Alessio Lomuscio
Wojciech Penczek*

Model checking security protocols:
a multi-agent system approach

Nr 1000

Warszawa, April 2007

* The author acknowledges partial support from the Ministry of Science and
Higher Education under grant number 3T11C01128
Abstract
We present a formalism for the automatic verification of security protocols based on multi-agent systems semantics. We give syntax and semantics of a temporal-epistemic security-specialised logic and provide a lazy-intruder model for the protocol rules that is arguably particularly suitable for verification purposes. We exemplify the technique by finding a (known) bug in the traditional NSPK protocol.
Keywords: Security protocols, model checking, authentication.

Streszczenie

Słowa kluczowe: Protokoły kryptograficzne, weryfikacja modelowa, uwierzytelnienie, intruz ‘lazy’.
1 Introduction

In protocol analysis it is of significant importance to be able to capture the concepts of what information a participant has throughout an exchange, what a participant can and cannot deduce throughout an exchange and whether or not particular sequences of moves exist resulting in the system reaching a particular state. While in some security specialised lines (such as all the ones rooted in the BAN proposal [3]), knowledge of the participants is explicitly and symbolically represented, of course, the formally oriented lines of Artificial Intelligence have a long and successful tradition in the development of formal tools for the representation of knowledge, such as temporal evolution of knowledge [8] of agents in a system as well as further refinements for security [10, 9]. Crucially, recent developments in the verification of some of these logics by means of symbolic model checking techniques [17, 15, 11], as well as the implementation of these tools in prototype systems [14, 6, 11] have now provided the area with a set of AI-inspired automatic tools to attempt the analysis of security protocols by means of efficient and automatic techniques.

In our own work in this line we have successfully verified by means of our own specialised model checkers [12, 13] the correctness of the dining cryptographer protocol [5] and the TESLA protocol [13] in terms of appropriate specifications expressed as temporal/epistemic formulas. But in doing so we have also found that our analysis cannot be extended to deal with all security protocols. In particular if we were to consider a protocol in which the intruder is allowed to operate in line with a full D-Y model [7] we would quickly have to consider a number of states/transitions higher than any model checker could ever handle. Simply put, at any step of any security protocol a principal could in principle compose and send an essentially unbounded number of messages to all other principals.

This limitation is not related to the knowledge-based approach pursued above but applies just as well to more traditional model checking approaches to the verification of security protocols. Indeed, while model checking approaches in security are typically concerned with checking reachability properties only (and not complex temporal/epistemic specifications) the same considerations apply. One of the most promising approaches to tackle this problem is the lazy intruder model developed by Basin, Mödersheim and Viganò in [4] and (to the best of our understanding) used together with a planning model checker [2] as part of the IST Project AVISPA [1]. Here, in the representation of the runs that may take place in the system, messages may be routed to the channel only when both the sender and the receiver are in a state in which the protocol allows for this message to be sent or received. In this way the model checker implementing
this semantics does not have to consider transitions that clearly do not lead to
runs in which the protocol terminates. Furthermore in the construction of a
run much is abstracted and left to the model checker’s unifying mechanisms to

In this research note we set out to define a semantics for temporal and epis-
temic logic based on ideas similar to the ones cited above. We aim to introduce
a lazy intruder model, integrate it with a temporal/epistemic logic and pair
this with a highly-efficient bounded model checking algorithm. While our ap-
proach is directly inspired by the lazy-intruder work cited above, there are also
considerable differences resulting from our objective to work on a fully-fledged
specification language involving temporal/epistemic operators as opposed to
simply checking reachability of states.

The scheme of the rest of the paper is as follows: in sections 2, 3 we give a
semantics to our approach. In Section 4 we define the logic and satisfaction for
the language. In Section 6 we exemplify the analysis in the case of a particular
authentication protocol (NSPK). In Section 7 we show how our formalisation
would produce an attack to NSPK.

2 Semantics

Since our intention is to bring together model checking with protocol analy-
sis to check explicitly what epistemic properties participants have (i.e., what
information they possess) we work on an extension of the framework of inter-
preted systems [8]. Interpreted systems are a transition-based semantics where
(global) states represent explicitly a snapshot of all components (or agents) in
the system. Transitions between states represent the result of global joint ac-
tions performed simultaneously (ala locked semantics) by all agents at a given
global states. The agents select actions to perform following a given local pro-

1

As discussed in the previous section the key idea of this approach is to employ
a symbolic, trace-based semantics for the analysis of security protocols. We
use the term “symbolic” to mean a compact, variable-based representation; for
instance, a symbolic computational trace is in the following a sequence in which

1Note the different use of the term “protocol” in interpreted systems semantics and as in
“security protocol”.

4
Interpreted systems & Security terminology

<table>
<thead>
<tr>
<th>Agents</th>
<th>Participants, Intruders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actions</td>
<td>Send/receipt of messages</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol moves</td>
</tr>
</tbody>
</table>

Figure 1: Correspondence between interpreted systems and security terminology.

some terms are effectively variables or terms, and therefore represent a set of traces. In contrast to this we employ the term “constant trace” to refer simply to a ground instance of a symbolic trace, i.e., to refer to a concrete sequence of computational states. Given the importance in this approach of unification at model checking time, this distinction between variables and ground terms is one that we employ throughout the paper for a variety of concepts. More details on this are offered below.

We begin by assuming a finite set of agents, or principals, $I \subseteq Ag$ including a nonempty set of intruders $\mathcal{I} \in I$, \mathcal{I} being the intruder in the system. Note that the principals are ground elements and uniquely correspond to real entities; so, for instance, if an intruder is impersonating a principal we only need to use one principal, the intruder, in our model.

To each principal $i \in Ag$ we associate a number of security specialised concepts: an ordered set of fresh N_f^i and old (in the sense of “used” or “seen”) nonces N_o^i, a set of keys K_i known to the agent, an index id_i indicating how many parallel sessions i is running, and an address θ_i (in the sense of origin/destination for the messages). Of key importance in the following is that in denoting an element of any of these sets we may use constant or variable terms denoting respectively a particular element of the set or a variable representing any element of the set. For clarity we use a lowercase letters to denote constant terms and uppercase letters to denote variable terms. For instance, n_a represents a constant nonce related to the constant principal a, n_A represents a constant nonce related to a variable agent A, whereas N_a represents a variable nonce related to a constant agent a, and, finally, N_A represents a variable nonce related to a variable agent A. Similarly for keys, k_a is a constant key for principal a, K_a is a variable key for the constant principal a, and K_A is a variable key for the variable key A. We refer to Figure 2 for a reference. Ultimately we shall be building traces of global states in which each global state is a tuple of local states for the principals. The local states will contain all the information the principals have been exposed to, i.e., the messages they have witnessed and sent. Each message will be represented by a tuple specifying origin, destina-
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>constant agent a</td>
</tr>
<tr>
<td>A</td>
<td>variable agent</td>
</tr>
<tr>
<td>k_a</td>
<td>constant key k related to constant agent a</td>
</tr>
<tr>
<td>k_A</td>
<td>(variable) key related to a variable agent</td>
</tr>
<tr>
<td>K_a</td>
<td>variable key related to constant agent a</td>
</tr>
<tr>
<td>K_A</td>
<td>variable key related to a variable agent</td>
</tr>
<tr>
<td>n_a</td>
<td>constant nonce n related to constant agent a</td>
</tr>
<tr>
<td>n_A</td>
<td>variable nonce related to a variable agent</td>
</tr>
<tr>
<td>N_a</td>
<td>(variable) nonce related to constant agent a</td>
</tr>
<tr>
<td>N_A</td>
<td>variable nonce related to a variable agent</td>
</tr>
</tbody>
</table>

Figure 2: Some examples of security-specialised symbols and their interpretation.

To build up a language of this sort we formally proceed as follows.

Definition 1 (Messages) A message msg is defined by the following grammar:

$$msg ::= i \mid I \mid n \mid N \mid k \mid K \mid (msg)_k \mid (msg)_K \mid msg \cdot msg,$$

where $i \in Ag$ (respectively $I \in Ag$) is a constant (respectively variable) principal, $n \in N^f \cup N^o$ (respectively $N \in N^f \cup N^o$) is a constant (respectively variable) nonce, and $k \in K$ (respectively $K \in K$) is a constant (respectively variable) key. The symbol \cdot denotes the concatenation between messages.

Messages represent the *content* that is being exchanged. We use *letters* to represent the content, the sender, and the receiver of a message. Because of possible impersonations by the intruder we use the *address of a participant not the participant himself* in the fields of sender/receiver.

Definition 2 (Letters) A letter is a tuple $lt = ((@s, @r), msg)$ where $@s$ is the sender’s address, $@r$ is the receiver’s address, and msg is the content of the letter lt. We call $((@s, @r), msg)$ the header of lt.

The above defines a constant letter. Like for any other component in the framework we may need to use variable letters as well. To do this and retain the structure of the letter we simply use variables appropriately in any of letter’s
terms. For instance \((@A, @b, n_A)\) represents a (variable) letter referring to a message from a variable sender \(A\) to a constant principal \(b\) in which the content is a variable nonce that depends on the value of the sender.

We are now ready to give definitions for the global states of a system. The global states are tuples of local states, which represent the states of a computation principals may be in.

Definition 3 (Local states) A local state for an agent \(i \in \text{Ag}\) is a 6-tuple \(l_i = (\text{Ag}_i, N^o_i, N^f_i, K_i, id_i, \text{lt}_i)\) where

- \(\text{Ag}_i \subseteq \text{Ag}\) is a set of agents known to \(i\),
- \(N^o_i\) is an ordered set of nonces that have been seen by agent \(i\). Each nonce in \(N^o_i\) is present in \(\text{lt}_i\),
- \(N^f_i\) is a set of fresh nonces available to agent \(i\),
- \(K_i\) is a set of keys known to agent \(i\),
- \(id_i\) is the number of sessions either completed or currently running in which agent \(i\) has participated in,
- \(\text{lt}_i \subset (\text{lt}, id)^+\) is a sequence of pairs of letters and sessions identifiers for the protocols sessions the agent has actively participated in.

We will use \(L_i\) to denote a set of the possible local states for agent \(i\), and \(G = \Pi^n_{i=1} L_i\) for a set of the global states.

Definition 4 A global state \(g = (l_1, \ldots, l_n)\) is a \(n\)-tuple of local states for all agents under consideration. An initial global state is a tuple \(g^0 = (l_1, \ldots, l_n)\), where \(l_i = (\text{Ag}_i, \emptyset, N^f_i, K_i, 0, \epsilon)\), for all \(i = 1, \ldots, n\) with the assumption that \(\bigcap^n_{i=1} N^f_i = \emptyset\) (i.e., the sets of nonces are disjoint).

We assume each agent \(i\) to perform send/receive actions \(\text{Act}_i\) according to a protocol, i.e., a function \(L_i \rightarrow 2^{\text{Act}_i}\) from local states to actions \(\text{Act}_i\), with the empty action \(\epsilon \in \text{Act}_i\). We assume all agents move in turns performing their actions to the global state; so we have transitions of the form \(T \subseteq G \times \text{Act}_1 \times \ldots \times \text{Act}_n \times G\), where we assume agents nondeterministically choose an action at any step from the set of actions offered to them by the protocol. We write \((g, g') \in T\) if \((g, (a_1, \ldots, a_n), g') \in T\) for some \((a_1, \ldots, a_n)\). The states, the actions, and the transitions as above define a branching time semantics.

3We assume that the function \(\text{First}(N^f_i)\) returns the first element in the ordered set and removes the same element from the ordered set.
$\pi = (g_0, g_1, \ldots, g_j)$ is a sequence of global states such that $(g_i, g_{i+1}) \in T$ for each $0 \leq i \leq j$. For a path $\pi = (g_0, g_1, \ldots)$, we take $\pi(k) = g_k$. By $\Pi(g)$ we denote the set of all the paths starting at $g \in G$.

3 Lazy D-Y Interpreted Systems

The section above is quite liberal in terms of what traces we allow in a system. Here we introduce constraints in the executions to model a particular set of assumptions known as Dolev-Yao (D-Y, for short) [7] assumptions. Specifically, we assume all participants have perfect recall and that the intruder has complete control of the channel, i.e., it can block/resend/route messages on the communication channel. We also assume that encryption is perfect, i.e., encrypted messages may only be decrypted with the correct key and encryption/decryption of messages is instantaneous.

We now formalise the assumptions above by restricting the possible transitions, thereby defining Lazy Dolev-Yao Interpreted Systems (LDYISs for short). While LDYISs model the whole class of D-Y protocols, each particular security protocol will define specific rules specifying the sequence of messages to be sent/received. We use the term “lazy” in the sense of [4] (see below).

To specify any protocol we give state transformer rules. These are rules that specify preconditions and postconditions on global states for a particular step in the protocol. For efficiency reasons (further discussed in the next section), a state transformer rule is given in a compact form specifying sets of possible transitions in a protocol. Given this, variables specifying particular components in the local states will generally appear in these rules.

Following the “lazy” approach in LDYISs for any rule to be triggered we need both the sender and the receiver to be in the correct protocol state for the transition to occur. In this way an enormous number of non-influential transitions is saved thereby increasing the efficiency of a model checking method applied to it. More precisely our state transformer rules are defined as follows.

Definition 5 (State transformer rules) For each step t in a protocol under analysis, we consider state transformer rules $G \xrightarrow{t} G'$ of the form $(\text{pre}(t), \text{post}(t))$, where G, G' are sets of global states, $\text{pre}(t)$ are preconditions on G, and $\text{post}(t)$ are postconditions on G'.

The preconditions are constraints that must be satisfied for the transition to be enabled; the postconditions specify updates to the local states occurring as a result of the triggering of the transition. Given that we use a lazy semantics $\text{pre}(t)$ always specifies matched moves between sender and receiver,
i.e., the sender only sends messages to receivers who are ready to execute the corresponding step in the protocol.

In the postconditions we often write $L_A' = L_A \circ c$ to denote the update of the set of local states for variable agent A by means of a component c. Note that typically c is a letter, a nonce, or a session identifier and the update is intended to be carried out on the relevant subcomponent of the local states; we do not add this explicitly to simplify the reading.

We further assume that after every move (send/receive), instantaneous decoding of the messages (provided a key is in possession of the intruder and/or principals) is executed.

Definition 6 (Lazy D-Y Interpreted Systems) Given a security protocol P and a set of propositional variables PV, an LDYIS M_P for P, or simply a model (for P), is a $n + 4$-tuple $M_P = (G, g^0, \mathcal{P}, \sim_1, \ldots, \sim_n, V)$, where:

- G is the set of global states reachable from g^0,
- g^0 is an initial state for the system,
- $\mathcal{P} = \bigcup_{g \in G} \mathcal{P}(g)$, where $\mathcal{P}(g) \subseteq \Pi(g)$ is the set of all paths starting at g compliant with the Lazy D-Y conditions above,
- $\sim_i \subseteq G \times G$ is an epistemic relation for agent i defined by $g \sim_i g'$ iff $l_i(g) = l_i(g')$, where $l_i : G \rightarrow L_i$ returns the local state of agent i given a global state.
- $V : G \times PV \rightarrow \{\text{true}, \text{false}\}$ is an interpretation for the propositional variables PV in the language.

The structure above satisfies also the following conditions:

- Agents have perfect recall: following receipt of a message agents add the message to their local state by pairing it with an appropriate session identifier.
- Every message sent by a principal is intercepted by the intruder, who records it in its local state.
- Upon receipt of messages all principals and intruders immediately decode any messages and submessages providing they have the key to do so.

We do not give the conditions above formally as they are rather intuitive and will be exemplified in the example below. It is clear doing so is not technically difficult although it is rather cumbersome.
Intuitively MP will be used to interpret a logic defined in the next section.
Also note the relations ∼_i are epistemic accessibility relations between states to be used to interpret an epistemic language as defined in the next section.

4 Temporal Logic of Knowledge

We here introduce a logical language to be interpreted on the semantics of the previous section. The language we use is a standard combination of epistemic logic and branching time temporal logic. Extensions are possible and worth considering but not pursued here.

Definition 7 (Logical Language) The logical language \(\mathcal{L} \) is defined by the following BNF expression: \(\phi ::= \text{sends}_i(msg) | \text{receives}_i(msg) | \text{has}_i(k) | \text{has}_i(n) | \neg \phi | \phi \land \psi | \K_i \phi | \EX \phi | \EU \phi | \EG \phi \), where \(\text{sends}_i(msg) \), \(\text{receives}_i(msg) \), \(\text{has}_i(k) \), \(\text{has}_i(n) \in PV \), \(msg \) is a message, \(k \in \mathcal{K}_i \) is a key, \(n \in \mathcal{N}_o \) is a nonce and \(PV \) - propositional variables.

The language above includes specialised propositional letters of the obvious meaning (\(\text{receives}_i(msg), \text{has}_i(k), \text{has}_i(n) \)), negation, conjunction, branching time operators (\(\EX, \EU, \EG \)) and epistemic operators (\(\K_i \)). \(\K_i \phi = \neg \K_i \neg \phi \) where \(\K_i \phi \) is read as “Agent i knows that \(\phi \)”. We use the dual \(\overline{\K}_i \) as the model checking technique presented below is based on bounded model checking. We interpret \(\mathcal{L} \) on LDYISs as follows.

Definition 8 (Satisfaction) Let \(M \) be a model, \(g = (l_1, \ldots, l_n) \) a global state, and \(\phi, \psi \) formulas in \(\mathcal{L} \). The satisfaction relation \(\models \), denoting truth of a formula in the model \(M \) at the global state \(g \), is defined inductively as follows:

- \(g \models \text{sends}_i(msg) \) iff ((@_i, @_j), msg), id) is an element of the sequence \(l_t \) in the local state \(l_i \) in \(g \), for some address @_j and session number id,
- \(g \models \text{receives}_i(msg) \) iff ((@_j, @_i), msg), id) is an element of the sequence \(l_t \) in the local state \(l_i \) in \(g \), for some address @_j and session number id,
- \(g \models \text{has}_i(n) \) iff \(n \in \mathcal{N}_o \),
- \(g \models \text{has}_i(k) \) iff \(k \in \mathcal{K}_i \),
- \(g \models \neg \phi \) iff not \(g \models \phi \)
- \(g \models \phi \land \psi \) iff \(g \models \phi \) and \(g \models \psi \),

\({}^3M\) is omitted when understood.
• $g \models R_i \phi \iff (\exists g' \in G) \ g \sim_i g' \text{ and } g' \models \phi$,
• $g \models EX \phi \iff (\exists \pi \in \mathcal{P}(g)) \ s.t. \ \pi(1) \models \phi$,
• $g \models EG \phi \iff (\exists \pi \in \mathcal{P}(g)) \ s.t. \ (\forall k \geq 0) \ \pi(k) \models \phi$,
• $g \models E(\phi \cup \psi) \iff (\exists \pi \in \mathcal{P}(g)) \ (\exists k \geq 0) \ s.t. \ \pi(k) \models \psi \text{ and } (\forall 0 \leq j < k) \ \pi(j) \models \phi$.

Note the special propositions are interpreted according to their intuitive meaning on their respective logical states and temporal and epistemic operators are as standard.

5 Bounded model checking for \mathcal{L}

In this section we adapt an algorithm for bounded model checking (BMC) for \mathcal{L}. BMC works by translating both the model and the formula to be checked into propositional formulas. The satisfaction of their conjunction is then checked by an efficient SAT-solver. BMC is particularly efficient when the analysis involves looking for faults in protocols whose runs are finite and key properties are expressed as formulas in the existential form.

BMC was originally introduced for verification of the existential fragment of the logic CTL [16], and then extended to ECTLK [15]. BMC is based on the observation that some properties of a system can be checked over a part of its model only. We present here the main definitions of BMC for \mathcal{L}, but refer the reader to the literature cited above for more details. In order to restrict the semantics to a part of the model we define k-models, where the paths of \mathcal{P} are replaced by their prefixes of length k.

Model checking over models can be reduced to model checking over k-models. The main idea of BMC for \mathcal{L} is that we can check φ over M_k by checking the satisfiability of the propositional formula $[M, \varphi]_k := [M^x \cdot g^x]_k \land [\varphi]_{M_k}$, where the first conjunct represents (a part of) the model under consideration and the second a number of constraints that must be satisfied on M_k for φ to be satisfied. Once this translation is defined, checking satisfiability of an \mathcal{L} formula can be done by means of a SAT-checker.

We provide here some details of the translation. We begin with the encoding of the transitions in the system under consideration. We assume $L_i \subseteq \{0,1\}^{k_i}$, where $k_i = \lceil \log_2(\|L_i\|) \rceil$ and we take $k_1 + \ldots + k_n = m$. Moreover, let Ix_i be an \prec-ordered set of the indices of the bits of the local states of each participant i of the global states, i.e., $Ix_1 = \{1, \ldots, k_1\}, \ldots, Ix_n = \{m - k_n + 1, \ldots, m\}$. Then, each global state $g = (l_1, \ldots, l_n)$ can be represented by $w = (w[1], \ldots, w[m])$.

11
(which we shall call a global state variable), where each \(w[i] \) for \(i = 1, \ldots, m \) is a propositional variable. A sequence \(w_{0,j}, \ldots, w_{k,j} \) of global state variables is called the \(j \)-th symbolic \(k \)-path. The propositional formula \([M^\varphi]_k\), representing the \(k \)-paths in the \(k \)-model, is defined as follows:

\[
[M^\varphi]_k := L^\varphi(w_{0,0}) \land \bigwedge_{j=1}^{f_k(\varphi) - 1} \bigwedge_{i=0}^{k-1} T(w_{i,j}, w_{i+1,j}),
\]

where \(w_{0,0} \) and \(w_{i,j} \) for \(0 \leq i \leq k \) and \(1 \leq j \leq f_k(\varphi) \) are global state variables, and \(T(w_{i,j}, w_{i+1,j}) \) is a formula encoding the transition relation \(T \). \([M^\varphi]_k\) encodes the initial state \(g^0 \) by \(w_{0,0} \) and constrains the \(f_k(\varphi)^4 \) symbolic \(k \)-paths to be valid \(k \)-paths in \(M_k \).

The next step of the algorithm consists in translating an \(\mathcal{L} \) formula \(\varphi \) into a propositional formula. Let \(w, v \) be global state variables. We need the following propositional formulas for the encoding: \(p(w) \) encodes a proposition \(p \) of \(\mathcal{L} \), \(H(w, v) \) represents logical equivalence between global state encodings (i.e., representing the same global state), \(HK_i(w, v) \) represents logical equivalence between \(i \)-local state encodings (i.e., representing the same \(i \)-local state), \(L_{k,j}(l) \) encodes a backward loop connecting the \(k \)-th state to the \(l \)-th state in the \(j \)-th symbolic \(k \)-path \(j \), for \(0 \leq l \leq k \). The translation of \(\varphi \) at state \(w_{m,n} \) into the propositional formula \([\varphi]_{k}^{[m,n]}\) is as follows:

\[
[p]_k^{[m,n]} := p(w_{m,n}), \quad \text{for } p \in PV,
\]

\[
[K]_k^{[m,n]} := \bigvee_{i=1}^{f_k(\varphi)} \left(I^\varphi(w_{0,i}) \land \bigvee_{j=0}^{k} \left[\alpha \right]_{k}^{[j,i]} \land HK(w_{m,n}, w_{j,i}) \right),
\]

\[
[\text{EG}a]_k^{[m,n]} := \bigvee_{i=1}^{f_k(\varphi)} \left(H(w_{m,n}, w_{0,i}) \land \bigvee_{l=0}^{k} L_{k,i}(l) \land \bigwedge_{j=0}^{k} \left[\beta \right]_{k}^{[j,i]} \right),
\]

\[
[\text{E}(aU\beta)]_k^{[m,n]} := \bigvee_{i=1}^{f_k(\varphi)} \left(H(w_{m,n}, w_{0,i}) \land \bigvee_{j=0}^{k} \left[\gamma \right]_{k}^{[j,i]} \land \bigwedge_{l=0}^{k-1} \left[\delta \right]_{k}^{[j,l]} \right).
\]

Given the translations above, we can now check \(\varphi \) over \(M_k \) by checking the satisfiability of the propositional formula \([M^\varphi]_k \land [\varphi]_{M_k} \), where \([\varphi]_{M_k} = [\varphi]_{k}^{[0,0]}\). The translation above is shown in [15] to be correct and complete. Given that \(\mathcal{L} \) is a propositional temporal epistemic language in which the propositions’ interpretation depends on the global states only these results apply to \(\mathcal{L} \) as well.

\footnote{The function \(f_k \) determines the number of \(k \)-paths sufficient for checking an \(\mathcal{L} \) formula, see [15] for more details.}
6 Needham Schroeder Public-Key Protocol (NSPK)

The framework above is general and provides an abstract framework for the analysis of protocols. We now instantiate the framework above with a case study analysis of NSPK [3] by introducing specific NSPK rules. The NSPK protocol is defined by the following three steps:

1. $A \rightarrow B: \{A, N_A\}_{K_B}$
2. $B \rightarrow A: \{N_A, N_B\}_{K_A}$
3. $A \rightarrow B: \{N_B\}_{K_B}$

In the first step A (the Initiator) sends to B (the Responder) his identity A and a fresh nonce N_A, both encrypted with B’s public key K_B. B responds to A with the nonce N_A and a fresh nonce N_B, both encrypted with A’s public key K_A. In the third step, A sends back to B the nonce N_B encrypted with B’s public key K_B.

Recall that we assume the Intruder ι to have full control of the channel. He can stop all messages, and can route messages on the network with any header and with any content that he is able to produce by composing, decrypting, and encrypting messages with keys known to him.

Session identifiers are local to the participants. When starting a new session (or receiving the first message of a new session) each participant increases his session identifier by one and records the message sent together with the header and the new session number. When a participant sends (or receives) another message, we record it in its local state together with the header and the corresponding session number. When the Intruder intercepts a message sent in the first step of the protocol, we record this with the original session identifier. At any other step the intruder checks his history to use the correct session identifier.

We start by describing the transition rules representing A sending a message to B, as in step 1 of the protocol. We define two rules for each step plus one rule, which is applied to all the steps. For step 1 we have: one rule for an honest send from A to B, one rule for a fake send from $\iota (A)$ to B (impersonation of A by the intruder), and one rule for an ι-forward to B (forward message from the intruder to B). In all the rules below we assume that $A \neq B$.

Definition 9 (Rule T_1: honest-send-1-$(A \rightarrow B)$) $G \rightarrow G'$, such that

** Preconditions:**

\[
(((\neg A, \neg B), (A, N_A)_{k_B}), Id'_A) \not\in L_A,
\]
Postconditions:
If $A \neq \iota$, then
$L'_A = L_A \circ \left((\ltimes_{A \leftarrow B}, (A, N_A)_{k_B}), Id_A + 1\right) \circ \{N_A\} \circ \{Id_A + 1\},$
$L'_B = L_B \circ \left((\ltimes_{A \leftarrow B}, (A, N_A)_{k_B}), Id_B + 1\right) \circ \{N_A\} \circ \{Id_B + 1\},$
where $N_A = \text{first}(N'_A)$. (Rule 15)

By $L_A \circ c$ we denote the update of L_A defined by c. The result of the update consists in the following change of the local state of A:
the pair $\left((\ltimes_{A \leftarrow B}, (A, N_A)_{k_B}), Id_A + 1\right)$ is added to the sequence μ_A in the local state of A, the nonce $\{N_A\}$ is added to the set of old nonces of A (i.e., to N'_A), and the session number of A is increased by 1 for $c = Id_A + 1$. Similar considerations apply to $L_i \circ c$. Since this is a symbolic rule, in order for it to be executed it requires unification of all the variables present thereby any transition between global states. Notice that L_B does not change because the letter sent by A is intercepted by the intruder (so L_i changes) and only later possibly forwarded to B (this is later described by the rule ι-forwards in Definition 15). By $N_A = \text{first}(N'_A)$ we mean that for each principal $p \in \{a, b\}$ playing the role of A we have $N_p = \text{first}(N'_p)$.

Note also the rule above covers several cases including a, ι sending to b, as well as b, ι sending to a, and a, b sending to ι. Notice that if $B \neq \iota$, the session number of ι does not change because it represents only the number of sessions initiated or participated in by it (not intercepting messages).

The next rule encodes a fake send from $\iota(A)$ to B in step 1.

Def. 10 (Rule T_2: fake-send-1-$\iota(A \rightarrow B)$) $G \rightarrow G'$, such that

Preconditions:
$((\ltimes_{\iota \leftarrow B}, (A, N_i)_{k_B}), Id) \not\in L_B$.

Postconditions:
$L'_B = L_B \circ \left((\ltimes_{\iota \leftarrow B}, (A, N_i)_{k_B}), Id_B + 1\right) \circ \{N_i\} \circ \{Id_B + 1\},$
$L'_i = L_i \circ \left((\ltimes_{\iota \leftarrow B}, (A, N_i)_{k_B}), Id_i + 1\right) \circ \{N_i\} \circ \{Id_i + 1\},$
where $N_i \in \{\text{first}(N'_i)\} \cup N'_0$, $N_A = N_i$, and $A \neq \iota$.

The above models a situation in which the Intruder, impersonating A, sends a message to B. In doing so he uses any nonce N_i, either freshly generated or old. The message is directly delivered to B, thereby updating B's local state.
If

Preconditions:

Definition 11 (Rule \(T_3: \ \text{honest-send-2}(B \rightarrow A)\)) \(G \rightarrow G'\), such that

Postconditions:

If \(B \neq \iota\), then

If \(B = i\), then

Postconditions:

If \(B \neq \iota\), then

If \(B = i\), then

This rule is split into two parts, each governing whether or not \(B\) represents the Intruder. When \(B \neq \iota\) the rule describes two possibilities, i.e., \(B\) replying to an honest send from \(A\) or to a fake send from \(\iota(A)\). In both cases only \(L_B\) and \(L_i\) change as the message is intercepted by the Intruder and only later possibly forwarded to \(A\). If \(B\) replies to an honest send, then \(A' = A\), otherwise \(A = \iota\) and \(A'\) could be the name of any participant the Intruder is impersonating. The conditions \(((@A, @B), (A', N_A)_k_B), Id_B) \in L_B\) and \(((@B, @A), (N_A, N_B)_k_A), Id_A) \notin L_B\) guarantee that \(B\) has received the message from \(A\) according to the first step of the protocol and has not yet sent a reply to \(A\). When \(B = \iota\) the rule describes the case where \(B\) is replying to an honest send from \(A\). The next rule is for a fake send from \(\iota(B)\) to \(A\) in step 2.

Definition 12 (Rule \(T_4: \ \text{fake-send-2}(\iota(B) \rightarrow A)\)) \(G \rightarrow G'\), such that

Preconditions:

\(((@A, @\iota), (A, N_A)_k_B), Id_i) \in L_i,\)
\(((@A, @\iota), (A, N_A)_k_B), Id_A) \in L_A,\)
\(((@\iota, @A), (N_A, N_A)_k_A), Id_A) \notin L_i,\)
\(((@\iota, @A), (N_A, N_A)_k_A), Id_A) \notin L_A,\)
Postconditions:
\[L'_A = L_A \circ ((@_A, @(A), (N_A, N_B)_{k_A}), Id_A) \circ \{N_B\}, \]
\[L'_i = L_i \circ ((@_i, @(A), (N_A, N_i)_{k_A}), Id_i) \circ \{N_i\}, \]
where \(N_B = N_i \), \(N_i \in \{\text{First}(N'_i)\} \cup N'^o \) and \(N_A \in N'^o \) or \(\{N_A, N_i\} \) \(k_A \in L_i \).

The above rule codes the situation where the Intruder, impersonating \(B \), sends a message to \(A \). To do so he replays the nonce \(N_A \) generated before by \(A \) and any nonce \(N_i \). Alternatively, \(i \) can send any other message \(\{N_A, N_i\} \) \(k_A \) known to him (without knowing the encrypted nonces). The next rule is for an honest send from \(A \) to \(B \) in step 3.

Definition 13 (Rule \(T_5 \): honest-send-3-(A \(\rightarrow \) B)) \(G \rightarrow G' \), such that

Preconditions:
If \(A \neq i \), then
\[(((@_B, @_A), (N_A, N_B)_{k_A}), Id_A) \in L_A, \]
\[(((@_A, @_B), (N_B)_{k_B}), Id_A) \not\in L_A. \]
If \(A = i \), then
\[(((@_B, @_A), (N_A, N_B)_{k_A}), Id_A) \in L_A, \]
\[(((@_A, @_B), (N_B)_{k_B}), Id_A) \not\in L_A, \]
\[(((@_B, @_A), (N_A, N_B)_{k_A}), Id_B) \in L_B. \]

Postconditions:
If \(A \neq i \), then
\[L'_A = L_A \circ (((@_A, @_B), (N_B)_{k_B}), Id_A), \]
\[L'_i = L_i \circ (((@_A, @_B), (N_B)_{k_B}), Id_A). \]
If \(A = i \), then
\[L'_A = L_A \circ (((@_A, @_B), (N_B)_{k_B}), Id_A), \]
\[L'_i = L_i \circ (((@_A, @_B), (N_B)_{k_B}), Id_B), \]
where \(N_B \in N'^o_A \).

This rule is split into two parts, depending on whether \(A \neq i \) or \(A = i \).

In the first case, two possibilities are covered: \(A \) replying to an honest send from \(B \) or to a fake send from \(i(B) \). Then, \(L_A \) and \(L_i \) are only changed as a message is intercepted by the Intruder and only later forwarded to \(B \). If \(A \) replies to an honest send, then \(B' = B \), otherwise \(B = i \) and \(B' \) could be the name of any participant the Intruder impersonates. The conditions: \((((@_B, @_A), (N_A, N_B)_{k_A}), Id_A) \in L_A \), \((((@_A, @_B), (N_B)_{k_B}), Id_A) \not\in L_A \) guarantee that \(A \) has received the message from \(B \) according to step 2 and has not yet sent a reply to \(B \). When \(A = i \) the rule describes the case where \(A \) is replying to an honest send from \(B \). The last condition in the preconditions says that \(B \) has sent the message \((N_A, N_B)_{k_A} \) in step 2.

The next rule is for a fake send from \(i(A) \) to \(B \) in step 3.
Definition 14 (Rule T_6: fake-send-3- ($\iota(A) \rightarrow B)$) \(G \rightarrow G' \), such that

Preconditions:
- \(((\@B, \@A), (N_A, N_B)_{k_B}, Id) \in L_i,\)
- \(((\@B, \@A), (N_A, N_B)_{k_B}, Id) \in L_B,\)
- \(((\@A, \@B), (N_B)_{k_B}, Id) \notin L_B,\) and
- \(((\@A, \@B), (N_B)_{k_B}, Id) \notin L_i,\)

Postconditions:
- \(L'_B = L_B \circ (((\@B, \@B), (N_B)_{k_B}, Id) \in L_B,\)
- \(L'_i = L_i \circ (((\@A, \@B), (N_B)_{k_B}, Id) \in L_i.\)

In the above rule the intruder impersonating \(A\) sends a message to \(B\) consisting of a nonce \(N_B\) encrypted with the key \(k_B\). This message must be composable by the Intruder, i.e., \(N_B\) has to be in the set \(\{First(N'_B)\} \cup N^\circ\). Moreover, the message \((N_B)_{k_B}\) must be acceptable by \(B\); so \(N_B\) must have previously been sent from \(B\) to \(A\) and the reply has not yet been received by \(B\). The above is represented by the following condition: \(((\@B, \@A), (N_A, N_B)_{k_A}, Id) \in L_B,\) and the reply has not yet been received by \(B\). To avoid to represent repeated sending of the same messages by the Intruder, the last condition is also imposed.

Definition 15 (ι-forwards (steps 1-3)) \(G \rightarrow G' \), such that

Step 1: Preconditions:
- \(((\@A, \@B), (A, N_A)_{K_B}, Id) \in L_i,\)
- \(((\@A, \@B), (A, N_A)_{K_B}, Id) \notin L_B,\)

Postconditions:
- \(L'_B = L_B \circ (((\@A, \@B), (A, N_A)_{K_B}, Id) \in L_B,\)
- \(L'_i = L_i \circ (((\@A, \@B), (A, N_A)_{K_B}, Id) \in L_i.\)

Step 2: Preconditions:
- \(((\@B, \@A), (A, N_A)_{K_B}, Id) \in L_A,\)
- \(((\@B, \@A), (A, N_A)_{K_B}, Id) \notin L_A,\)
- \(((\@B, \@A), (A, N_A)_{K_B}, Id) \notin L_i.\)

Postconditions:
- \(L'_A = L_A \circ (((\@B, \@A), (A, N_A)_{K_B}, Id) \in L_A,\)
- \(L'_i = L_i \circ (((\@B, \@A), (A, N_A)_{K_B}, Id) \in L_i.\)

Step 3: Preconditions:
- \(((\@B, \@A), (N_A, N_B)_{K_B}, Id) \in L_A,\)
- \(((\@B, \@A), (N_A, N_B)_{K_B}, Id) \notin L_B,\)
- \(((\@B, \@A), (N_A, N_B)_{K_B}, Id) \notin L_i.\)

Postconditions:
- \(L'_B = L_B \circ (((\@B, \@B), (N_B)_{K_B}, Id) \in L_B,\)
- \(L'_i = L_i \circ (((\@B, \@B), (N_B)_{K_B}, Id) \in L_i.\)

To conclude the encoding of the D-Y intruder we use the above \(\iota\)-forward rules to represent the Intruder forwarding messages it has previously intercepted.
At each step, the precondition specifies the local states of the sender and the Intruder at which a forward can take place. Notice that in the above rules nonces do not need to have the indexes that unify, i.e., $N_A = n_a$ and $A = b$ is a valid unification.

7 Example

We now use the encoding above to show how this generates a run of the NSPK protocol and use the model checking technique above to show a possible attack. We consider 3 agents (2 participants a and b communicating in the presence of an intruder i). We begin our run at an initial global state $g_0 = (l_0^a, l_0^b, l_0^i)$, where $l_0^j = \{ \{a, b, i\}, 0, N_f^j, \{k_a, k_b, k_i, k_i^{-1}\}, 0, e\}$, for $j \in \{a, b, i\}$.

We assume to begin the run with a initiating an NSPK exchange with i thinking he is an honest participant.

1.1 First move: honest - send - 1 - a \rightarrow Definition 9 applies, where $A = a$, $B = i$, and $N_A = n_a$. The resulting updates are computed:
$$l_0^a = l_a \circ (((a, a)|a, (a, n_a)_{k_a}, 1) \circ \{n_a\} \circ \{1\},$$
$$l_0^i = l_i \circ (((a, a)|a, (a, n_a)_{k_a}, 1) \circ \{n_a\} \circ \{1\},$$

where $n_a \in N_{na}$, $n_a = First(N_f^a)$. i does decoding moves, extract nonces, decompose, etc.

As well known i, impersonating a, can use the message it has received to start a (fresh) second parallel session with b.

2.1 Second move: fake - send - 1 - $i(a)$ \rightarrow b. Definition 10 applies, where $A = i$, $B = b$, and $N_i = n_a$. As a result, b thinks a’s address is $@i$. The following updates are computed:
$$l_0^b = l_b \circ (((a, a)|a, (a, n_a)_{k_a}, 1) \circ \{n_a\} \circ \{1\},$$

As a result of this message b responds to i.

2.2 honest - send - 2 - b \rightarrow Definition 11 applies, where $A = i$, $B = b$, $N_A = n_a$, $N_B = n_a$, $Id_B = 1$, and $A’ = a$.

$$l_0^b = l_b \circ (((a, a)|a, (a, n_a)_{k_a}, 1) \circ \{n_a\} \circ \{1\},$$

where $n_b = First(N_f^b)$. The intruder can now simply replay the message received from b to show his credentials to a.

1.2 honest - send - 2 - i \rightarrow a - Definition 12, where $B = i$, $A = a$, $N_a = n_a$, $N_b = n_a$, $Id_B = 1$, and $A’ = a$.

$$l_0^a = l_a \circ (((a, a)|a, (a, n_a)_{k_a}, 1) \circ \{n_a\},$$

Principal a has now been fooled by i and concludes the authorisation protocol by:
2.3 honest - send - 3 - a ⫯ t - Definition 13, where A = a, B = t, N_B = n_b, B' = t, A' = a, and I_d_A = 1.
\[l'_a = l_a \circ (((@a, @b), (n_b)_{k_b}, 1)) \]
\[l'_t = L_t \circ (((@a, @b), (n_b)_{k_b}, 1)) \]
ι is now in the position to authenticate himself to b which he does by replaying the message.
2.3 fake - send - 3 - ϕ(a) ⫯ b - Definition 14, where B = b and N_B = n_b.
\[l'_b = l_b \circ (((@a, @b), (n_b)_{k_b}, 1)) \]
\[l'_t = l_t \circ (((@a, @b), (n_b)_{k_b}, 2)) \]
The above two interleaved sessions define the following execution: \(g_0 \xrightarrow{1.1} g_1 \xrightarrow{1.2} g_2 \xrightarrow{1.3} g_3 \xrightarrow{1.3} g_4 \xrightarrow{1.3} g_5 \xrightarrow{1.3} g_6 \).
We now aim to show that the run above does not satisfy an intuitive specification in the logic \(L \). We can represent one of the correctness criteria in the authentication protocol by using the following condition: if \(b \) completes an execution started by \(a \) using nonce \(n_b \), then \(b \) and \(a \) know that \(n_b \) is a secret shared by \(a \) and \(b \) only (i.e., it is unknown to \(i \)). This condition can be expressed by the following formula:
\[\varphi = AG((\text{has}_a(n_b) \land \text{has}_b(n_a) \land \text{send}_{s_a}((n_b)_{k_b}) \land \text{receives}_b((n_b)_{k_b})) \Rightarrow (K_b(\neg \text{has}_a(n_b)) \land K_a(\neg \text{has}_b(n_b)))) \]
Clearly the specification above is not satisfied in the model. It is easy to see that the run we have produced before satisfies the negation of the formula above:
\[EF(\text{has}_a(n_b) \land \text{has}_b(n_a) \land \text{send}_{s_b}((n_b)_{k_b}) \land \text{receives}_b((n_b)_{k_b}) \land (K_b(\text{has}_a(n_b)) \lor K_a(\text{has}_b(n_b)))) \]

7.1 A translation for BMC
We here exemplify how a bounded model checker implementing the lazy approach above would have found the counterexample. We model executions for the following parameters: \(M \) - the number of sessions, \(N \) - the number of participants including the Intruder (whose identifier is exactly \(N \)). We show a general encoding of global states, the initial state, and the rule \(T_1 \) only. Next, for \(M = 2 \) and \(N = 3 \), we show the encoding of some propositions of \(\varphi \) and of \(\varphi \) itself. To begin we represent a local state of a participant \(i \) by the following vector of vectors of propositional variables \(w_i = (w_{i1}, w_{i2}, w_{i3}, w_{i4}, w_{i5}, w_{i6}) \), representing with:
- \(w_{i1} \) - the agents known to \(i \) (of length \(N[\log_2(N)] \)),
- \(w_{i2} \) - the nonces seen by \(i \) (of length \(2M[\log_2(2MN)] \)),
- \(w_{i3} \) - the fresh nonces of \(i \) (of length \(M[\log_2(NM)] \)),

19
In the following we assume that for each agent \(i \in \mathbb{N} \) \(\in \text{similar fashion by means of Boolean variables) \}.

- \(w_i^4 \) - the keys known to \(i \) (of length \(2N[\log_2(2N)] \)),
- \(w_i^5 \) - the number of sessions run by \(i \) (of length \([\log_2(M)] \)),
- \(w_i^6 \) - the sequence of \((lt, id)\) (of length \(3M \times LD\)), where \(LD = 2[\log_2(N)] + [\log_2(2MN + N)] + [\log_2(2MN)] + [\log_2(2N)] + [\log_2(M)] \).

In the following we assume that for each agent, address @\(i \), nonce \(n_i \), key \(k_i \), and session number \(id_i \) we have defined its boolean representation (encoding) \([i], @i, [n_i], [k_i], \text{and } [id_i]\), respectively (this is unproblematic and can be done in similar fashion by means of Boolean variables).

Let \(w = (w_1^{i,0}, \ldots, w_6^{i,0}) \) be a global state variable, where \(w^{i,0} = (w_1^{i,0}, \ldots, w_6^{i,0}) \) represents a local state for agent \(i \). For a vector of propositional variables \(w = (w_1, \ldots, w_n) \) by \((i_1, \ldots, i_m)(w)\), where \(m \leq n \) and \(i_j \in \{0,1\} \), we mean the formula \(\wedge_{j=1}^m b(i_j, w_j) \land \wedge_{j=m+1}^n \neg w_j \) with \(b(1, w_j) = w \) and \(b(0, w_j) = \neg w \).

The encoding of \(w^0 \) is \((0,0,\ldots,0)\) is encoded by \(I_0^0(w) = \Lambda_{i=1}^N I_0^0(w^i) \), where \(I_0^0(w^i) = [1] \ldots [N](w_1^{i,0} \land (0)w_2^{i,0} \land \ldots [n_i] \ldots [k_N] \cdot \ldots) \cdot (0)w_5^{i,0} \land (0)w_6^{i,0} \). By \([x] \cdot [y]\) we mean the concatenation of the binary encodings of \(x \) and \(y \).

The encoding of \(T(w, w') \) equals to \(\vee_{i=1}^{N-1} [T_i(w, w')] \), where \([T_i(w, w')]\) is the propositional encoding of the rule \(T_i \).

To represent the boolean translation representing all the moves in an execution we need to encode propositionally each rule \(T_i \) from the previous section.

The propositional encoding is cumbersome, although, of course, the aim of the method is for these to be computed automatically. We report below an encoding of the postconditions of \(T_1 \) for the case where \(A \neq \emptyset \) (the rest can be worked out similarly) simply to show that this can be obtained even by hand, albeit laboriously.

\[
\begin{align*}
\vee_{i=1}^{N-1} \left(\left(w_5^0 = w_5^0 \circ \left(\left(i, \text{dec} \left(\text{First}(w_3^i) \right) \right) \right), \text{dec} (w_5^i) + 1 \right) \right) & \land \\
(w_2^0 = w_2^0 \circ \text{First}(w_3^i) \right) \land (w_5^0 = \text{dec}(w_5^i) + 1) & \land \\
\Lambda_{i \in \{1,4,5\}} (w_i^N \equiv w_i^N) & \land \\
\Lambda_{i \in \{1,4,5\}} (w_i^d \equiv w_i^d) \right) \lor \\
\left(w_6^0 = w_6^0 \circ \left(\left(i, \text{dec} \left(\text{First}(w_3^i) \right) \right) \right), \text{dec} (w_6^i) + 1 \right) & \land \\
(w_2^0 = w_2^0 \circ \text{First}(w_3^i) \right) \land (w_5^0 = \text{dec}(w_5^i) + 1) & \land \\
\Lambda_{i \in \{1,4,5\}} (w_i^N \equiv w_i^N) & \land \\
\Lambda_{i \in \{1,4,5\}} (w_i^d \equiv w_i^d), \right)
\end{align*}
\]

where \(w_i^0 \circ \left(\left(lt, id \right) \right) \) denotes \(w_i^0 \) extended with the encoding of \((lt, id)\), i.e., \([lt], [id]; \text{dec}(w_i^j)\) denotes the value encoded by \(w_i^j \), \(w_2 \circ \text{First}(w_3^i) \) denotes...
w_2^i\text{ extended with the encoding of the first nonce of } w_3^j\text{ and at the same time removing that nonce from the encoding } w_3^j,\text{ and } w' \equiv w \text{ encodes the equivalence of the corresponding propositions of } w \text{ and } w'.

Encoding for agents ids, nonces and keys can be easily obtained. In fact assume that for } N = 3 (a = 1, b = 2, i = 3),\text{ and } M = 2,\text{ we consider the following:}

\[a = \{0_a\} = (0,1), \quad b = \{0_b\} = (1,0), \quad [a] = \{0\} = (1,1), \quad [n_a] = (0,0,1), \quad [n_b] = (0,1,0), \quad [n] = (0,1,1), \quad [n_a] = (1,1,0), \quad [n_b] = (1,1,1), \quad \]

\[k_a = (0,0,1), \quad k_b = (1,1,0), \quad k = (0,1,0), \quad [k_a] = (1,0,1), \quad [k_b] = (1,0,0), \quad [k'_{-1}] = (0,1,1), \text{ as } id_i \text{ is a number, we take simply its binary encoding.}

With the above we can encode k-models exactly in the same way any bounded model checker would do.

To encode the formulas to be checked, let } w = (w^a, w^b, w') \text{ be a global state variable. The encoding of the propositional variables } has_a(n_b), \text{ has}_a(n_a), \text{ and } has_a(n_b) \text{ is as follows:}

\[
\begin{align*}
\text{has}_a(n_k)(w) &= (\neg w_{2,1}^a \land w_{2,2}^b \land w_{2,3}^b) \lor (\neg w_{2,4}^a \land w_{2,5}^b \land w_{2,6}^b), \\
\text{has}_b(n_a)(w) &= (\neg w_{2,1}^b \land \neg w_{2,2}^a \land w_{2,3}^b) \lor (\neg w_{2,4}^a \land \neg w_{2,5}^b \land w_{2,6}^b), \\
\text{has}_b(n_b)(w) &= (\neg w_{2,1}^b \land w_{2,2}^a \land w_{2,3}^b) \lor (\neg w_{2,4}^a \land w_{2,5}^b \land w_{2,6}^b).
\end{align*}
\]

The encoding of } sends_{a}(n_k) \text{ and } receives_{b}(n_k) \text{ is similar. To encode the formula } \neg \varphi \text{ we need three symbolic paths as } f_b(\varphi) = 3,

\[
\begin{align*}
\left[\neg \Box_b(\text{has}_a(n_b) \land \text{has}_a(n_a)) \land \text{ sends}_{a}(n_k) \land \text{ receives}_{b}(n_k) \land \Box_b(\text{has}_a(n_k)) \lor \Box_b(\text{has}_a(n_a))\right]_{0}^{0,0} := & \vee_{i=1}^{3} \left(H'(w_{0,0}, w_{0,1}) \lor \vee_{j=0}^{6} (\text{has}_a(n_b)(w_{j,i}) \land \right. \\
& \text{ has}_b(n_a)(w_{j,i}) \land \text{ sends}_{a}(n_k)(w_{j,i}) \land \text{ receives}_{b}(n_k)(w_{j,i}) \land \\
& \left. \vee_{m=1}^{4} (I_{g'}(w_{0,m}) \lor \vee_{n=0}^{6} (\text{has}_a(n_b)(w_{n,m}) \land H_{K_b}(w_{j,i}, w_{n,m})) \lor \vee_{m=1}^{4} (I_{g'}(w_{0,m}) \land \\
& \vee_{n=0}^{6} (\text{has}_a(n_b)(w_{n,m}) \land H_{K_a}(w_{j,i}, w_{n,m})))\right)
\end{align*}
\]

The translations exemplified above could be fed to a SAT-solver thereby returning satisfaction for the conjunction of the specification formula considered on the sub-run shown.

8 Conclusions

Approaches to model checking security protocols based on Artificial Intelligence logics have been attempted before [12, 18, 13]. However, while these approaches have been shown to verify correctly the protocols presented, they cannot readily be extended to tackle the whole class of D-Y protocols. Essentially, if no restrictions are put on the messages the intruder can generate, any model checking approach would generate all possible moves thereby producing a too large state space. In the lazy approach only matched send/receive moves are generated thereby greatly limiting the state space without losing general-
ity. In this note we attempted to make three contributions. First we have taken inspiration from the ideas of the lazy-intruder model [4] to implement LDYISs, a MAS based semantics for security protocols. Second we have defined a general approach to transition rules that generate LDYISs runs on which a temporal-epistemic logic can be interpreted. Third the semantics of LDYISs is immediately ready to be model checked by means of any SAT-based methods such as bounded model checking. The formalism presented here differs from the one pursued in the Avispa project in that it uses MAS inspired semantics and a fully-fledged temporal/epistemic language to check protocols (as opposed to reachability only). Technically, the approaches hardly remember one another as the semantics is rather different. We find the expressive power of temporal/epistemic specifications particularly appropriate for security protocols. The approach can be seen as an attempt to limit the massive state explosion in the verification of security protocols. We are eager to implement the technique presented here to evaluate experimentally our approach.

References

