
Teaching Introductory Programming to Information Systems and
Computing Majors: Is There a Difference?

Christine Prasad and Xiaosong Li
School of Information Systems and Computing

UNITEC Institute of Technology
Auckland, New Zealand

cprasad@unitec.ac.nz and xli@unitec.ac.nz

Abstract
This paper reports on a pilot study that attempts to
determine if there are differences between students
majoring in Computing and those majoring in Information
Systems (IS) enrolled in the same introductory computer
programming course. Data is gathered on age, gender,
opinion of computer programming, topics of difficulty,
difficulty level in computer programming, and how
students structure computer programming concepts. Given
the small sample size in the pilot study, the results
suggested only slight differences between the two groups
of students. It also showed that there were some topics
within the course that IS students faced difficulties in.
Some suggestions for future research are provided.

Keywords: Information Systems, Computing Systems,
introductory programming.

1 Introduction
“Information Systems (IS) is about the use of technology
and ideas for tactical and strategic advantage in business.
It is not about mathematics; most people in the discipline
do not write computer programs. Instead they spend time
creatively, identifying business opportunities and
problems and devising approaches and solutions” (ECU,
2002). IS, as a field of academic study, has the nature of
lesser theoretical, and more practical and applied emphasis
(Gorgone et. al., 2002).

A quick ‘scan’ through the undergraduate course
information web pages of ten popular tertiary education
providers in New Zealand, showed that eight institutions
offered IS as major or specialisation at degree level while
two did not. A common factor across these institutions
was that there was at least one compulsory Computer
Programming course that formed part of the IS
qualification. The other common factor was that none,
except one, of these institutions had a custom designed
Computer Programming course for IS students. In other
words, IS students were expected to study the same
programming course that their Computer Science (CS) or
Information Technology (IT) counterparts were studying.

Copyright © 2003, Australian Computer Society, Inc. This paper
appeared at the Sixth Australasian Computing Education
Conference (ACE2004), Dunedin. Conferences in Research and
Practice in Information Technology, Vol.30. R. Lister and A.
Young, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

Computer programming is of a mathematical and abstract
nature. A course in computer programming often has a
stereotyped image and is usually laden with “tedious”
practical exercises (Prasad and Fielden, 2002, Lowe, 2002,
Bucci, et al. 2001, Marks et al., 2001).

This raises two questions:

1. Do IS students need to adapt their learning strategies
to suit the programming course they are doing?

2. Do computer programming instructors at introductory
levels need to devise courses and delivery methods to
suit a more general audience than the more technical
and mathematically oriented audience?

Before embarking on a comprehensive study to investigate
the answers to the above two questions, it was important to
firstly investigate whether there was a difference between
IS and mainstream Computing students studying in the
current introductory computer programming course. This
would determine if a move comprehensive study was
required. The differences to be studied were age, gender,
opinion, difficulty level, difficulty areas, and mental
representation of concepts.

The main research question was to determine if there were
any differences between the two groups in any of the
factors above.

The implications of major differences would be that the
course was not suitable for both groups, while minor
differences would imply either that the course was suitable
for both groups or that the IS students had adapted to the
course. Also, if major differences were to be found,
strategies would need to be devised to cope with them.

The factors chosen for this research are documented in
previous research into teaching computer programming.
Significant work is being done in this area and some of the
factors investigated are previous programming experience,
gender, mathematical background (Wilson & Shrock,
2001), background and preparedness (Morrison &
Newman, 2001), motivation and interest (Jenkins, 2002),
and conceptual structure (Adelson, 1981).

The organisation of conceptual structure has been studied
in novice/expert literature related to computer
programming, to provide insight into the meanings that
people make out of concepts. There is evidence to suggest
that the way in which subjects organise concepts reflect
their mental representation of the way these concepts are
related (Adelson, 1981; Allwood, 1986).

The study was carried out in an institute in New Zealand,
where computer programming is a compulsory course for

both the Bachelor of Computing Systems (BCS) and
Bachelor of Business (BBus) students doing a double
major in IS. Only 18.6% of the total enrolment
(approximately 172) for this course were BBus students in
the semester that this study was carried out.

2 Method
A questionnaire survey was distributed to students in five
streams of an Introductory Programming (IP) class, which
is a first-year, undergraduate compulsory course taught
using a subset of the C++ programming language. The
term “questionnaire survey” is used loosely here, as it was
not intended to provide quantitative data for the purpose of
carrying out rigorous statistical analysis.

The questionnaire was closed-ended with three parts:

1. The first part sought demographic details from
students like age and gender.

2. The second part sought their opinion of the course, the
level of difficulty they felt the course to be at, and the
topics they faced difficulties with in the course.

3. The third part was a modified cardsorting exercise to
try and determine how the student categorised or
structured programming concepts.

Card sorting is a sorting technique, described in Cooke
(1994) and Rugg & McGeorge (1997). Sorting techniques
are used extensively in knowledge acquisition and
requirements analysis (Allwood, 1986).

The idea behind card sorting is to ask respondents to sort
cards, with names of objects or situations in it, called
stimuli, into groups according to a criterion. Card sort data
is initially analysed qualitatively to find similarities and
differences between responses then can be analysed via
cluster analysis (Martin, 1999, Stockburger, 1998) leading
to the production of tree diagrams or dendrograms that are
very visual representations of the data.

For this study, subjects were asked to sort sixteen
programming terms, representing the key concepts they
had seen so far in the course based on a single criterion,
which was “How I think of Introductory Programming
Concepts”. In order to enable the effective and timely
administration of this exercise to a large number of
students, the stimuli were written out on their
questionnaire form instead of cards. It is acknowledged
that this could have been a possible deterrent for those
students who were visually oriented. The same cardsort
exercise was also given to three instructors for the purpose
of comparing responses against the student’s responses.

The relationships exposed by categorisation tasks are
taken to reflect relationships in the subjects’ internal
representations (Allwood, 1986).

The questionnaire was distributed three-quarter way
through the semester since it is most likely that students
have had sufficient exposure to the course material by this
time. 45 out of 172 enrolled students, across five different
streams, responded to the questionnaire that is a response
rate of 26%. The responses from BCS students were

compared against those from BBus students. For the
cardsort exercise, instructor data was compared as well.

3 Results

3.1 Demographic Characteristics of the Sample
Figures 1 to 3 show some of the demographic distributions
across the sample. Figure 1 shows the distribution of each
student group. The “Other” group is made up of students
from other programmes such as the Graduate Diploma for
Computing and programmes from other disciplinary areas.

0.00

20.00

40.00

60.00

80.00

BCS Bbus Other
Programme

%
 in

 s
am

pl
e

Figure 1: Distribution of students per programme in
the sample

Figure 2 shows the age distribution across the sample
within each group. The age group “ns” indicates that no
age group was stated. No major differences are seen in
age groups between the BBus and BCS groups.

0

20

40

60

80

<= 18 19 -
29

>= 30 ns

Age group

%
 o

f s
tu

de
nt

s
pe

r
gr

ou
p

BCS
Bbus
Other

Figure 2: Distribution of age groups within BCS and
BBus students.

0
20
40
60
80

100

Male Female ns

Gender

%
 o

f s
tu

de
nt

s
pe

r g
ro

up

BCS
Bbus
Other

Figure 3: Distribution of gender within BCS and BBus
students

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Prog
ram

 D
es

ign

W
riti

ng
 P

rog
ram

s

Und
ers

tan
din

g t
he

 pr
og

ram
 sp

ec
...

Fun
cti

on
s

Arra
ys

Lo
op

s

Dec
isi

on
s

Stru
ctu

re
Diag

ram
s

Prog
ram

 in
pu

t

Prog
ram

 O
utp

ut

File
s &

 R
ec

ord
s

Tes
t P

lan
s

Des
kc

he
ck

ing

All t
op

ics

La
yo

ut

Com
ple

x c
on

dit
ion

s
Non

e

Area of Difficulty

%
 o

f s
tu

de
nt

s
pe

r g
ro

up

BCS Bbus

Figure 5: Distribution of areas of difficulty within BCS and BBus students

Other

Other

BCS Continue with
Programming?

BBus

Yes 63% 60%

No 26% 40%

Undecided 11% 0

Figure 3 shows the gender distribution across the sample
within each group. The most observable trend was that the
number of females in the BBus group was significantly
higher than in the BCS group, and the number of males
was higher in the BCS group, a trend that has often been
observed in Computer Science education (Beyer et. al,
2003; Rowell et. al., 2003)

3.2 Student Opinion

Students were asked to identify their opinion of the course
from a selection of seven options. It was possible to select
more than one option. The results were once again divided
into the different student groups as shown in Figure 4.

0.00
25.00
50.00
75.00

100.00
125.00

Enjo
ya

ble

Cha
lle

ng
ing

Diffi
cu

lt

Bori
ng

Ordi
na

ry

No c
om

men
ts

Othe
r

Opinon

%
 R

es
po

ns
es

 p
er

B

C
S/

 B
B

us
 g

ro
up

s

BCS Bbus

Figure 4: Distribution of opinion on the course with
BCS and BBus students

The main observation from Figure 4 is that while most
students found the IP course enjoyable and challenging, a
slightly higher number of BBus students found it to be
difficult.

3.3 Area of Difficulty

Figure 5 shows the responses from students when asked to
indicate the topics they faced difficulties within the course.
It must be acknowledged that these responses are

subjective since they were self-rated. However, they could
be tested under controlled circumstances to get a more
objective result
Some interesting trends were seen from this graph:

• BBus students appeared to face more difficulty in the
more technical areas that involve complicated logic,
such as Program design, Decisions, Input, output,
and complex conditions. An unexpected area of
difficulty indicated by BBus students was
“Understanding the Program Specification”.

• BCS students indicated difficulty in the less
technical areas like Test plans, desk checking and
layout.

Common topics of difficulty amongst both the groups
were arrays, functions and structure diagrams, which are
topics that students usually face difficulties with.

When asked whether they were likely to continue with
Programming, a surprising and encouraging result was
seen as shown in Table 2.

Table 1: Responses on whether students wish to
continue with programming.

When asked why they will not continue with
programming, two out of the six BBus students indicated
that it was because the course was difficult while two
indicated that they couldn’t do so under their current
elective allocations. From the BCS group, none of the
students indicated that they did not wish to continue due to
difficulty, but mostly due to other preferences.

3.4 Categorisation of Programming Concepts
Out of the 45 students, 37 carried out the cardsorting
exercise. Within the BCS group, the response rate to this
exercise was 85%, while within the BBus group, the
response rate was 73%. The sorts were analysed by
determining the commonality between categories and very
simple cluster analysis.

Tables 2 show the average number of categories seen
within each group. The fairly similar average number of
sorts per student group indicates that, on average, most of
the student felt that the stimuli could be categorised into
about five groups.

 BCS BBus Other Instructor

Average
number of
categories

5.13 5.45 5.67 6.33

Table 2: Average number of categories per group

3.4.1 Determining the Commonality Between
Categories

The individual responses from each student per group
were evaluated and 26 common categories were derived as
tabled in Table 3. There were some category labels within
the responses for which the authors’ discretion was used
when deciding which of the above 26 categories to place
them in. A summary of the distribution of responses is
shown in Figure 6.
From this data, it was easier to observe the common and
different categories chosen by the students in each group.
The categories to note were:
1. The number of “ragbag” categories, such as “don’t

know”, “other”, “the rest”, i.e. categories C8, C14,
and C16. This do not include the unnamed categories
and ungrouped stimuli. According to Rugg &
McGeorge (1997), “ragbag” categories indicate the
level of uncertainty. In all of these three categories,
BCS students appeared to have higher responses than
BBus.

2. The “ungrouped” and “unnamed” categories, C22 and
C23 respectively. These categories can indicate that
students were either not sure of what group to put a
term into, or they were not aware of the term. It could
also indicate that students were not sure of the
instructions given to them. Once again, a slightly
higher response was seen within the BCS group as
opposed to the BBus group. Also, the “Other” group
of students had a markedly higher number of
unnamed categories.

3. Subjective responses like “difficult”, and “hard” (C6)
had a higher response from BBus students while
“easy” and “enjoyable” (C9) had a higher response
from BCS students.

Category Category Name

C1
C++ / Code/ Command/ Compile /
Statement/ Computer Language

C2 Conditions

C3
Data/ Data type/ Data definition/ Variable
type

C4 Decision

C5 Design

C6 Difficult / Hard/ Don’t like

C7 Documentation

C8 Don’t know

C9 Easy / Enjoyable

C10 Function

C11 Input / Output

C12 Logic

C13 Maintenance

C14 Not applicable

C15 Operators

C16 Other

C17 Program specification

C18
Program structure/ parts of a program/ parts of a
function

C19
Programming Cycle / Program
development/ Stages

C20 Terms used

C21
Testing/ Data verification/ Deskcheck/
Debugging

C22 Ungrouped

C23 Unnamed

C24 Variable/ Variable Declaration

C25 Process/ Processing

C26 Strategy

Table 3: Common categories from student responses

3.4.2 Cluster Analysis

A dendrogram or tree diagram was created for each group
using the EZSort (2003) tool. Analysing the dendrograms
included looking at similar and different categorisations.
While there is no one correct categorisation, these provide
an insight to the terms or concepts that student’s cluster
into a group.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Category BCS Bbus

Other

Figure 6: Summary of distribution of responses of BCS/ BBus and Other students

The BCS group had 7 categories while the BBus and Other
group had 8 categories. A dendrogram was also created
from the responses from the three instructors and seven
categories were seen.
Collectively, the categorisations for the three groups are
shown in table 4. It must be pointed out that these
groupings represent an average of the data.

While the instructor’s responses are not the only ones nor
are they the correct ones, they do provide a benchmark to
measure the student’s responses against. The extra groups
created by BBus and Other students have been shown in
the table as split cells, which both appear to be logical
categories. The only “misplaced” term in all three of the
student groups appeared to be “array” which, for some
reason, has been grouped with a “function”. In actual fact,
an “array” is a data storage mechanism while a “function”
is a data processing mechanism. Apart from that, no major
differences are seen from the dendrograms.

4 Discussion

Analysing the results from section 3 will provide
directions for the future research. Some minor differences
were observed between the student groups which we will
try and discuss below.
An unexpected area of difficulty indicated by BBus
students was “Understanding the Program Specification”.
About 20% of the BBus students found this a difficult
topic as opposed to the less than 5% of BCS students in our
sample. This is unexpected because that IS students are
supposed to identify business opportunities and problems
(ECS, 2002).
A program specification usually consists of business
problem statements and programming technique
requirements. We looked at some other BBus course
assignments to identify why this may be the case and
found that most assignments had similar problem
statements. What was missing from their assignments was
the programming techniques section. Therefore it appears
that BBus students face difficulties understanding the
programming (i.e. technical) section of the specification as
opposed to the problem statements.

 BCS BBus Other Instructor

Test plan
Structure
diagram

1. Test plan
Structure
diagram
Design
Debug

Design
Debug

Test plan
Debug

Test plan
Structure
Diagram

2. Parameter Parameter Design
Structure
Diagram

Design
Debug

3. Local
variable

Local
Variable

Local
variable

Function
Parameter
Local
Variable

4. Loop
If
statement

Loop
If
statement

Function
Array
Loop
If
statement

Loop
If statement

5. Boolean
Char
Int

Boolean
Char
Int

Parameter Array
Char
Int
Boolean

6. Function
Array

Function
Array

 Cout

Cout 7. Cout
Readchar
Readint

Cout
Readchar
Readint Readchar

Readint

Readchar *
Readint

Table 4: Common categories amongst the four groups
as observed from dendrograms.

* Readchar and Readint are two custom made function used for
the input of character and integer respectively at this institution;
these function do not form part of the standard C++ library.

One strategy to overcome this would be to communicate
the specifications in a slightly different way to BBus
students. According to Darling (2001), if you understand
the patterns and practice being aware of the patterns in
your student’s language, you can adapt the way you
communicate and make it easier for your students to learn
from you.

The pattern we used for program specification in our
assignments is basically a sequence, in which, the input in
one case is specified first, and then the corresponding
outputs are specified (some times supplied with a screen
layout), and then the inputs for another case and so on.
Obviously this is a pattern BCS students are used to.

The BBus assignments, on the other hand, consist of
several components and sub-components, similar to a
hierarchy. We also found that matrices were used
extensively in many BBus courses, for example,
Candidate Matrix, Entity Definition Matrix, Feasibility
Matrix, and Problem Statement Matrix. However, a
matrix is rarely appears as part of a program specification
in our course. While it is not feasible to specify a program
specification in terms of a matrix, it might be possible to
further simplify the technical aspects of the specification
somewhat for the purposes of the BBus students. Further
research should be carried out to determine if the
specification patterns could really make difference.

BBus students appeared to face more difficulty in the more
technical areas that involve complicated logic, such as
“Program Design”, “Decisions”, “Input”, “Output”, and
“Complex conditions” than the BCS students. These are
the main contents of a programming course and they
reflect the nature of a programming course indicated in
section 1.

This trend is possibly due to the higher technical
inclination of the BCS students. It also implies that the
course may be taught in a technical manner and is not
suitable for a general audience. However, further research
needs to be carried out in this area to really determine the
reasons and specify strategies to overcome these.

Another interesting area of difficulty indicated by BBus
students was “Program Design”. More than 20% BBus
students stated that this topic was difficult as opposed to
less than 5% BCS students in our sample. This is perhaps
a serious issue for BBus students, as many of them will be
required to carry out a program design. This difficulty
may be a result of them facing difficulties in understanding
the Program specification. This might be due to that BBus
students are lack of logic training. Once again, further
research is needed to ascertain the extent of this difficulty.

As stated above, the card sort exercise was carried out to
elicit the manner in which students internally structure
their knowledge. While minor variations were found in
the patterns exposed by the two groups, the results
generally suggest that BBus students are reasonably
comfortable with the programming course compared to
BCS students, and that they do not reject programming
concepts. The results also suggest that they can manage
the concepts at a similar, if not higher level to BCS
students. This, however, is not consistent with the areas of
difficulty the BBus students face so further research will
be required to investigate this.

5 Summary and Future Work
The main observations from the data gathered are
summarised:

Age – No major differences were found between the BCS
and BBus groups

Gender – A significantly higher number of females were
discovered in the BBus group in comparison to the BCS
group, and this could strongly affect the results of this
study.

Opinion – Only a slightly higher number of BBus students
found the course difficult than BCS students. In all the
other opinions, the responses were fairly similar.

Areas of difficulty – It appears that BBus students were
facing more difficulty in the more technical topics within
programming. They also were facing unexpected
difficulties in the areas of understanding program
specification and program design. This, however, needs
further research.

Categorisation of Programming concepts – Categorisation
from BCS students matched the instructor’s one more
closely than the categorisation from BBus students.
However, there were a couple of concepts in which both
groups of students had a drastically different
categorisation from the instructors. A qualitative
investigation of the categorisations also showed that BCS
students faced more uncertainty with programming
concepts than BBus students.

Given that this was a pilot study, it must be acknowledged
that the sample size was relatively small and most of the
results are based on very small numbers, therefore the
results of the study are far from conclusive. However, a
number of areas of further research have been identified:

• The same exercise should be carried out with a larger
sample size.

• Some of the data collected was highly subjective.
This could be rectified by modifying the current study
to include alternative or supplementary data collection
methods. For example, a test could be used to
determine if the student is really facing difficulties in
an area. Also, an interview could be used to “drill
down” into the areas in which students were facing
difficulties to identify reasons for it.

• A visual card sorting exercise could be used instead of
a “paper” one. This might enable students to visualise
the concepts and form different categorisations.

• An interview could be used to “drill down” on the
card sort data to provide more qualitative feedback
from this exercise.

• Students could be asked to specify their own criteria
for sorting instead of using the provided criterion.
This might make data analysis difficult but would
provide a wider insight into how students structure
their knowledge.

• Attempting to use different teaching methods for the
different groups of students and then evaluating their
respective effectiveness.

• Investigating the final assessment results of BCS vs.
BBus students

• Studying the persistency and retention levels in the
Computer Programming course for BCS vs. BBus
students

• Attempting to use different specification patterns for
the different groups of students and then evaluating
their respective effectiveness.

While this study suggests that BBus students are coping
quite well with the programming course, the fairly low
sample size makes it premature to draw any conclusions.
The main course of action would be to carry out the same
study with a larger population.

6 References
Adelson, B. (1981) Problem solving and the development

of abstract categories in programming languages. Mem.
Cognition, 9, 422-433.

Allwood, C. M. (1986) Novices on the computer: a review
of the literature. International Journal of Man-Machine
Studies, 1986, 25, 633 - 658.

Beyer, S., Rynes, K., Perrault, J., Hay, K., & Haller, S.
(2003) Gender differences in Computer Science
Students. The Proceedings of the Thirty-fourth SIGCSE
Technical Symposium on Computer Science Education,
Reno, Nevada, US, 49 - 53.

Bucci, P., Long, T. J., & Weide, B. W. (2001) Do we really
teach Abstraction? The Proceedings of the
Thirty-second SIGCSE Technical Symposium on
Computer Science Education, Charlotte, North
Caroline, US, 26 – 30.

Cooke, Nancy J. (1994) Varieties of knowledge elicitation
techniques. International Journal of Human-Computer
Studies, 1994, 41 (6), 801 – 848.

Darling, L. (2001) NLP … Not Another Computer
Acronym! http://elementk.com/downloads/nlp.PDF,
Accessed 30 August 2003.

ECU (2002) Bachelor of Business: Information Systems.
http://www-business.ecu.edu.au/courses/undergrad/Bus
/information_systems.htm, Accessed 12 November
2003

EZSort (2003)
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/4
10, Accessed 7 November 2003.

Gorgone, J. T., Davis, G. B., Valacich, J. S., Topi, H.,
Feinstein, D. L., & Longenecker, Jr, H. E. (2002) IS
2002: Model Curriculum and Guidelines for
Undergraduate Degree Programs in Information
Systems. Association for Information Systems.
http://www.is2000.org/ , Accessed 21 May 2003.

Jenkins, T. (2001) Teaching Programming - A Journey
from Teacher to Motivator.
http://www.ics.ltsn.ac.uk/pub/conf2001/papers/jenkins.
htm, Accessed 3 May 2003.

Jenkins, T. (2002) On the Difficulty of Learning to
Program.
http://www.ics.ltsn.ac.uk/pub/conf2002/jenkins.html.
Accessed 3 September 2003.

Lowe, S. (2002) Bells & Whistles: Learning Programming
Principles Through Multimedia Authoring.
Proceedings of the 15th Annual Conference of the
National Advisory Committee on Computing
Qualifications, Hamilton, New Zealand, 271 – 275.

Marks, J., Freeman, W., & Leitner, H (2001) Teaching
Applied Computing without Programming: A
Case-Based Introductory Course for General Education.
The Proceedings of the Thirty-second SIGCSE
Technical Symposium on Computer Science Education,
Charlotte, North Caroline, US, 80 – 84.

Martin, S. (1999) Cluster Analysis for Web Site
Organisation . Internetworking, ITG Publication, Dec
1999: 2.3.
http://www.internettg.org/newsletter/dec99/cluster_ana
lysis.html, Accessed 20 May 2003.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y. B., Laxer, C., Thomas, L.,
Utting, I. & Wilusz, T. (2001) A multi-national,
multi-institutional study of assessment of programming
skills of first-year CS students. SIGCSE Bulletin –
Inroads, 33, no 4, December, 1 - 16.

Morrison, M. & Newman, T. S. (2001) A Study of the
Impact of Student Background and Preparedness on
Outcomes in CS1. The Proceedings of the
Thirty-second SIGCSE Technical Symposium on
Computer Science Education, Charlotte, North
Caroline, US, 179 - 183.

Prasad, C. & Fielden, K.(2002) Introducing
Programming: A Balanced Approach. Proceedings of
the 15th Annual Conference of the National Advisory
Committee on Computing Qualifications, Hamilton,
New Zealand, 101-107.

Rowell, G. H., Perhac, D. G., Hankins, J. A., Parker, B. C.,
Pettey, C. C, & Iriarte-Gross, J. M. (2003)
Computer-Related Gender Differences. The
Proceedings of the Thirty-fourth SIGCSE Technical
Symposium on Computer Science Education, Reno,
Nevada, US, 54 - 58.

Rugg, G. & McGeorge, P. The sorting techniques: a
tutorial paper on card sort, picture sorts and item sorts.
Expert Systems, May 1997, Vol 14, No. 2, 80 – 92.

Stockburger, D. W. (1998). Multivariate statistics:
concepts, models, and applications.
http://www.psychstat.smsu.edu/multibook/mlt04.htm,
Accessed May 20 2003.

Wilson, B. C. & Shrock, S. (2001) Contributing to Success
in an Introductory Computer Science Course: A Study
of Twelve Factors. The Proceedings of the
Thirty-second SIGCSE Technical Symposium on
Computer Science Education, Charlotte, North
Carolina, US, 183 - 188.

http://elementk.com/downloads/nlp.PDF
http://www-business.ecu.edu.au/courses/undergrad/BusBacBac_BusIS.htm
http://www-business.ecu.edu.au/courses/undergrad/BusBacBac_BusIS.htm
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/410
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/410
http://www.is2000.org/
http://www.ics.ltsn.ac.uk/pub/conf2001/papers/jenkins.htm
http://www.ics.ltsn.ac.uk/pub/conf2001/papers/jenkins.htm
http://www.ics.ltsn.ac.uk/pub/conf2002/jenkins.html
http://www.internettg.org/newsletter/dec99/cluster_analysis.html
http://www.internettg.org/newsletter/dec99/cluster_analysis.html
http://www.psychstat.smsu.edu/multibook/mlt04.htm

	Abstract
	1 Introduction
	2 Method
	3 Results
	3.1 Demographic Characteristics of the Sample
	3.2 Student Opinion
	3.3 Area of Difficulty
	3.4 Categorisation of Programming Concepts
	3.4.1 Determining the Commonality Between Categories
	3.4.2 Cluster Analysis

	4 Discussion
	5 Summary and Future Work
	6 References

