Classification of Computable Approximations by Divergence Boundings

Xizhong Zheng
Theoretische Informatik
Brandenburgische Technische Universität
Cottbus, Germany

CCA 2006, November 4, Gainesville, USA
Computable and Computably Approximable Reals

A real number x is computably approximable if $x = \lim x_s$ for a computable sequence (x_s) of rational numbers. (CA)

x is computable if (x_s) converges to x effectively in one of the following senses. (EC)

- $(\forall n)(|x - x_n| \leq 2^{-n})$
- $(\forall n)(\forall s \geq n)(|x_s - x_n| \leq 2^{-n})$
- $(\forall n)(\forall s, t \geq n)(|x_s - x_t| \leq 2^{-n})$
- $(\forall n)(\forall s \geq e(n))(|x - x_s| \leq 2^{-n})$ for computable function e
- $(\forall n)(\forall s, t \geq e(n)) \left(|x - x_s| \leq \frac{1}{d(n)} \right)$ where e, d are computable and d is unbounded.

(e is modulus function and d is the distance function)

There are exceptions for non-computable real numbers. How to measure the non-computability?
The First Measurement

- A sequence \((x_s)\) converges \(h\)-bounded effectively if there are at most \(h(n)\) non-overlapping index-pairs \((s, t)\) such that \(|x_s - x_t| > 2^{-n}\) for all \(n\).

- A real number \(x\) is \(h\)-bounded computable if there is a computable sequence \((x_s)\) of rationals which converges \(h\)-bounded effectively to \(x\). \((h\text{-BC})\)

- A real number \(x\) is \(C\)-bounded computable if it is \(h\)-bc for some \(h \in C\). \((C\text{-BC})\)
The First Measurement

• A sequence \((x_s)\) converges \(h\)-bounded effectively if there are at most \(h(n)\) non-overlapping index-pairs \((s, t)\) such that \(|x_s - x_t| > 2^{-n}\) for all \(n\).

• A real number \(x\) is \(h\)-bounded computable if there is a computable sequence \((x_s)\) of rationals which converges \(h\)-bounded effectively to \(x\). \((h\text{-BC})\)

• A real number \(x\) is \(x\) \(C\)-bounded computable if it is \(h\)-bc for some \(h \in C\). \((C\text{-BC})\)

Proposition 1.

1. \(x\) is rational \(\iff\) \(x\) is \(h\)-bc and \(\liminf f(n) < \infty\).

2. \(h\) is unbounded, monotone and computable \(\implies\) \(EC \subset h\text{-BC}\)

3. \((\exists c)(\forall n)(|f(n) - g(n)| \leq c) \implies f\text{-BC} = g\text{-BC}\)
The First Measurement

Theorem 1.

1. (Hierarchy) For any computable functions f and g we have

$$(\forall c)(\exists n)(|f(n) - g(n)| > c) \implies f-\text{BC} \neq g-\text{BC}.$$
The First Measurement

Theorem 1.
1. (Hierarchy) For any computable functions f and g we have

$$(\forall c)(\exists n)(|f(n) - g(n)| > c) \implies f\text{-}BC \neq g\text{-}BC.$$

2. The $C\text{-}BC$ is a field, if C satisfies

$$(\forall f, g \in C)(\forall c)(\exists h \in C)(\forall n)(f(c + n) + g(c + n) \leq h(n)).$$
The First Measurement

Theorem 1.

1. (Hierarchy) For any computable functions f and g we have

$$(\forall c)(\exists n)(|f(n) - g(n)| > c) \implies f\text{-BC} \neq g\text{-BC}.$$

2. The $C\text{-BC}$ is a field, if C satisfies

$$(\forall f, g \in C)(\forall c)(\exists h \in C)(\forall n)(f(c + n) + g(c + n) \leq h(n)).$$

3. Let WC is the class of all weakly computable real numbers, then $WC \subsetneq o(2^n)\text{-BC}$.
The First Measurement

Theorem 1.

1. (Hierarchy) For any computable functions f and g we have

 $$(\forall c)(\exists n)(|f(n) - g(n)| > c) \implies f-\BC \neq g-\BC.$$

2. The $C-\BC$ is a field, if C satisfies

 $$(\forall f, g \in C)(\forall c)(\exists h \in C)(\forall n)(f(c+n) + g(c+n) \leq h(n)).$$

3. Let \WC is the class of all weakly computable real numbers, then $\WC \subset o(2^n)-\BC$.

4. If f, g are increasing computable functions such that

 $$(\exists \gamma > 1)(\forall c \in \mathbb{N})(\forall n)(f(\gamma n) + n + c < g(n))$$

 then there is a g-bc real which is not Turing equivalent to any f-bc real number.
The First Measurement

Theorem 1.
1. (Hierarchy) For any computable functions f and g we have

$$(\forall c)(\exists n)(|f(n) - g(n)| > c) \implies f-\text{BC} \neq g-\text{BC}.$$

2. The $C-\text{BC}$ is a field, if C satisfies

$$(\forall f, g \in C)(\forall c)(\exists h \in C)(\forall n)(f(c + n) + g(c + n) \leq h(n)).$$

3. Let WC is the class of all weakly computable real numbers, then $WC \subsetneq o(2^n)-\text{BC}$.

4. If f, g are increasing computable functions such that

$$(\exists \gamma > 1)(\forall c \in \mathbb{N})(\forall n)(f(\gamma n) + n + c < g(n))$$

then there is a g-bc real which is not Turing equivalent to any f-bc real number.

Remark: The classification is coarse. No Ershov-style hierarchy.
The Second Measurement

A real number x is h-Cauchy computable if there is a computable sequence (x_s) converging to x such that there are at most $h(n)$ non-overlapping index-pairs (s, t) satisfy

$$s, t \geq n \& 2^{-n} \geq |x_s - x_t| < 2^{-n+1}.$$

h-cEC denotes the class of all h-Cauchy computable real numbers.
The Second Measurement

A real number x is h-Cauchy computable if there is a computable sequence (x_s) converging to x such that there are at most $h(n)$ non-overlapping index-pairs (s, t) satisfy

$$s, t \geq n \& 2^{-n} \geq |x_s - x_t| < 2^{-n+1}.$$

h-cEC denotes the class of all h-Cauchy computable real numbers.

Theorem 2.

1. $EC = 0$-cEC $\subsetneq 1$-cEC $\subsetneq 2$-cEC $\subsetneq \cdots \subsetneq \omega$-cEC $\subsetneq \omega$-BC.
The Second Measurement

A real number x is h-Cauchy computable if there is a computable sequence (x_s) converging to x such that there are at most $h(n)$ non-overlapping index-pairs (s, t) satisfy

$$s, t \geq n \& 2^{-n} \geq |x_s - x_t| < 2^{-n+1}.$$

h-cEC denotes the class of all h-Cauchy computable real numbers.

Theorem 2.

1. $EC = 0$-$cEC \subsetneq 1$-$cEC \subsetneq 2$-$cEC \subsetneq \cdots \subsetneq \ast$-$cEC \subsetneq \omega$-$cEC = \omega$-$BC$.

2. \ast-cEC and SC are incomparable, and \ast-$cEC \subsetneq WC$.
The Second Measurement

A real number x is h-Cauchy computable if there is a computable sequence (x_s) converging to x such that there are at most $h(n)$ non-overlapping index-pairs (s, t) satisfy

$$s, t \geq n \& 2^{-n} \geq |x_s - x_t| < 2^{-n+1}.$$

h-cEC denotes the class of all h-Cauchy computable real numbers.

Theorem 2.

1. $EC = 0$-$cEC \subsetneq 1$-$cEC \subsetneq 2$-$cEC \subsetneq \cdots \subsetneq \ast$-$cEC \subsetneq \omega$-$cEC = \omega$-$BC$.

2. \ast-cEC and SC are incomparable, and \ast-$cEC \subsetneq WC$.

3. (Hierarchy) f, g computable $\& (\exists \infty n)(f(n) \neq g(n)) \Rightarrow f$-$cEC \neq g$-$cEC$
The Second Measurement

A real number x is h-Cauchy computable if there is a computable sequence (x_s) converging to x such that there are at most $h(n)$ non-overlapping index-pairs (s, t) satisfy

$$s, t \geq n \& 2^{-n} \geq |x_s - x_t| < 2^{-n+1}.$$

h-cEC denotes the class of all h-Cauchy computable real numbers.

Theorem 2.

1. $EC = 0$-cEC $\subsetneq 1$-cEC $\subsetneq 2$-cEC $\subsetneq \cdots \subsetneq \ast$-cEC $\subsetneq \omega$-cEC $= \omega$-BC.

2. \ast-cEC and SC are incomparable, and \ast-cEC $\subsetneq WC$.

3. (Hierarchy) f, g computable & $(\exists \infty n)(f(n) \neq g(n)) \Rightarrow f$-cEC $\neq g$-cEC

4. There are $x, y \in 1$-cEC such that $x + y \notin \ast$-cEC.
The Second Measurement

A real number x is h-Cauchy computable if there is a computable sequence (x_s) converging to x such that there are at most $h(n)$ non-overlapping index-pairs (s, t) satisfy

$$s, t \geq n \& 2^{-n} \geq |x_s - x_t| < 2^{-n+1}.$$

$h\text{-}cEC$ denotes the class of all h-Cauchy computable real numbers.

Theorem 2.

1. $EC = 0\text{-}cEC \subsetneq 1\text{-}cEC \subsetneq 2\text{-}cEC \subsetneq \cdots \subsetneq \ast\text{-}cEC \subsetneq \omega\text{-}cEC = \omega\text{-}BC.$

2. $\ast\text{-}cEC$ and SC are incomparable, and $\ast\text{-}cEC \subsetneq WC.$

3. (Hierarchy) f, g computable & $(\exists \infty n)(f(n) \neq g(n)) \implies f\text{-}cEC \neq g\text{-}cEC$

4. There are $x, y \in 1\text{-}cEC$ such that $x + y \notin \ast\text{-}cEC.$

Remark: There is an Ershov-style hierarchy. The classification is too sensitive to arithmetical operations.
The Third Measurement (More General Form)

A real number x is (f, e, d)-effectively computable if there is a computable sequence of rationals converging to x such that there are at most $f(n)$ non-overlapping index-pairs (s, t) satisfy

$$s, t \geq e(n) \& \left(|x_s - x_t| > \frac{1}{d(n)} \right).$$

- f — founding function;
- e — modulus function;
- d — distance function

(f, e, d)-EC — class of all (f, e, d)-effectively computable real numbers.
The Third Measurement (More General Form)

A real number x is (f, e, d)-effectively computable if there is a computable sequence of rationals converging to x such that there are at most $f(n)$ non-overlapping index-pairs (s, t) satisfy

$$s, t \geq e(n) \& \left(|x_s - x_t| > \frac{1}{d(n)}\right).$$

- f — founding function;
- e — modulus function;
- d — distance function

(f, e, d)-EC — class of all (f, e, d)-effectively computable real numbers.

The properties we are interested in:

- Closure properties under arithmetical operations and computable functions; and
- possible nice hierarchy properties.
Reduction of \((f, e, d)\)-Effective Computability

The distance function \(d\) and modulus function \(e\) should be computable, monotone and unbounded \((\text{cmu})\).
Reduction of \((f, e, d)\)-Effective Computability

The distance function \(d\) and modulus function \(e\) should be computable, monotone and unbounded (cmu).

Theorem 3.

1. A cmu modulus function \(e\) can be reduced to the identity function \(id(n) := n\), i.e.,

\[
(f, e, d)\text{-EC} = (f, id, d)\text{-EC} := (f, d)\text{-EC}.
\]
Reduction of \((f, e, d)\)-Effective Computability

The distance function \(d\) and modulus function \(e\) should be computable, monotone and unbounded (cmu).

Theorem 3.

1. A cmu modulus function \(e\) can be reduced to the identity function \(id(n) := n\), i.e.,

\[(f, e, d)\text{-EC} = (f, id, d)\text{-EC} := (f, d)\text{-EC}.

2. A cmu distance function \(d\) can be reduced to the identity function \(id\), too, i.e.,

\[(f, d)\text{-EC} = (f \circ d^{-1}, id)\text{-EC}

where \(d^{-1}(n) := \min\{t \in \mathbb{N} : d(t) \geq n\}\) (upper inverse function of \(d\)).
Reduction of \((f, e, d)\)-Effective Computability

The distance function \(d\) and modulus function \(e\) should be computable, monotone and unbounded (cmu).

Theorem 3.

1. A cmu modulus function \(e\) can be reduced to the identity function \(id(n) \coloneqq n\), i.e.,
 \[
 (f, e, d)\text{-EC} = (f, id, d)\text{-EC} := (f, d)\text{-EC}.
 \]

2. A cmu distance function \(d\) can be reduced to the identity function \(id\), too, i.e.,
 \[
 (f, d)\text{-EC} = (f \circ d^{-1}, id)\text{-EC}
 \]
 where \(d^{-1}(n) \coloneqq \min\{t \in \mathbb{N} : d(t) \geq n\}\) (upper inverse function of \(d\)).

3. A cmu distance function \(d\) can also be reduced to the exponential function \(ep(n) \coloneqq 2^n\), i.e.,
 \[
 (f, d)\text{-EC} = (f \circ d^{-2}, ep)\text{-EC}
 \]
 where \(d^{-2}(n) \coloneqq \min\{t \in \mathbb{N} : d(t) \geq 2^n\}\).
f-Effectively Computable Real Numbers

A sequence (x_s) converges f-effectively if, for all n, there are at most $f(n)$ non-overlapping index-pairs (s, t) such that

$$s, t \geq n \& |x_s - x_t| > 2^{-n}.$$

A real x is f-effectively computable if there is a computable sequence (x_s) which converges f-effectively to x.

f-EC is the class of all f-ec real numbers and C-EC := $\bigcup_{f \in C} C$-EC.

ω-EC := C-EC for the class of computable functions.
f-Effectively Computable Real Numbers

A sequence (x_s) converges f-effectively if, for all n, there are at most $f(n)$ non-overlapping index-pairs (s, t) such that

$$s, t \geq n \& |x_s - x_t| > 2^{-n}.$$

A real x is f-effectively computable if there is a computable sequence (x_s) which converges f-effectively to x.

f-EC is the class of all f-ec real numbers and C-EC := $\bigcup_{f \in C} C$-EC.

ω-EC := C-EC for the class of computable functions.

Proposition 2.

- 0-EC = EC;
- ω-EC = ω-BC = DBC;
- f-EC \subseteq f-BC.

Xizhong Zheng, BTU Cottbus
Finite Bounded Effective Computability

A real number x is bounded effectively computable if x if f-ec for a constant function f.

f-EC is denoted by k-EC if $f \equiv k$ and \ast-EC := $\bigcup_{k \in \mathbb{N}} k$-EC.
Finite Bounded Effective Computability

A real number \(x \) is bounded effectively computable if \(x \) if \(f \)-ec for a constant function \(f \).
\[
f\text{-EC is denoted by } k\text{-EC if } f \equiv k \text{ and } *\text{-EC} := \bigcup_{k \in \mathbb{N}} k\text{-EC}.
\]

Theorem 4.

1. \(k\text{-EC} = (k, d)\text{-EC} \) for any cmu distance function \(d \);
Finite Bounded Effective Computability

A real number x is bounded effectively computable if $x \text{ if } f$-ec for a constant function f.

f-EC is denoted by k-EC if $f \equiv k$ and \ast-EC := $\bigcup_{k \in \mathbb{N}} k$-EC.

Theorem 4.

1. k-EC = (k, d)-EC for any cmu distance function d;

2. k-EC $\subsetneq (k + 1)$-EC $\subsetneq \ast$-EC $\subsetneq f$-EC for any cmu function f;
Finite Bounded Effective Computability

A real number x is bounded effectively computable if x if f-ec for a constant function f.

f-EC is denoted by k-EC if $f \equiv k$ and $*$-EC := $\bigcup_{k \in \mathbb{N}} k$-EC.

Theorem 4.

1. k-EC = (k, d)-EC for any cmu distance function d;

2. k-EC $\subsetneq (k + 1)$-EC $\subsetneq *$-EC $\subsetneq f$-EC for any cmu function f;

3. $x \in i$-EC & $y \in j$-EC $\implies (x + y) \in (i + j)$-EC

$*$-EC is closed under the arithmetical operations;
Finite Bounded Effective Computability

A real number x is bounded effectively computable if x if f-ec for a constant function f.

f-EC is denoted by k-EC if $f \equiv k$ and $*$-EC $:= \bigcup_{k \in \mathbb{N}} k$-EC.

Theorem 4.

1. k-EC $= (k, d)$-EC for any cmu distance function d;

2. k-EC $\subsetneq (k + 1)$-EC $\subsetneq *$-EC $\subsetneq f$-EC for any cmu function f;

3. $x \in i$-EC & $y \in j$-EC $\implies (x + y) \in (i + j)$-EC

 $*$-EC is closed under the arithmetical operations;

4. For any $k > 0$, the class k-EC is not a field;
Finite Bounded Effective Computability

A real number x is bounded effectively computable if x if f-ec for a constant function f.

f-EC is denoted by k-EC if $f \equiv k$ and \ast-EC := $\bigcup_{k \in \mathbb{N}} k$-EC.

Theorem 4.

1. k-EC = (k, d)-EC for any cmu distance function d;

2. k-EC \subsetneq $(k + 1)$-EC \subsetneq \ast-EC \subsetneq f-EC for any cmu function f;

3. $x \in i$-EC & $y \in j$-EC \implies $(x + y) \in (i + j)$-EC
 \ast-EC is closed under the arithmetical operations;

4. For any $k > 0$, the class k-EC is not a field;

5. The class \ast-EC is incomparable with SC (1-EC $\not\subseteq$ SC and SC $\not\subseteq$ \ast-EC).
Finite Bounded Effective Computability

A real number x is bounded effectively computable if x is f-ec for a constant function f.

f-EC is denoted by k-EC if $f \equiv k$ and \ast-EC $:= \bigcup_{k \in \mathbb{N}} k$-EC.

Theorem 4.

1. k-EC $= (k, d)$-EC for any cmu distance function d;

2. k-EC $\subsetneq (k + 1)$-EC $\subsetneq \ast$-EC $\subsetneq f$-EC for any cmu function f;

3. $x \in i$-EC & $y \in j$-EC $\implies (x + y) \in (i + j)$-EC

 \ast-EC is closed under the arithmetical operations;

4. For any $k > 0$, the class k-EC is not a field;

5. The class \ast-EC is incomparable with SC (1-EC $\not\subset$ SC and SC $\not\subset$ \ast-EC);

6. \ast-EC $\subsetneq WC$.

Xizhong Zheng, BTU Cottbus
Computably Bounded Effective Computability

\[\text{DBC} = \omega-\text{EC} := \bigcup \{ f-\text{EC} : f \text{ is computable} \}. \]

Theorem 5.

1. (Hierarchy of the classes:) For any computable functions \(f, g \) we have

\[(\exists \infty n)(f(n) < g(n)) \implies g-\text{EC} \not\subseteq f-\text{EC}; \]
Computably Bounded Effective Computability

$$\text{DBC} = \omega-\text{EC} := \bigcup \{ f-\text{EC} : f \text{ is computable} \}.$$

Theorem 5.

1. **(Hierarchy of the classes:)** For any computable functions f, g we have

 $$\quad (\exists \infty n)(f(n) < g(n)) \Rightarrow g-\text{EC} \nsubseteq f-\text{EC};$$

2. **(Hierarchy of the Turing degrees:)** For any computable functions f, g we have

 $$\quad (\exists \gamma > 1)(\exists \infty n)(f(\gamma n) < g(n)) \Rightarrow (\exists x \in g-\text{EC})(\forall y \in f-\text{EC})(x \neq_T y);$$
Computably Bounded Effective Computability

$$DBC = \omega\text{-EC} := \bigcup\{f\text{-EC} : f \text{ is computable}\}.$$

Theorem 5.

1. (Hierarchy of the classes:) For any computable functions f, g we have

$$\left(\exists^{\infty} n \right) \left(f(n) < g(n) \right) \implies g\text{-EC} \not\subset f\text{-EC};$$

2. (Hierarchy of the Turing degrees:) For any computable functions f, g we have

$$\left(\exists \gamma > 1 \right) \left(\exists^{\infty} n \right) \left(f(\gamma n) < g(n) \right) \implies \left(\exists x \in g\text{-EC} \right) \left(\forall y \in f\text{-EC} \right) \left(x \not\equiv_T y \right);$$

3. $SC \subsetneq WC \subsetneq o(2^n)\text{-EC};$
Computably Bounded Effective Computability

\[\text{DBC} = \omega \text{-EC} := \bigcup \{ f \text{-EC} : f \text{ is computable} \}. \]

Theorem 5.

1. (Hierarchy of the classes:) For any computable functions \(f, g \) we have

\[(\exists \infty) (f(n) < g(n)) \implies g \text{-EC} \not\subseteq f \text{-EC}; \]

2. (Hierarchy of the Turing degrees:) For any computable functions \(f, g \) we have

\[(\exists \gamma > 1)(\exists \infty) (f(\gamma n) < g(n)) \implies (\exists x \in g \text{-EC})(\forall y \in f \text{-EC})(x \not\equiv_T y); \]

3. \(\text{SC} \not\subseteq \text{WC} \not\subseteq o(2^n) \text{-EC}; \)

4. \(\text{SC} \not\subseteq o_e(2^n) \text{-EC}, \) where \(o_e(2^n) := \{ f \in o(2^n) : f \text{ is computable} \}. \)
Bounding by Function Classes

$C'\text{-EC} = \ast\text{-EC}$ is a field for the class C' of constant functions.

Theorem 6.

If C' is a function class which contains all constant functions and is closed under the addition and composition, then the class $C'\text{-EC}$ is a field.
Bounding by Function Classes

\(\mathcal{C}' \cdot \text{EC} = \ast \cdot \text{EC} \) is a field for the class \(\mathcal{C}' \) of constant functions.

Theorem 6.

If \(\mathcal{C}' \) is a function class which contains all constant functions and is closed under the addition and composition, then the class \(\mathcal{C}' \cdot \text{EC} \) is a field.

For any function \(f \), let \(\theta(f) := \{ g : (\exists a, b, c)(\forall n)(g(n) \leq a f(b + n) + c) \} \).

Corollary. Let \(f, g \) be monotone functions.

1. The class \(\theta(f) \cdot \text{EC} \) is a field;

2. \(f \in o(g) \implies \theta(f) \cdot \text{EC} \subsetneq \theta(g) \cdot \text{EC} \).
Xizhong Zheng, BTU Cottbus
Thank you