Biological motion processing: The left cerebellum communicates with the right superior temporal sulcus

Arseny A. Sokolov a,b,*, Michael Erb c, Alireza Gharabaghi a,d, Wolfgang Grodd e, Marcos S. Tatagiba a, Marina A. Pavlova b,f

a Department of Neurosurgery, University of Tübingen Medical School, Germany
b Developmental Cognitive and Social Neuroscience Unit, Department of Pediatric Neurology and Child Development, Children’s Hospital, University of Tübingen Medical School, Germany
c Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Medical School, Germany
d Development of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Aachen, Germany
e Department of Neuroimaging and MR Physics, University of Tübingen Medical School, Germany
f Institute of Medical Psychology and Behavioral Neurobiology, MEG Center, University of Tübingen Medical School, Germany

A R T I C L E I N F O

Article history:
Received 9 May 2011
Revised 21 July 2011
Accepted 15 August 2011
Available online 13 October 2011

Keywords:
Biological motion perception
Cerebellum
Functional magnetic resonance imaging (fMRI)
Superior temporal sulcus (STS)
Connectivity

A B S T R A C T

The cerebellum is thought to be engaged not only in motor control, but also in the neural network dedicated to visual processing of body motion. However, the pattern of connectivity within this network, in particular, between the cortical circuitry for observation of others’ actions and the cerebellum remains largely unknown. By combining functional magnetic resonance imaging (fMRI) with functional connectivity analysis and dynamic causal modelling (DCM), we assessed cerebro-cerebellar connectivity during a visual perceptual task with point-light displays depicting human locomotion. In the left lateral cerebellum, regions in the lobules Crus I and VII showed increased fMRI response to biological motion. The outcome of the connectivity analyses delivered the first evidence for reciprocal communication between the left lateral cerebellum and the right posterior superior temporal sulcus (STS). Through communication with the right posterior STS that is a key node not only for biological motion perception but also for social interaction and visual tasks on theory of mind, the left cerebellum might be involved in a wide range of social cognitive functions.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Veridical visual perception and understanding of others’ actions are indispensable in a variety of daily-life situations ranging from motor learning to complex social interaction and non-verbal communication. Brain imaging, electrophysiology and lesion studies help to identify the neural network engaged in visual processing of biological motion. The findings indicate involvement of several brain regions, including portions of the frontal (Saygin et al., 2004) and parietal cortices (Bonda et al., 1996; Grèzes et al., 2001; Pavlova et al., 2004; Vaina et al., 2001), the fusiform gyrus (Gobbini et al., 2007; Grossman and Blake, 2002; Peelen et al., 2006; Vaina et al., 2001) and, in particular, the posterior superior temporal sulcus (pSTS) (Beauchamp et al., 2002, 2003; Gobbini et al., 2007; Grossman and Blake, 2002; Pelphrey et al., 2003; Peuskens et al., 2005; Puce and Perrett, 2003; Saygin et al., 2004), mainly in the right hemisphere.

Deficient visual perception of body motion is observed in individuals with neuropsychiatric conditions associated with impairments in social cognition, such as autistic spectrum disorders, ASD (Blake et al., 2003; Klin et al., 2009; Koldewyn et al., 2010) and schizophrenia (Kim et al., 2005). Brain imaging points to reduced brain response to human body motion in the right temporal cortex in adolescents born prematurely with early white matter lesions, periventricular leukomalacia (Pavlova et al., 2009) as well as in autistic children (Kaiser et al., 2010). Veridical perception of body motion requires intact communication within the distributed brain network specialized for biological motion processing (Pavlova et al., 2007). Information flow, however, is primarily considered to be limited to cortico-cortical connections, and engagement of brain structures beyond the cerebral cortex such as the cerebellum has not yet been properly addressed. Since the first brain imaging data on cerebellar engagement in language processing (Petersen et al., 1989), the traditional view on the role of the cerebellum has progressively shifted from contributions to motor control and skilled motor behavior to a broad involvement in higher cognitive processing (for review, see Strick et al., 2009). Recent lesion data in patients with cerebellar tumors emphasize importance of left lateral cerebellar integrity for intact biological motion perception (Sokolov et al., 2010). However, a few previous brain imaging, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), studies produced controversial results in regard to topography of cerebellar activation in response to
biological motion (Bonda et al., 1996; Grossman et al., 2000; Ptito et al., 2003; Vaina et al., 2001). It remains unclear which cerebellar substructures are engaged and how the cerebellum may interact with the cortical circuitry underpinning action observation.

Findings on neuroanatomical architecture in non-human primates suggest that the parieto-temporal cortices might have contralateral connections with the cerebellum (Brodal, 1978; Clower et al., 2001; Dum and Strick, 2003; Glickstein et al., 1985; Schmahmann and Pandya, 1991). As the right parieto-temporal areas are of particular importance for visual processing of biological motion (Beauchamp et al., 2002, 2003; Grossman and Blake, 2002; Pavlova et al., 2004, 2009; Pelphrey et al., 2003), we expected that the left cerebellum might be engaged in the neural network dedicated to body motion processing. In the present work, we used event-related fMRI to measure blood oxygen level dependent (BOLD) signal while healthy volunteers performed a one-back repetition task with displays portraying human locomotion. In order to separate information revealed by motion from other cues, we took advantage of point-light biological motion consisting of a set of dots on the main joints of an otherwise invisible human body. Point-light animations represented either a human walker moving as if on a treadmill with no net translation or its scrambled version for which spatial positions of dots were randomly rearranged on the screen (Fig. 1). To elucidate cerebellar engagement in the neural network underpinning biological motion processing, functional and effective connectivity were assessed by using seed-voxel regression and dynamic causal modelling (DCM).

Material and methods

Participants

Thirteen healthy, right-handed, male volunteers (mean age 28.2±6.3 years) with normal or corrected-to-normal vision were enrolled in the study. None had a history of neurological or psychiatric disorders, head injuries, or medication for anxiety or depression. They were naïve as to the purpose of the study and did not possess previous experience with point-light biological motion stimuli. Informed written consent was obtained in accordance with the requirements of the local Ethical Committee of the University of Tübingen Medical School.

Biological motion stimuli and task

Participants were presented with a set of 100 point-light biological motion stimuli of two types. One type of stimuli portrayed a canonical point-light walker, and consisted of 11 dots placed on the head and main joints (ankles, shoulder, etc.) of an otherwise invisible human figure (Fig. 1A). The point-light walker was seen facing right and moving as if on a treadmill without translation (see Supplementary Materials for Video). A gait cycle was completed in 62 frames with frame duration of 20 ms, resulting in a walking speed of about 48 cycles per minute. The other type of stimuli was a scrambled walker, for which the spatial positions of dots were randomly rearranged on the screen so that the display lacked the implicit coherent structure of a canonical one (Fig. 1B). The motion of each dot of the scrambled display was identical to the motion of one of the dots defining the canonical figure. The size, luminance, and phase relations of the dots also remained unchanged. The animations were computer generated by using Cutting’s algorithm (Cutting, 1978), and displayed by using the software Presentation (Neurobehavioral Systems Inc., Albany, CA, USA). Each stimulus was presented for 1000 ms. The animations were projected on a screen outside the MRI scanner and subtended a visual angle of 4° in height and 2.5° in width. Participants viewed them through a tilted mirror located on the head coil. Participants performed a one-back repetition task, signaling a repeated stimulus of each type (canonical or scrambled) by a button press with their right index finger. Similar stimulation and task were used in previous magnetoencephalographic work (Pavlova et al., 2004). Here, they were adapted for fMRI.

Data acquisition and analysis

MRI recordings were obtained with a 3T scanner (TimTrio, Siemens Medical Solutions, Erlangen, Germany; 12 channel head coil). In all participants, the MRI acquisition frames were carefully positioned covering...
the most caudal cerebellar regions. Initially, a 3D T1-weighted magnetization-prepared rapid gradient echo imaging data set (MPRAGE; 176 sagittal slices, TR = 2300 ms, TE = 2.92 ms, TI = 1100 ms, voxel size = 1 x 1 x 1 mm³) was acquired as anatomical reference. Subsequently, a field map was recorded for later correction of magnetic field inhomogeneity. Echo-planar imaging sequences (EPI; 210 volumes, 36 axial slices, TR = 2500 ms, TE = 35 ms, in-plane resolution 3 x 3 mm², slice thickness = 3 mm, 1 mm gap) measuring the BOLD signal were obtained during the experimental task. We used an event-related design with a total session duration of 525 s. An initial baseline fixation period (25 s) was followed by five event-related blocks (75 s each) that were interleaved with five baseline epochs (25 s each). An event-related block included 20 trials, with both types of stimuli being equally represented. The stimulus order was pseudo-randomized to optimize the estimation efficiency. Stimulus onset intervals were jittered in steps of 500 ms from 2500 to 5000 ms that allowed for increased temporal resolution, and thus better estimation of the event-related response function.

The data were pre-processed and analyzed by using Statistical Parametric Mapping (SPM8, Wellcome Institute of Cognitive Neuroscience, London, UK, http://www.fil.ion.ucl.ac.uk/spm) in Matlab R2008b (MathWorks Inc. Sherborn, MA, USA). In each individual data set, the T1-weighted anatomical reference image was initially aligned with the AC–PC plane and the resulting transformation matrix was applied to the field map and EPI images. Subsequently, acquisition time delay and movement artifacts were corrected by using SPM algorithms for slice timing and realignment. EPI images were unwarped based on the estimated field map data. The resulting images were then co-registered to the anatomical reference image. The unified segmentation procedure of SPM was used to determine the parameters for subsequent normalization to MNI space. As a final pre-processing step, the normalized data were smoothed with an isotropic Gaussian kernel (8 mm full-width at half maximum).

Statistical analysis was based on a general linear model (GLM). Each condition was assigned a distinct regressor that was convolved with the hemodynamic response function. A high-pass filter with a cutoff-frequency of 1/256 Hz was applied to remove low frequency components. Serial autocorrelations were accounted for by modeling the error term as a first-order autoregressive process with a coefficient of 0.2. A second-level random effects analysis was run on the resulting individual whole-brain contrast images (canonical vs. scrambled biological motion). The group activation clusters (p < 0.05, corrected for multiple comparisons) were assigned to the corresponding anatomical sites with the help of automated anatomical labeling (Tzourio-Mazoyer et al., 2002) including the 3D-MRI human cerebellar parcelation (Schmahmann et al., 1999), as implemented in SPM.

Functional connectivity analysis

The seed-voxel regression approach reveals which brain areas exhibit similarity time courses as the seed region (Biswal et al., 1995). Regions of interest (ROIs) were selected in individual normalized functional data sets, with selection of the individual local maxima (for the contrast task vs. baseline; p < 0.001, uncorrected) located closest to the group maxima for the two left cerebellar clusters. Crus I and VIIB ROIs were identified in all thirteen participants and subsequently overlaid on individual normalized structural images to control for location of the selected ROIs in the lobules Crus I and VIIB. For individual maxima in Crus I, x-coordinates ranged from −40 to −43, y-coordinates from −52 to −58, and z-coordinates from −29 to −34 (MNI space). Individual cluster sizes for Crus I varied from 832 to 1168 mm³. For individual maxima in VIIB, the ranges were from −33 to −38 for x-coordinates, from −63 to −69 for y-coordinates, and from −49 to −54 for z-coordinates. Cluster sizes of the corresponding ROIs ranged from 216 to 336 mm³. Average time courses from these two ROIs were extracted in each subject and included in individual whole-brain multiple regression analyses. To control for effects of physiological processes, six head motion parameters as well as time series from white matter and CSF masks derived from segmentation of the normalized structural images were included as covariates of no interest. Statistical inference was based on second-level random effects analysis of the contrast images resulting from individual regression.

Effective connectivity analysis

Subsequently, DCM was used to study effective connectivity between the left cerebellar Crus I and the right pSTS. DCM, as implemented in SPM8, allows studying task-dependent interactions between brain regions, based on their estimated neural activity (Friston et al., 2003; Stephan et al., 2010). The individual maxima closest to the group maxima for Crus I and pSTS were identified and regional time series were extracted as the first eigenvariate of all activated voxels (at a threshold of p < 0.001, uncorrected) within an 8 mm radius of the individual maxima. The GLM created for the whole-brain analysis of the BOLD response was used as design matrix for DCM. Within-region coupling was modeled as recurrent self-connections (Friston et al., 2003), and visual input as reaching the pSTS. Fifteen different models with all possible types of interconnections between the pSTS and Crus I were constructed. The first three models assessed unidirectional communication from the pSTS to Crus I, either without any modulatory effects (model 1) or with modulation of this connection by processing of canonical (model 2) and scrambled biological motion (model 3). Model 4 assessed unidirectional communication from Crus I to the pSTS without modulatory effects. Modulation of this connection by canonical (model 5) and scrambled biological motion (model 6) were also considered. Bidirectional communication between the pSTS and Crus I was assessed in models 7–15. Model 7 did not include modulatory effects. Canonical biological motion modulated the connection from the pSTS to Crus I in model 8, and the connection from Crus I to the pSTS in model 9. Scrambled biological motion modulated the connection from the pSTS to Crus I in model 10, and the connection from Crus I to the pSTS in model 11. Both connections, from the pSTS to Crus I and from Crus I to the pSTS, were modeled either by canonical (model 12) or scrambled biological motion (model 13). Model 14 assessed modulatory effects of canonical biological motion on the connection from the pSTS to Crus I and of scrambled biological motion on the connection from Crus I to the pSTS. These modulatory effects were inverted in model 15. The models were compared by using fixed effects Bayesian model selection that provides negative free-energy values as an approximation to the log-evidences for the different models (Friston et al., 2007). Bayesian model selection favors models with both optimal fitting and complexity. Therefore, less complex models best explaining the observed data are preferred to apparently similar but less fitting and/or more complex models (Penny et al., 2004; Stephan et al., 2010). In order to obtain log-evidence differences required for model comparison, the log-evidence value of the least probable model (all three models 4–6 representing unidirectional communication from the Crus I to the pSTS were equally improbable) was subtracted from the log-evidence values of the other models. The optimal model was determined based on the greatest log-evidence difference. For the optimal model, Bayesian averaging was used to compute endogenous connectivity and modulatory parameters as well as their corresponding standard deviations and probabilities.

Results

fMRI brain activation during visual perception of body motion

In the fMRI whole-brain analysis, two regions in the left lateral cerebellum, the lobules Crus I (x = −42, y = −56, z = −32; MNI coordinates) and VIIB (x = −36, y = −66, z = −52), exhibited
increased response to human walking as compared to scrambled displays (p < 0.05, corrected for multiple comparisons; Fig. 1). In agreement with earlier findings (e.g., Beauchamp et al., 2002, 2003; Gobbini et al., 2007; Grossman and Blake, 2002; Peelen et al., 2006; Pelphrey et al., 2003; Peuskens et al., 2005; Saygin et al., 2004; Vaina et al., 2001), increased activity was also observed in the right temporal cerebral cortex, including the fusiform gyrus, middle temporal cortex and the pSTS (x = 56, y = −52, z = 12; p < 0.05, corrected for multiple comparisons; see Fig. 2A). Other regions functionally connected with the left cerebellar lobule Crus I were the right orbitofrontal cortex, the right anterior superior temporal gyrus and the left medial frontal gyrus (see Table 1B). The functional connectivity analysis with a seed region in lobule VIIB did not yield significant results.

Effective connectivity analysis

DCM, as implemented in SPM8, was used to assess effective connectivity (effective communication) between the left cerebellar lobule Crus I and the right pSTS during visual processing of biological motion. Fifteen models including all possible types of communication between the pSTS and Crus I and modulatory effects of canonical or scrambled biological motion on these connections were designed and compared by using Bayesian model selection (see Methods Section Effective connectivity analysis and Fig. 3). This analysis indicated that model 9 with bidirectional communication between the left cerebellar lobule Crus I and the right pSTS, and specific modulation of the outgoing connection from Crus I to the pSTS by processing of canonical biological motion represented the optimal model (Fig. 2C). This model also was the most probable model at individual level. The log-evidence difference between this most probable and the next probable model (bidirectional communication between the pSTS and Crus I without modulatory effects, model 7) was 7.83. This log-evidence difference corresponds to a Group Bayes Factor of 2515. Bayes Factors higher than 150 are considered very strong evidence in favor of one model as compared to another (Penny et al., 2004). The endogenous connectivity parameters for model 9 were 0.55 ± 0.15 for Crus I-to-pSTS communication and 0.51 ± 0.18 for pSTS-to-Crus I communication with probabilities of 99% for both parameters. The parameter for modulation of the connection from Crus I to the pSTS by processing of canonical biological motion was 0.13 ± 0.02, with a probability of 98%.

Discussion

The outcome of the fMRI analysis indicates specific engagement of the left lateral cerebellum in visual processing of body motion. Two regions in the left lateral cerebellar lobules Crus I and VIIB exhibited increased activity to human biological motion as compared to scrambled displays. The lack of right cerebellar activity underlines the specificity of left cerebellar involvement in the network dedicated to visual processing of biological motion. A few earlier brain imaging PET (Bonda et al., 1996; Pito et al., 2003) and 1.5T-fMRI (Grossman et al., 2000; Vaina et al., 2001) studies incidentally reported cerebellar activity during visual point-light biological motion tasks, and the findings are controversial as to cerebellar substrutures that matter. Two regions in the left midline cerebellum exhibited higher PET activation elicited by point-light animals running versus drifting across the screen (Pito et al., 2003). Increased left lateral cerebellar PET activation was found for point-light dance-like canonical as compared to scrambled displays (Bonda et al., 1996). Higher right midline cerebellar fMRI response was reported when contrasting canonical to scrambled point-light actions (jumping, kicking, running and throwing) during a one-back repetition task (Grossman et al., 2000). In the study by Vaina et al. (2001), in a two-alternative forced choice (2AFC) paradigm, five participants had to discriminate canonical from scrambled walkers or the global motion direction of the same stimuli. Elevated BOLD responses in both right lateral cerebellar hemispheres were shown for the biological motion discrimination task, with canonical and scrambled point-light displays pooled together and contrasted against baseline. The left lateral cerebellar region QuP (posterior quadrangular lobule or lobule VI), more posterior and superior to the Crus I activation site in our study, was active during the biological motion but not a global motion task (Vaina et al., 2001). The present data carefully acquired in such a way that the most caudal parts of the cerebellum were covered in all participants, dovetail with recent findings on compromised visual sensitivity to human locomotion in patients with left cerebellar tumors. Patients with lesions to the left lateral cerebellum exhibit deficits in visual sensitivity to point-light body motion, whereas medial lesions do not substantially affect visual perception of human locomotion (Sokolov et al., 2010). Convergent evidence from lesion and brain imaging studies is essential for establishing reliable structure-function relationships.

The outcome of the study provides the first evidence in favor of bidirectional communication between the left lateral cerebellum and the right pSTS. Given limited knowledge on cerebro-cerebellar communication during biological motion processing, assessment of task-related functional connectivity primarily served as an initial step to identify candidate regions for subsequent DCM (Friston et al., 2011). While the outcome of the functional connectivity analysis may also reflect similar but not interdependent responses to biological motion in pSTS and Crus I, DCM allows studying task-dependent causal interactions between brain regions based on their estimated neural
activity (Friston et al., 2003) and indicates effective connectivity between these regions.

Neuroanatomical studies in non-human primates have separately assessed connections from the STS to the pons (Brodal, 1978; Glickstein et al., 1985; Schmahmann and Pandya, 1991) and from the pons to the cerebellum (Brodal, 1979). In non-human primates, the dorsal bank of the anterior STS hosts the equivalent of the human multisensory pSTS responding to biological motion (Bruce et al., 1981; Oram and Perrett, 1994; Perrett et al., 1985; Puce and Perrett, 2003). Lesions to both anterior and posterior portions of the rhesus monkey STS result in degeneration of dorsolateral pontine nuclei (Brodal, 1978), that are also the anterior and posterior portions of the rhesus monkey STS result in degeneration of horizontal spread of retrograde transneuronal transport of horseradish peroxidase from the dorsolateral pons to the cerebellum (Brodal, 1979). In non-human primates, the dorsal bank of the medial STS further support these data (Glickstein et al., 1985).

For the first time, the present work indicates that the left lateral cerebellum not only receives input from the right pSTS, but also modulates functional activity in the right pSTS. The findings suggest the existence of possible cerebellar projections to the STS, for which there has been a lack of experimental evidence. Modulation of the connection from the cerebellum to the pSTS by canonical biological motion emphasizes importance of this back projection specifically for processing of this kind of motion. Two recent resting state functional connectivity MRI (fcMRI) studies suggested that the superior temporal auditory areas are connected with the cerebellar lobules V and VI (O’Reilly et al., 2010), and the inferior temporal cortex is connected with the cerebellar lobules V, VI, and Crus I (Krienen and Buckner, 2009). In contrast to resting state fcMRI, the outcome of the present study indicates effective task-dependent connectivity between the right pSTS and the left cerebellar lobule Crus I during visual processing of body motion. The evidence for two-way communication between the right pSTS and the left lateral cerebellum parallels previous neuroanatomical findings on closed loops between the cerebellum and parietal, motor and frontal cortices (Strick et al., 2009). Yet, a similar pattern of structural connectivity between the temporal cortex and the cerebellum has not been shown. Presumably, high tract curvature may account for the failure of diffusion tensor imaging (DTI) to detect possible fiber tracts between the cerebellum and the STS (Ramnani et al., 2006). A further step toward uncovering cerebro-cerebellar connectivity would be a combination of fMRI with specific DTI sequences and algorithms.

Reciprocal interaction between the left cerebellum and the right STS has broad implications not only for cognitive, but also for clinical neuroscience. The STS is considered a cornerstone of the topographically overlapping brain networks subserving visual processing of biological motion and social cognition (Allison et al., 2000; Puce and Perrett, 2003; for recent review, see Pavlova, 2011). Deficient body motion processing in survivors of premature birth suffering from periventricular lesions (Pavlova et al., 2006, 2007; Taylor et al., 2009) may result from altered cerebro-cerebellar connectivity. Several neuropsychiatric conditions, such as ASD and schizophrenia are associated with impaired visual perception of body motion and...
References

Peelen, M.V., Wiggett, A.J., Downing, P.E., 2006. Patterns of fMRI activity dissociate over-

Pavlova, M., Guerreschi, M., Lutzenberger, W., Krägeloh-Mann, I., 2010. Social interac-

Koldewyn, K., Whitney, D., Rivera, S.M., 2010. The psychophysics of visual motion and

Hein, G., Knight, R.T., 2008. Superior temporal sulcus

Hakon, R.A., Borgwardt, S., McGuire, P.K., Craig, M.C., Murphy, D.G., Pichon, M., Shergill,

This document discusses various topics related to neuroimaging and neuroscience, including studies on the role of the superior temporal sulcus in the perception of biological motion, and the use of fMRI to isolate distinct neural substrates for processing social and non-social stimuli. The authors explore the neural mechanisms underlying the recognition of biological movement and the production of biological movement in patients with early periventricular brain lesions. The text also highlights the use of motion-stimulated MEG responses to examine the neural correlates of social interaction and the role of the cerebellum in the recognition of biological motion.