

Feasibility of Using BART for Regional Air Freight Movement

2011 NUF 4th METRANS National Urban Freight Conference October 12-14, 2011 Hyatt Regency Long Beach, CA

PATH, UC Berkeley: X. Y. Lu, K. Sivakumaran (GSR), R. Wang (GSR)

Caltrans DRI: Matt Hanson

Outlines

- Literature Review
- Potential Social Impact
- Emission Cost
- Energy Efficiency
- BART System Access Points
- Transshipment Considerations
- Towards Demo or Small Scale Ops
- Next Step

Literature Review

- Maes and Vsnelslander (2009) analyzed the feasibility of utilizing the rail transport as part of the supply chain in an urban logistic context in western Europe;
- Nozzolo et al (2007), a methodology presented for metropolitan freight distribution in railway in Italy with technical and economic feasibility analysis; freight demand modeling → new distribution system is consistent with practical operation → needs public authority to cover the extra costs;

Literature Review

- Work by Bozicnik (2007) studied the Light-combi project in Sweden or Cargo Sprinter in Germany, and the Mobiler system in Switzerland:
 - Analysis proved that success of intermodal transport can be achieved
 - Going through certain barrier and provided that interdisciplinary support can be assured
 - Concluded that the ideal freight transport technology for small shipments and/or short- and medium distances would be a combination of a truck (high flexibility) on the rail (mass production).

Literature Review

- The study of Paaswell (2009) focused on the elaboration of the potential benefit of transporting freight with rail, aiming at convincing the government and stake-holders of the importance of the mode conversion;
- K. Sivakumaran, X. Y. Lu, and M. Hanson (2010), considered economic analysis in detail based on demand and forecasted demand of two major integrated carriers (FedEx and UPS).

Potential Social Impact

- To better use the already built and costly infrastructure (with 70% capacity unused) for transportation;
- To reduce impact on road traffic cased by air freight movement;
- To use energy and land more efficiently
- To reduce emission cased by trucks for air freight collection and distribution
- To benefit all the stakeholders if demand is high enough
 - Increasing BART revenue and relieve government subsidy
 - Improving service quality (reliability) of integrated air freight carriers
 - ...
- To extend to similar systems in D. C., Chicago, ...

Emission - Factors

- Nitrogen oxides (NO_x): smog and acid rain
- Carbon monoxide (CO):
- Particulates matter (PM₁₀): respiratory health effects;
- Sulphur oxides (SO_x): smog and acid rain
- Volatile organic compound (VOC): atmospheric and health effects.

Pollutant	PM10	SO2	Nox	VOC	СО
Emission Factor (lbs/hp-hr)	0.0022	0.00205	0.031	0.002514	0.00668

Emission – Scenarios Considered

	1	2
	Little capital investment	Little capital investment
	CTV5 Trucks for local transshipments;	Electric trucks for local transshipments;
	Existing BART yards and maintenance areas for	Existing BART yards, stations and maintenance
	access point;	areas for access point;
A	Dedicated freight train	Dedicated freight train
	CTV5 Trucks for local transshipments;	Electric trucks for local transshipments;
	BART connection between OAK and Coliseum	BART connection between OAK and Coliseum
	Station;	Station
	Certain capital investment for retrofitting of	Certain capital investment for retrofitting of existing
B	existing BART stations for goods movement;	BART stations for goods movement;
	Dedicated freight train	Dedicated freight train

Emission - Emission Unit Cost Factor (Delucchi, 2000)

Health (\$/lbs Emitted)			Visibility E	Visibility (\$/lbs Emitted)		Crop Loss (\$/lbs Emitted)		Total(\$/lbs Emitted)	
Emission	Ambient Pollutant	Vehicle emissions, US		Vehicle emissions, US				Vehicle emissions, US	
	Tonutant	Low	High	Low	High	Low	High	Low	High
СО	СО	0.00	0.04					0.00	0.04
	Nitrate					_			
NOx	PM10	0.46	7.51					0.46	7.51
	NO2	0.07	0.33					0.07	0.33
Total for NOx		0.53	7.84	0.09	0.50			0.62	8.35
PM2.5	PM2.5	4.73	72.21					4.73	72.21
PM2 5-10	PM2.5-								
1 112.3-10	10	3.04	8.02					3.04	8.02
Total for PM10		4.42	60.68	0.18	1.77			4.60	62.45
SOr	Sulphate								
50x	PM10	3.13	29.72	0.40	1.80			3.53	31.52
VOC	Organic								
	PM10	0.05	0.52	0.00	0.02			0.05	0.54
VOC+Nox	Ozone	0.00	0.05			0.10	0.15	0.00	0.05
CO2								0.00	

Emission – Cost Comparison

Caltran

Energy Efficiency

Energy Resources and Efficiency Factors

	BART	Truck		
Energy Descuree	Flaatriaity	Fuel		
Energy Resource	Eleculcity	Combustion		
Renewable	520/	0%		
Resource	33%			
Fossil Fuel	47%	100%		
Energy Efficiency	1	0.3		

BART System Access Points: eBART Extension

BART System: Extension to San Jose/Milpitas in 2018

Transshipment Considerations

- Containers Fitting BART Car
- Vehicle for Freight Movement
- BART Cars
- Equipment for Container Movement at Platform
- BART Aerial Station Access Cost

Containers Fitting BART Cars

USPS Containers used by FedEx, small enough to fit in BART car

Vehicle for Freight Movement

- Flatbed dedicated freight cars
- Retired BART Cars
 - Over 300 BART cars to retire in the next 3~5 years starting from next year, which could be recycled;
 - Remove seats and air conditioner for dedicated freight movement;
 - Or keep the air conditioner for airborne exported agricultural products movement;

Vehicle for Freight Movement - BART Car without Seats

FedEx EV for Collection/Distribution and Transshipment

Equipment for Container Movement at Platform

Equipment for Container Movement - Flexible Platform

Equipment for Container Transshipment

• <u>Solution 1</u>: Directly pushing over the roller-mat; suitable for flatbed car, or BART car with doors

Equipment for Container Transshipment at Platform

• <u>Solution 2.</u> Using a Flexible Hydraulic Crane; suitable for flatbed cars and BART car if container is not too large

BART Aerial Station Access Cost

Cost (in \$) of dedicated freight lift for accessing BART aerial station(s)

Height (ft)	30	40	50	60	70	80	90	100
3,000lb	55,900	61,300	65,900	69,800	73,4000	76,666	79.500	82,200
5,000lb	61,900	67,900	72,900	77,300	81,200	84,700	88,000	91,000
10,000lb	82,500	90,500	97,200	103,000	108,000	112,900	117,300	121,300

Towards Demo or Small Scale Ops

- California's Airborne Agricultural Products for Export
 - Demand is Critical
- BART Access Points in Contra Costa County and Near SFO
 - Concord Yard
 - Pittsburg / Bay Point Tail Track
 - Millbrae Tail Track near SFO

CA Exported Airborne Agricultural Products

- California's airborne agricultural export was over \$800 million in 2008;
- Large portion of the exported products are fresh fruit, veritable, and meat which are time critical;
- Growth trend has been steady with demand increasing from the Asian and European markets (particularly China) since then;
- Traffic congestion → ground access to SFO increasingly;
 - Jock O'Connell, and B. Mason, *The Role of Air Cargo in California's Agricultural Export Trade*, CATI Pub. #070801, Center for Agricultural Business, California State University, Fresno, Aug. 2007
 - Jock O'Connell, Taking the Fast Plane to China: An Expanded Role for Air Freight in Increasing California's Fresh Fruit and Vegetable Exports, Report prepared for the California Department of Food and Agriculture, Apr., 2008
 - Website: http://jockoconnell.tripod.com/articles.html

CA Exported Airborne Agricultural Products

- Costs of maintaining freight-forwarding and air-freight consolidation facilities on valuable real estate near SFO are rising;
- Consequently, a growing volume of farm exports is being diverted to LAX, unnecessarily adding to the cost and complexity;
- Potential solution:
 - Relocating staging operations adjacent to BART Yard/Tail Track in eastern Contra Costa County and utilizing specially configured BART trains for transshipment directly to SFO;
 - FedEx and UPS can act as consolidated agency for the product directly to their aircraft(s), or other cargo aircraft;

CA Exported Airborne Agricultural Products

- Potential benefits including
 - to reduce ground transportation cost of agricultural producers

 competitive in the international market;
 - to feed to airport with required demand in time to reduce truck dwell time and idling;
 - to reduce truck trips to/from airport → energy use and emission reduction → more sustainable air cargo movement;

UPS Office and Millbrae BART Tail Track near SFO

BART Millbrae Tail Track: Share Station with Caltrain

BART Millbrae Tail Track:

BART Millbrae Tail Track: Entrance for Truck Access

BART Concord Yard

BART Pittsburg / Bay Point Tail Track

BART Pittsburg / Bay Point Tail Track

Next Step

- Logistics for Combined Passenger and Goods Movement with BART System
- Considering Liability Issue between Public and Private Sectors
- Finding Fund to Support a Demo or Small Scale Ops
 - FedEx willing to give low priority products for shipping on BART as a start
 - BART prefer to use the demo as the start of small scale operation and to continue afterwards
 - Funding necessary for
 - Retrofitting of platforms for loading and unloading
 - Retrofitting of BART car or Purchasing flat freight car
 - Purchasing transshipment equipment
 - >Building storage at access points
 - Relocating air freight screening system
- Federal Government Needs to Step in.

Main References

- Maes, J., and Thierry Vanelslander, J.,(2009), The use of rail transport as part of the supply chain in an urban logistics context, METRAN National Urban Freight Conference
- •
- Nuzzolo, A., Crisalli, U., Comi, A., and Sciangula, F., (2007), Metropolitan Freight Distribution by Railway: A Methodology to Support the Feasibility Analysis, METRAN National Urban Freight Conference B3-886;
- Bozicnik, S., (2007), New Innovative Intermodal Rail Freight Paradigm, Proc. of 11th World Conference on Transport Research, Berkeley, June 24-28
- K. Sivakumaran, X. Y. Lu, and M. Hanson, The Use of Passenger Transit Infrastructure for Goods Movement: A Bay Area Economic Feasibility Study, 89th TRB Annual Meeting, Jan.10-14, 2010; *Transportation Research Record*, No. 2162, *TRB, p.44-52*

Acknowledgement

- Project funded by Caltrans DRI (Division of Research and Innovations) through Contract 65A0359
- Support from Caltrans Mass Transit:
 - Joanne Sollenberger
 - Debbie Nozuka
- Active Participation of

FedEx Manager and Engineers:

Faisal Zeman, Michael Graham, Run Zhou

BART Engineers:

Richard Lu, Emery Mandel

