
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-91-M8

Dynamization of the Trapezoid Method for Planar Point Location

by

Yi-Jen Chiang

Dynamization of the Trapezoid

Method

for Planar Point Location

by

Yi-Jen Chiang

Department of Computer Science

Brown University

Master's Thesis

Submitted in partial fulfillment of the requirments

for the degree of Master of Science in the

Department of Computer Science at Brown University

May, 1991

a

This thesis by Yi-Jen Chiang is accepted in its present form by the Department of
Computer Science as satisfying the thesis requirement for the degree of Master of Science.

Date _n_Q--'d~]----t/_l--,-~_~_\ _
Roberto Tamassia
Advisor

1

1

Abstract
We present a fully dynamic data structure for point location in a monotone sub

division, based on the trapezoid method. The operations supported are insertion and
deletion of vertices and edges, and horizontal translation of vertices. Let n be the
current number of vertices of the subdivision. Point location queries take O(log n)
time, while updates take O(log2 n) time. The space requirement is O(nlogn). This
is the first fully dynamic point location data structure for monotone subdivisions that
achieves optimal query time.

Introduction

Planar point location is a fundamental geometric searching problem and has been extensively
studied. Given a subdivision P of the plane into polygonal regions, we want to perform
on-line queries that ask for the region of P containing a given query point. In the static
case, where P is fixed, there are optimal techniques that achieve O(log n) query time using
O(n log n) preprocessing time and O(n) space [8, 4, 19], where n is the size of P.

Research on dynamic algorithms for geometric problems has received increasing attention
in the last years. A survey on the subject appears in [3]. Previous results on dynamic point
location data structures, where queries are intermixed with update operations that insert
or delete vertices and edges, are summarized below. In the following, we denote with n the
current size of the subdivision.

Early work of Overmars [14] and of Fries, Mehlhorn, and Naeher [5, 6] shows that poly
logarithmic query and update time can be achieved using data structures derived from the
segment-tree and the static chain-method [9].

Preparata and Tamassia [17, 18, 20] present efficient data structures for some important
classes of planar subdivisions. Namely, for monotone subdivisions queries and updates can
be performed in 0(1og2 n) time using O(n) space [17]. For convex subdivisions with vertices
on a fixed set of N horizontal lines, there exists a data structure with space O(N +n log N),
query time O(log n +log N), and update time O(1og n log N) [18]. Finally, for triangulations,
one can achieve O(n) space and a tradeoff between query and update time; for example,
O((log2 n) jlog log n) query time and O((1og3 n) jlog log n) update time, or O(1og n) query
time and O(n€ log n) update time [20].

Cheng and Janardan [2] present a technique for general subdivisions, derived from priority
search trees [10], with O(n) space, 0(1og2 n) query time, O(log n) time for insertingjdeleting
a vertex, and O(k log n) time for insertingjdeleting a chain of k edges. However, as empha
sized by the authors, this method is mainly of theoretical interest because it involves rather
complex manipulations of data structures.

Very recently, Goodrich and Tamassia [7] have shown how to dynamically maintain a
monotone subdivision so as to achieve O(n) space, 0(1og2 n) query time, and O(1og n) update
time. This method is based on anew, optimal static point-location data structure, which
uses interlaced spanning trees, one for the subdivision and one for its graph-theoretic dual, to
answer queries. A variation of this method supports updates in a semi-dynamic environment
where only insertions are performed. Two semi-dynamic data structures are presented, one
with O(log n) query and insertion time (worst-case for queries and amortized for insertions),
and the other with O(log n log log n) query time and O(1) amortized time for insertions.

2

2

In this paper we present a fully dynamic data structure for point location in a monotone
subdivision, based on the trapezoid method [15]. The operations supported are insertion and
deletion of vertices and edges, and horizontal translation of vertices. Point location queries
take O(1og n) time, while updates take 0(1og2 n) time. The space requirement is O(n log n).
This is the first fully dynamic point location data structure for monotone subdivisions that
achieves optimal query time and polylogarithmic update time.

To compare our result with previous ones, we note that

•	 The fully dynamic data structures of Cheng-Janardan [2] and Goodrich-Tamassia [7]
have slower query time but faster update time and less space requirement (both by a
log n factor).

•	 The fully dynamic data structure of Preparata-Tamassia [18] has the same performance
bounds but is limited to convex subdivisions and to a fixed set of lines on which the
vertices can be placed.

•	 The fully dynamic data structure of Tamassia [20] achieves the same query time but
is limited to triangulations and has a much higher update time.

•	 The semi-dynamic data structure of Goodrich-Tamassia [7] has the same query time
and better insertion time, but is limited to insertions only.

It is conceivable that in many practical applications point location queries are the most
critical operations, so that our method is especially suitable for them.

Our technique extends to general monotone subdivisions the previous results of Preparata
and Tamassia for convex subdivisions with vertices on a fixed set of N horizontal lines [18].
Several new ideas have been used to achieve such an extension. We leave as a challeng
ing open problem the dynamization of the trapezoid method for point location in general
(nonmonotone) subdivisions.

The rest of this paper is organized as follows. Section 2 contain preliminary definitions
and results. In Section 3 we give a decomposition scheme for monotone subdivisions. In
Section 4 we present a data structure for monotone subdivisions with vertices on a fixed set
of horizontal lines. We show how to remove this restriction in Section 5, which describes the
fully dynamic data structure for monotone subdivisions.

Preliminaries

A polygonal chain is monotone if any horizontal line intersects it in at most one point. A
monotone polygon r is such that its boundary can be partitioned into two monotone chains,
which share the highest and lowest points of r. A planar subdivision P is a partition of
the plane into polygons, called the regions of P. A monotone subdivision P is a planar
subdivision where each region is a monotone polygon. We assume that the edges of a
monotone subdivision are oriented from the lowest to the highest endpoint. For additional
geometric definitions, see [16].

Let L = {lo, h, ... ,IN} be a set of horizontal lines, in this order from bottom to top, with
lo : y = -00 and lN : y = +00. The lines of L partition the plane into horizontal strips,

3

3

called elementary slabs; the top-most and bottom-most ones are actually half planes. A slab
is either an elementary slab or the union of two contiguous slabs. First we consider the point
location problem in a monotone subdivision P whose n vertices lie on the lines of L; later
on we will generalize the solution such that this restriction can be removed.

We define the following update operations on a monotone subdivision P:

INSERTPOINT(v,e;el,e2): Split the edge e = (u,w) into two edges el = (u,v) and e2

(v, w) by inserting vertex v along e.

REMOVEPOINT(V, el, e2; e): Let v be a vertex with degree two such that its incident edges
el = (u, v) and e2 = (v, w), are on the same straight line. Remove v and merge el and
e2 into a single edge e = (u, w).

INSERTSEGMENT(e,vI,v2,r;rl,r2): Insert edge e = (VI,V2) into region r such that r is
partitioned into two regions rl and r2, with rl on the left of e and r2 on the right of e.

REMOVESEGMENT(e, VI, V2, rl, r2; r): Remove edge e = (VI, V2) and merge the regions rl

and r2 formerly on the left and right of e into a new region r. This operation is allowed
only if the resulting subdivision is monotone.

MOVEPOINT(Vj x): Translate a vertex v horizontally so that its x-coordinate becomes x.

This operation is allowed only when v has degree two and the resulting subdivision P'
is topologically equivalent to P.

The above repertory is complete for the class of monotone subdivisions:

Theorem 1 An arbitrary monotone subdivision P with n vertices can be assembled from
the empty subdivision, and disassembled to obtain the empty subdivision, by a sequence of
O(n) INSERTPOINT) REMOVEPOINT) INSERTSEGMENT) REMOVESEGMENT) and MOVEPOINT

operations. Also) such a sequence can be computed from P in O(n) time.

In the following, we shall make use of biased binary trees [1], which are binary search
trees whose leaves store weighted items. Let w be the sum of all weights. We have that the
depth of a leaf with weight Wi is at most log(w /Wi) + 2, and each of the following update
operations can be done in O(1og w) time: change of the weight of an item, insertion/deletion
of an item, and split/splice of two biased trees.

Decomposing a Subdivision into Trapezoids

Our point location method is based on a recursive decomposition of the subdivision Pinto
trapezoids. A trapezoid T is a quadrilateral with two horizontal sides that lie on the lines
of L. We use LEFT(T), RIGHT(T), BOT(T), and TOP(T) to denote the four sides of T. Let
BOT(T) and TOP(T) be on lines li and lj, respectively, then the median line of T, denoted by
MEDIAN(T), is the line 1m with m = l(i + j)/2J. The subdivision P is the trapezoid with
BOT(P) = la, TOP(P) = lN, and the other two sides at infinity.

A monotone chain is said to span a trapezoid T if it has a subchain that is inside T and
intersects the boundary of T in two points on BOT(T) and TOP(T), respectively. An edge

4

e of P that spans T is called a spanning edge of T. Spanning edge e partitions T into two
trapezoids TL and TR, with e = RIGHT(TL) = LEFT(TR)'

A spanning region of a trapezoid T is a region r of P such that (i) both the left and right
chains of r span T, and (ii) r contains a segment that spans T. Let r' be the portion of r
inside T. We say that r' is a gap of T if r' does not have spanning edges of T, i.e., each of the
left and right chains of r' has at least two edges. It is easy to see that r is a spanning region
of T if and only if the right convex hull of the left chain of r' and the left convex hull of the
right chain of r' do not cross (but are allowed to touch), see Fig. l(b). If r' is a gap, the
spanning tangents of T in r' are defined as the two (possibly coincident) spanning segments
of T that are tangent to the left and right chains of r'. A spanning tangent t decomposes T

into two trapezoids TL and TR, with t = RIGHT(TL) = LEFT(TR)'

The decomposition of T by means of a spanning edge or tangent is called a vertical
cut (see Fig. 1(a,b)). If a trapezoid T has neither spanning edges nor spanning tangents, we
decompose it by its median line MEDIAN(T) into two trapezoids TB and TT, with MEDIAN(T) =
TOP(TB) = BOT(TT)' This is called a horizontal cut (see Fig. l(c)). A trapezoid can always
be decomposed unless it is empty. We let a vertical cut take precedence over a horizontal cut.
Therefore the decomposition process is unique up to within the specification of the sequence
of consecutive vertical cuts of the same trapezoid and the choice of spanning tangents. An
example of recursive decomposition of a trapezoid is shown in Fig. 3(a).

Figure 1: (a) vertical cut by a spanning edge; (b) vertical cut by a spanning tangent; (c)
horizontal cut by the median line.

The canonical decomposition of a trapezoid T with spanning edges and spanning tangents
is the sequence TO 0"1 T1 ... O"kTk, where each Ti is a trapezoid without spanning edges or tan
gents (To and Tk may be empty), and each O"j is either a spanning tangent or a maximal
sequence of spanning edges that separate empty trapezoids (see Fig. 2).

Data Structure for a Fixed Set of Y-Coordinates

In this section we study a restricted version of dynamic point location where all vertices of
a monotone subdivision P lie on a fixed set L of N horizontal lines. The point location

5

4

Figure 2: Canonical decomposition of a trapezoid

(a) (b)

Figure 3: (a) Recursive decomposition of a trapezoid T. (b) Trapezoid tree for T with c:-nodes
omitted.

data structure for P consists of two main components: the trapezoid tree and the hull trees.
In addition, a dictionary stores the vertices, edges, and regions, so that their associated
substructures in the trapezoid tree and hull trees can be efficiently accessed. We denote
with n the current number of vertices of P.

4.1 Trapezoid Tree

The trapezoid tree, denoted T(P), is a binary tree that represents the recursive decompo
sition of the subdivision P into trapezoids. Each node fL represents a trapezoid T of the
decomposition and stores an integer weight(fL), denoting the number of vertices inside T.

There are four types of nodes: an c:-node corresponds to an empty trapezoid, and is a leaf of
the trapezoid tree. The other types (and corresponding cuts) are: O-node (spanning edge),
R-node (spanning tangent), and V-node (median line). In the figures, we use squares for
c:-nodes, circles for O-nodes and R-nodes, and triangles for V-nodes.

The trapezoid tree T(T) for a trapezoid T is recursively defined as follows (see Fig. 3(b)):

1. If T is empty, then T consists of a single c:-node.

6

2.	 If T has no spanning edges or tangents, the root of T(T) is a "V-node storing the median
line of T, and the left and right subtrees of T(T) are the trapezoid trees T(TB) and
T(TT), respectively.

3.	 If T has spanning edges or tangents, let the canonical decomposition of T be TOO"l Tl ... O"kTk,
and recall that each O"i is either a spanning tangent or a maximal sequence of spanning
edges. We define the decomposition tree of T, denoted by T(T), to be a biased binary
tree for the items TO,' .. ,Tk, where the i-th leaf of T(T) is a "V-node for trapezoid Ti.
(If i E {O, k} and Ti is empty, leaf i of T(T) is an e-node, with unit weight.) The i-th
internal node /li of T stores O"i, where if O"i is a maximal sequence of spanning edges,
it is stored in a secondary structure as a balanced search tree. Node /li corresponds to
the trapezoid formed by the union of the trapezoids associated with the leaves in the
subtree of T(T) rooted at /li. Finally, the trapezoid tree T(T) is obtained by replacing
each leaf Ti of T(T) with T(Ti), the trapezoid tree for Ti. Note the difference between
the trapezoid tree T(T) and the decomposition tree T(T).

Theorem 2 The space complexity of the trapezoid tree T(P) for a monotone subdivision P
with n vertices on N fixed lines is O(n log N).

Sketch of Proof: There are O(n) R-nodes, since gaps can be charged to vertices. Also,
because of the segment-tree cutting scheme, there are O(nlog N) O-nodes and "V-nodes.
Finally, each O-node contributes at most two e-nodes. 0

Theorem 3 The depth of the trapezoid tree T(P) is O(1og n + log N).

Sketch of Proof: Let height(T) be the number of elementary slabs spanned by a trapezoid
T associated with a "V-node of T(P). We show by induction that the depth of T(T) is at
most log weight(T) + 3 log height(T) + 1. 0

4.2 Hull Trees

The horizontal cuts in the decomposition of subdivision P induce a decomposition of each
region into several subregions, each having spanning edges or spanning tangents. The set
of left and right chains of the subregions of P are called the elementary chains of P. We
dynamically maintain the convex hull of the elementary chains of P using a variation of the
data structure of Overmars and van Leeuwen [12].

For each region r of P, we maintain two hull trees, denoted lchain(r) and rchain(r),
representing the left and right chains of r, respectively. The secondary structures at the
internal nodes of these trees are used to maintain the convex hulls of the elementary chains
of P.

We describe the hull tree lchain(r) for the left chain "y of region r. Tree rchain(r) is
symmetrically defined. We cut "y by a sequence of median lines, starting with llN/2J, until
for each resulting slab the portion of"Y within that slab is a single edge spanning that slab.
Let S be the set of points that are either vertices of "Y or the intersections of "Y with the
cutting lines. Tree lchain(r) consists of a modification of the dynamic structure of [12] for
the right convex hull of the points of S (see Fig. 4.). The leaves of lchain(r) are the points

7

of 5, where each point is duplicated. Each internal node ~ of lchain(r) is associated with
a slab (]" and a node IL of T(P), such that IL is the lowest node of T(P) whose trapezoid
T contains, n (]". We establish a pointer from IL to e. Also, if r n T spans T, then node ~

of lchain(r) has a secondary structure (a balanced tree) that stores the points of the right
convex hull of, n T (in bottom-to-top order), excluding the points that have been already
stored in the secondary data structures of the ancestors of e.

\
j

Figure 4: Example of hull tree for the left chain of a region (N = 16).

Lemma 1 The hull trees for the left and right chains of the regions of P have each height
O(log N), and use total space O(n log N). Also, the hull trees allow to compute in O(log n)
time the spanning tangents of a trapezoid T induced by a gap of T.

The dynamic operation of merging two right (left) convex hulls (corresponding to two
consecutive left (right) subchains) into a single one is called bridging, and its inverse oper
ation is called de-bridging. Extending the results of [12], each bridging/de-bridging can be
performed in O(log n) time.

4.3 Query

Point location for a query point q is performed by tracing down a path in T(P). Let IL be
the node currently visited.

1.	 If IL is an c-node then we stop.

2.	 If IL is a 'V-node with median line l, we discriminate q against l. If q is below or on 1
then we go to the left child of IL, otherwise (q is above l) we go to the right child.

8

3.	 If J1, is an R-node with spanning tangent t, we discriminate q against t. If q is on t or
to the left of t, we set S R +- 0 and go to the left child of J1,; else (q is to the right of t)
we set SL +- 0 and go to the right child.

4.	 If J1, is an O-node, let a = Sl ... Sp be the corresponding sequence of spanning edges
delimiting empty trapezoids. If q is to the left of Sl, then set SR +- Sl and go to the
left child of J1,. Else if q is to the right of Sp, then set SL +- Sp and go right. Else, by
searching in the balanced tree of a we find the two edges Si and Si+1 between which q
lies, set SL +- Si and SR +- Si+1, and stop.

When the above process terminates, we know that the region r containing q is immedi
ately to the left of edge SR and/or to the right of edge SL (one of these edges may not be
defined). Region r can be determined in additional G(1og N) time using the hull trees storing
representatives of SL or SR in their leaves. Note that the '(masking" action in Step 3 (where
SL or SR is set to 0) ensures us to use the information obtained from the final point-edge
discrimination, and thus to report r correctly.

Theorem 4 The time complexity of a point location query is G(1og n + log N).

4.4 Insertion and Deletion of Edges

In this section we consider operation INSERTSEGMENT(e,vI,v2,r;rl,r2)' We briefly describe
the update of the trapezoid tree T(P) and of the hull trees.

The edge-insertion algorithm is a recursive procedure. The actions performed at the
current node J1" associated with trapezoid T, depend on the type of node p.,:

1.	 J1, is an R-node corresponding to gap 9 with spanning tangent t.

If e spans g, we transform J1, into an O-node with spanning edge e. Else, we consider
the following subcases:

(a)	 e does not intersect t.
Recursively call the algorithm on the left or right child of J1, according to whether
edge e is to the left or right of t, respectively.

(b)	 e intersects t.
Construct the other spanning tangent t of g. If e does not intersect t, replace t with
tin J1" and recursively call the algorithm on the left or right child of J1, according
to whether e is to the left or right of t, respectively. If instead e intersects also t,
we have to perform a horizontal cut. The operation is illustrated in Fig. 5, where
each of the am's denotes an O-node or R-node, and t f and til result from cutting t
with l. The operation essentially corresponds to replacing node J1, and the leaves
(V-nodes) immediately to its left and right with a new V-node 1/. (Special cases
are omitted in this extended abstract). Note that the decomposition trees (biased
search trees) T, TI , and T2 may need to be rebalanced. After the horizontal cut
is performed, we recursively call the algorithm on the new V-node 1/.

9

O"k+2

(b) (c)T T
------------------------------ 1 I ---------------------------

I I
1 I
1 I
I I
I I

I\:
I I

I

I/
I

:-"'-.: \
/ 1_-7"""'

1 ,
I , , ,
, I ~ \
, I
, I

I I
, I

I I
I L	 _
I

_______ J

Figure 5: Operation of horizontal cut caused by inserting edge e

2. f-L is an O-node with sequence of spanning edges (7 = Sl"'Sp'

We distinguish three subcases:

(a)	 e is to the left of Sl.

If e spans rand r (the region where e is inserted) is the region formerly to the
left of Sl, then insert e into the balanced tree associated with (7 in the leftmost
position. Else recursively call the procedure on the left child of f-L.

(b)	 e is to the right of Sp'

This case is analogous to the previous one.

10

(c)	 e lies between two edges of (J", say Si and Si+l. (In this case e must span T.)
Insert e into the balanced tree of (J" between Si and Si+l'

3. fJ- is	 a \7-node with median line l.

In this case edge e cannot be a spanning edge of T, or otherwise T would have a spanning
tangent/edge and thus fJ- would not be a \7-node. Again, we have three subcases:

(a)	 e lies below l.

Recursively call the procedure on the left child of fJ-.

(b)	 e lies above l.

Recursively call the procedure on the right child of fJ-.

(c)	 e is cut by 1 into el and e2, with el below e2.

Recursively call the procedure twice to insert el into the left child of fJ- and e2

into the right child of fJ-.

The time-complexity analysis is based on the following lemma, which provides an upper
bound on the number of horizontal cuts.

Lemma 2 A horizontal cut at an R-node fJ- causes O(1og N) additional horizontal cuts in
the subtree of fJ-.

)	 Sketch of Proof: Let T be the trapezoid associated with node fJ-, and t its spanning tangent.
Let the median line 1of T cut T into TB and TT, with TB below land TT above l. After inserting
edge e, at least one of TB and TT is spanned by t, depending on whether e intersects t above
or below l. Thus, at most one of TB and TT needs to be horizontally cut again (recall that a
horizontal cut occurs only when e intersects both spanning tangents). We conclude that the
number of horizontal cuts is bounded by the number of \7-nodes on a root-to-leaf path. 0

Theorem 5 Updating the trapezoid tree T(P) in consequence of operation INSERTSEGMENT

(e,vl,V2,rjrl,r2) can be done in time O(lognlogN).

Proof: By the segment tree scheme the algorithm splits e into O(log N) fragments and
allocates them into a set of O-nodes and R-nodes. At each such allocation node we either
recompute a spanning tangent (R-node) or insert e into a balanced tree (O-node), which takes
O(1og n) time. In general, before the insertion of edge e, region r is horizontally partitioned
into subregions rl,· .. , rm , each having spanning edges or spanning tangents. Assume that
the endpoints of e are in subregions ri and rjo Since e is a spanning edge for rk, i < k < j,
there cannot be horizontal cuts in rk during operation INSERTSEGMENT. Thus, only the
trapezoids of ri and rj may get horizontally cut. By Lemma 2, a total of O(log N) horizontal
cuts are performed. Each horizontal cut takes time O(log n) to rebalance the decomposition
trees T, T1 , and T2 . 0

Theorem 6 Updating the hull trees in consequence of operation INSERTSEGMENT(e, Vl, V2, r; rl, r2)
can be done in time O(1og n log N) .

11

Operation REMOVESEGMENT is the inverse of INSERTSEGMENT and its algorithm is sim
ilar (there are horizontal merges instead of horizontal cuts).

Theorem 7 Operations INSERTSEGMENT and REMOVESEGMENT can each be performed in
O(1og n log N) time.

4.5 Other Update Operations

The algorithm for operation INSERTPOINT(V, e; e1, e2) is outlined as follows:

1.	 Use the query algorithm to find the O-node f.L with sequence of spanning edges (j =
Sl ... Sp such that e = Si for some i and v lies in the trapezoid T of f.L.

2.	 Perform a local restructuring at f.L, which essentially corresponds to cutting e hori
zontally along the median line 1 of T into e' and e" respectively below and above l.
Namely, we construct a trapezoid tree Tv whose root is a V-node containing l, and
whose subtrees consist each of an O-node with two children f:-nodes, where the left
O-node contains e' and the right one e". Let hand TR be the left and right subtrees
of f.L. The restructuring replaces f.L with two O-nodes, f.L1 and f.L2, and tree Tv(details
and special cases are omitted).

3.	 If v lies on 1 then stop; otherwise, if v is below l, then recursively call the procedure
on the left subtree of Tv; if v is above l, recursively call it on the right subtree.

\

}
l

- -	 - - - - - - - - - - - - - - - _I

Figure 6: Restructuring of the trapezoid tree in operation INSERTPOINT.

Operation REMOVEPOINT is the inverse of INSERTPOINT, and is performed by a similar
algorithm.

Theorem 8 Operations INSERTPOINT and REMOVEPOINT can each be performed in time
O(log nlog N).

12

Finally, operation MOVEPOINT(Vj x) may destroy (or create) spanning tangents in the
subregions to the left and right of v, which induces O(1og N) horizontal cuts (or merges) of
trapezoids.

Theorem 9 Operation MOVEPOINT(Vj x) can be performed in time O(1og n log N).

5 Data Structure for General Monotone Subdivisions

In the previous section we have described our dynamic data structure for the case when all n
vertices of P lie on a fixed set of N horizontal lines. In this section we extend the technique
to remove this constraint.

Without loss of generality we assume that no two vertices of P have the same y-coordinate
and the degree of each vertex is at most three. This is not restrictive since we can expand a
vertex v with degree d > 3 into a chain of degree-3 vertices connected by edges of infinitesimal
length. Since the sum of the degrees of all vertices of Pis O(n), the total number of vertices
after the expansion is still O(n). Every update operation in the original subdivision P can
be simulated with O(1) operations in the modified subdivision with bounded-degree vertices.

5.1 Y-Tree

We make use of another type of binary search tree, called B B [a]- tree [11]. Let a be a fixed

real, with ~ < a ~ 1 - V;. Some important properties of a BB[a]-tree are listed below:

1.	 A BB[a]-tree with n nodes has height O(1og n).

2.	 Assume that we augment a BB[a]-tree with secondary structures. Let the subtree
with root v have k leaves, and let the time for updating the secondary structures after
a rotation or double rotation at node v be O(k log k). Then the amortized rebalancing
cost per insertion/deletion is 0(1og2 n), when we perform a sequence of n insertions
and deletions into an initially empty BB[a]-tree.

We use a BB[aJ-tree, called Y-tree Y(P), for storing the vertices of P sorted by y

coordinate. Each node v of Y(P) also corresponds to the slab containing all the vertices in
the subtree of v and bounded by the horizontal lines associated with the ancestor nodes of
v immediately preceding and following v in symmetric order.

The trapezoid tree and hull trees of P are then constructed using the tree Y(P) to
determine the horizontal cutting scheme. Indeed, each "V-node /-L of the trapezoid tree is
associated with the node v of Y(P) such that the trapezoid T of /-L is horizontally cut by
the horizontal line through vertex v. Also, the "V-nodes forming TB and TT are associated
with the left and right children of v in Y(P), respectively. Note that many "V-nodes of the
trapezoid tree may correspond to the same node v of Y(P). We let v have bidirectional
pointers to such "V-nodes, so that the space requirement for Y(P) is O(nlog n).

With these modifications, the trapezoid tree and the hull trees have height O(1og n) and
use overall space O(nlog n).

13

5.2 Update Operations

Operations INSERTSEGMENT, REMOVESEGMENT and MOVEPOINT are performed essentially
as before, except that every time we create/destroy a V-node we have to update the pointers
to and from the corresponding node in Y(P).

Regarding operation INSERTPOINT(V, e; e1, e2), we insert v into Y(P), and modify the
algorithm of the previous section so that at the last recursion where the trapezoid T of I"
is within an elementary slab, the horizontal line going through v is added and taken as the
median line of T.

The rebalancing of the tree Y(P) is performed by means of rotations. Suppose that a
rotation of Y(P) occurs at nodes u and v, where the former parent u becomes the child of v.
This means that in the trapezoid decomposition process the horizontal cuts through v now
take priority over the cuts through u. Let the trapezoids horizontally cut along line y = y(u)
be T1, ... ,Tm . The V-nodes ofthese trapezoids are pointed by node u of Y(P). For each Ti, we
completely rebuild the trapezoid tree T(Ti) and the corresponding hull subtrees, according
to the new decomposition sequence. This consists of performing a static pre-processing to
construct each T(Ti)'

Lemma 3 If the subtree Tu rooted at node u of Y(P) has k leaves} then the total space used
by the trapezoid subtrees T(T1)"", T(Tm) rooted at the V-nodes 1"1'" I"m pointed by u is
O(k log k).

Sketch of Proof: Let ki be the number of vertices inside trapezoid Ti. We have that
\

L~l ki = O(k). Also, since each vertex has bounded degree, and each edge stored at anJ

O-node of T(Ti) is incident on some vertex inside Ti, we have that the O-nodes of T(Ti) store
representatives of O(ki) edges. Arguing as in the proof of Theorem 2, we conclude that the
space used by T (Ti) is O(k;log k). 0

Lemma 4 If node I" ofY(P) has k leaves} then a single/double rotation at I" takes O(k log k)
time to update the corresponding trapezoid subtrees and hull subtrees.

Hence, applying the properties of BB[a] trees we have that the amortized cost of opera
tions INSERTPOINT and REMOVEPOINT is 0(1og2 n).

By combining the results of this and the previous section, we obtain the central result of
our paper:

Theorem 10 There exists a fully dynamic point location data structure for a monotone
subdivision whose current number of vertices is n such that point location queries take time
O(1og n) and operations INSERTSEGMENT} REMOVESEGMENT} MOVEPOINT} INSERTPOINT

and REMOVEPOINT take time 0(1og2 n)} where the bounds are amortized for INSERTPOINT

and REMOVEPOINT} and worst-case for the other operations.

Acknowledgment

I would like to thank my advisor Roberto Tamassia for his kind and helpful advices.

14

References

[1]	 S.W. Bent, D.D. Sleator, and R.E. Tarjan, "Biased Search Trees," SIAM J. Computing,
vol. 14, 545-568, 1985.

[2]	 S.W. Cheng and R. Janardan, "New Results on Dynamic Planar Point Location," Tech
nical Report TR 90-13, Dept. of Computer Science, Univ. of Minnesota, 1990. (Prelim.
version: 31st FOCS, 96-105,1990.)

[3]	 Y.-J. Chiang and R. Tamassia, "Dynamic Algorithms in Computational Geometry,"
Technical Report, Dept. of Computer Science, Brown Univ., 1991.

[4]	 H. Edelsbrunner, L.J. Guibas, and J. Stolfi, "Optimal Point Location in a Monotone
Subdivision," SIAM J. Computing, Vol. 15, 317-340, 1986.

[5]	 O. Fries, "Zerlegung einer planaren Unterteilung der Ebene und ihre Anwendungen,"
M.S. thesis, Inst. Angew. Math. and Inform., Univ. Saarlandes, Saarbrcken, Germany,
1985.

[6]	 O. Fries, K. Mehlhorn, and S. Naeher, "Dynamization of Geometric Data Structures,"
Froc. (1st) ACA1 Symp. on Computational Geometry, 168-176, 1985.

[7]	 M.T. Goodrich and R. Tamassia, "Dynamic Trees and Dynamic Point Location," Froc.
23rd ACM Symp. on Theory of Computing, 1991 (to appear).

[8]	 D. Kirkpatrick, "Optimal Search in Planar Subdivision," SIAM Journal on Computing,
Vol. 12, 28-35, 1983.

[9]	 D.T. Lee and F.P. Preparata, "Location of a Point in a Planar Subdivision and its
Applications," SIAM J. Computing, Vol. 6, 594-606, 1977.

[10] E.M. McCreight, "Priority Search Trees," SIAM J. on Comput., Vol. 14, 257-276, 1985.

[11] K. Mehlhorn, Data Structure and Algorithms 1: Sorting and Searching, 189-199, 1984.

[12]	 M. H. Overmars and J. van Leeuwen, "Maintenance of Configurations in the Plane," J.
Compt. and Syst. Sci., Vol. 23, 166-204, 1981.

[13]	 M. Overmars, The Design of Dynamic Data Structures, Lecture Notes in Computer
Science, Springer-Verlag, 1983.

[14]	 M. Overmars, "Range Searching in a Set of Line Segments," Froc. (1st) ACM Symp.
on Computational Geometry, 177-185, 1985.

[15]	 F.P. Preparata, "A New Approach to Planar Point Location," SIAM J. Computing,
Vol. 10,473-483, 1981.

[16]	 F.P. Preparata and M.l. Shamos, Computational Geometry: An Introduction, Springer
Verlag, NY, 1985.

15

[17]	 F .P. Preparata and R Tamassia, "Fully Dynamic Point Location in a Monotone Sub

division," SIAM J. Computing, Vol. 18, 811-830, 1989.

[18]	 Preparata, F.P. and R Tamassia, "Dynamic Planar Point Location with Optimal Query

Time," Theoretical Computer Science, Vol. 74, 95-114, 1990.

[19]	 Sarnak, N. and RE. Tarjan, "Planar Point Location Using Persistent Search Trees,"

Communications ACM, Vol. 29, 669-679, 1986.

[20]	 R Tamassia, "An Incremental Reconstruction Method for Dynamic Planar Point Lo

cation," Information Processing Letters Vol. 37, 79-83, 1991.

16

