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The model of Zhao and Suo can be readily generalized to predict the critical breakdown electric
field Ec value of elastomers with arbitrary elastic strain energy function. An explicit expression
for Ec is presented for elastomeric thin films under biaxial strain and comparisons are made with
experimental data using a two term Ogden rubber elasticity model. Simplified results for uniaxial
and for equi-biaxial stress provide further insight into the findings of Zhao and Suo.
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The paper of Zhao and Suo [1] describes a fully non-
linear electromechanical model for the phenomenon of
electrical breakdown in thin elastomers. The purpose of
this comment is to point out some analytical simplifica-
tions which provide further insight into their model, and
to provide explicit formulas useful for elastomer design.

The results here stem from the observation that the
determinant of the Hessian H of eq. (4) in [1] may be
factored, leading to semi-explicit formulas for the criti-
cal values of the electrical and mechanical parameters.
It may be checked that the determinant reduces to a
quadratic in z,
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where the nondimensional parameter z is

z = (µǫ)−1D̃2 = µ−1ǫẼ2λ4
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and all other notation follows [1]. The roots of the
quadratic are real and of opposite sign, so there is a
unique positive value of z at which the Hessian is no
longer positive definite. It turns out that the same struc-
ture of the Hessian is retained for free energy of the form

W (λ1, λ2, D̃) = U(λ1, λ2) +
D̃2
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where U(λ1, λ2) = ψ(λ1, λ2, λ
−1
1 λ−1

2 ). An equation simi-
lar to (1) is obtained, and taking the single positive root
shows that the critical value of the electric field satisfies
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where Uij = ∂2U/∂λi∂λj . If the stretches λ1 and λ2 are
prescribed, then eq. (4) is sufficient to estimate the crit-
ical field strength. Otherwise, if the nominal stresses s1
and s2 are prescribed then the stretches are determined
from

sj = Uj − λ−1
j ǫE2

c , j = 1, 2. (5)

Under equi-biaxial strain λ1 = λ2 = λ, eq. (4) be-
comes

ǫE2
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λ2

3

(
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)
, (6)

where the critical value of the stress s1 = s2 = s is

U1 −
1

3λ
(U11 + U12) = s. (7)

Consider the Ogden model for rubber [2]

ψ(λ1, λ2, λ3) =
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for which the critical electrical field strength is

ǫE2
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1

3
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If the stress is prescribed then λ is given by
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= s. (10)
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These parameterize the critical electrical and mechanical
fields in terms of λ.
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FIG. 1: The data show reported critical breakdown voltages
as a function of the equi-biaxial prestrain λ for films of VHB
4905/4910 elastomer, from [3, 4]. The curves are the predic-
tions of eq. (9) using the elasticity parameters from [3] with
ǫd = 12.

Values of the critical breakdown voltage for the elas-
tomer VHB 4905/4910 have been reported by Plante and
Dubowsky [3] and by Kofod et al. [4]. Assuming the Og-
den model with N = 2, Plante and Dubowsky [3] mea-
sured values of α1 = 1.445(1.450), α2 = 4.248(8.360),
µ1 = 43, 560(112, 200) Pa, µ2 = 117.4(0.1045) Pa for
elastomer films of initial thickness L3 = 1.5 mm at low
(high) stretch rates. Using these values the critical break-

down voltage Vc = L3Ẽc predicted by eq. (9) is compared
with the data of [3, 4] in Figure 1. The material dielec-
tric constant was chosen as ǫd = 12 to fit the curves with
the data, where ǫ = ǫdǫ0 and ǫ0 = 8.85 × 10−12 F/m is

the free space permittivity. The agreement is reasonable,
given that the experiments were not performed in a state
of pure equi-biaxial stress.

Some useful explicit results can be determined for the
one term Ogden model (N = 1, α1, µ1,→ α, µ). Un-
der equi-biaxial stress the critical stretch satisfies λ ≥ λc

where λc =
(
(4 + 2α)/(4 − α)

)1/(3α)
is the s = 0 value.

This obviously requires that α < 4. The critical field Ec

has a unique minimum at λ0 =
(
2(2α+ 1)/(α− 1)

)1/(3α)

if α > 1. Zhao and Suo [1] considered α = 2, for which

λc ≈ 1.26, λ0 ≈ 1.47 and the minimum value of
√

ǫ
µEc

is 1.038.

Finally, we note that the neo-Hookean constitutive
model of Zhao and Suo [1] is apparently unique among
the N = 1 Ogden models in that it yields a simple for-
mula for uniaxial stress. Thus, eq. (5) with N = 1, α = 2
for j = 2 and s2 = 0 yields the relation λ2

1 = 3λ2
2/(λ

6
2−1)

between the stretches. Hence, we can parameterize the
critical values in terms of 1 < λ2 ≤ λc ≈ 1.26:
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In this case Ec is a monotonically decreasing function

of the stress s1, and
√

ǫ
µEc → 1 in the limit of large

uniaxial stress. Figure 3(b) in [1] indicates that this is
the smallest achievable value of the critical electric field
strength. Generalization of the formulas (11) to α 6= 2 is
possible but far more complicated.

In summary, the model of Zhao and Suo readily gen-
eralizes to arbitrary elastic strain energy. The explicit
results reported here, such as eq. (4), can be used to
compare different elastic constitutive models, and should
be helpful in the design of elastomeric actuators.
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