the AT&T Research Real
Time Customer and Service Management team and AT&T
Government Solutions for their valuable efforts in deploy-
ing such a service and also without whom this would not
have been feasible. We would also like to thank Kai Wei,

who wrote some Java code for EMN performance testing
while he worked as a summer student in AT&T.

References

[1] Y. Chen, H. Huang, R. Jana, T. Jim, M. Hiltunen,
R. Muthumanickam, S. John, S. Jora, and B. Wei.
imobile ee - an enterprise mobile service platform.
ACM Journal on Wireless Networks, 9(4):283–297,
July 2003.

[2] IETF. Rfc 1861 - simple network paging proto-
col. http://www.ietf.org/rfc/rfc1861.
txt?number=1861/.

[3] S. Jora, R. Jana, Y. F. Chen, M. Hiltunen, T. Jim,
H. Huang, K. Ow, A. K. Singh, and R. Muthuman-
ickam. An alerting and notification service on the
AT&T Enterprise Messaging Network. In Proceed-
ings of the IASTED Internet and Multimedia confer-
ence, Grindelwald, Switzerland, February 2005.

[4] Sun Microsystems. Java message service. http://
java.sun.com/products/jms/.

[5] AT&T Government Solutions. Chain-emn:. http:
//www.att.com/gov/chain.html.

[6] Inc. VoiceGenie Technologies. Voicegenie. http://
www.voicegenie.com/.

[7] Wensong Zhang and Wenzhuo Zhang. Linux Vir-
tual Server Clusters: Build highly-scalable and highly-
available network services at low cost. Linux Magazine,
November 2003.

8

