
Structured Services Composition:
design and implementation

Geert Monsieur, Monique Snoeck, and Wilfried Lemahieu

Katholieke Universiteit Leuven
Faculty of Business and Economics

The Leuven Institute for Research on Information Systems (LIRIS)
Naamsestraat 69, 3000 Leuven (Belgium)

geert.monsieur,monique.snoeck,wilfried.lemahieu@econ.kuleuven.be

Abstract. Modern services composition languages such as e.g. the Busi-
ness Process Execution Language (BPEL) define business processes as
sequence constrains on message exchanges. These types of process de-
scriptions are often very complex, because they incorporate many low-
level, technical details. As a result, the high-level overview of the business
process is easily lost. Therefore we provide a way to structure the compo-
sition and orchestration of business services. The structuring technique
is based on the concept of business events which is the result of previous
research. In this paper we propose the design and implementation of a
specific business event architecture that makes structured services com-
position possible. The implementation in a Web services environment
functions as a proof-of-concept of our approach.

Keywords: Services Composition, Orchestration, Business Processes

1 Introduction and problem situation

1.1 Information systems supporting business processes: a need for
structured composition

Essentially, business processes define how tasks are executed in order to reach
some business goal. The idea of business process modelling and the implemen-
tation of business processes as a separate layer on top of information systems,
dramatically changed the architectural principles of software development. Un-
til recently, information system support for the tasks in a business process was
often realised by means of large monolithical applications that include the rules
governing the execution of tasks into the programming code. This entails very
unflexible systems that require a lot of time to be adapted to the ever changing
business. Component based development was a first step towards a more flexible
information system architecture, but the idea of reconfigurable systems really
gained ground with the concept of service oriented architectures.
The basic idea behind the service oriented architecture is that business processes
should be supported by highly independent, composable and reconfigurable ser-
vices. This idea changed the mission of software engineers: software engineers

are expected to understand the business so they can devise appropriate busi-
ness services and mechanisms to aggregate these services. Obtaining this goal
would dramatically increase flexibility, since this way every (changing) business
scenario would easily be supported by (re)assembling the appropriate business
services. For business people it is important that the services used to support
their business processes offer functionality that directly contributes to the busi-
ness goals.
Beautiful as this concept can be, it is far from easy to realise. Processes are
hierarchical in nature: high level processes are iteratively refined to lower level
processes down to the very details of collaboration protocols that define who
sends information to whom and when. Finally, these lower level processes are
used as the basis for business process enactment, e.g. by being translated to
BPEL. As a result, the implemented processes only contain the most detailed
description of a business process, resulting in the loss of the higher level view.
It is therefore important that process implementation documents can be traced
back to the higher level business processes they originate from. This traceability
can be improved by following a structured approach to business process imple-
mentation and adopting the right level of granularity for the transition from
process to service.
As an example, consider a simple process where at some point a document needs
to be signed by three parties. The higher level process will contain a task sign,
whereas the lower level implementation will split this into three tasks, sign by a,
sign by b and sign by c, and specify the details, of who triggers the signature
task, who signs first, who sends the document to whom, ... and so on. Especially
when this sequence is part of a larger scale process, one easily gets lost in the
details of messages sent back and forth between parties.
In the next section, we very briefly illustrate the structuring concept that we
propose by means of real-life case. The structuring concept entails aspects both
for the modelling of processes as for the implementation of service composition.
Full details of the modelling approach can be found in [7, 16–18]. In this paper
we present the high level implementation architecture and a proof of concept by
means of web services. Furthermore we demonstrate that by using a mechanism
of dynamic subscription, services can easily be plugged in and out the service
composition.

1.2 Modern way of composition: Web services orchestration

Web services orchestration refers to an executable business process that can in-
teract with both internal and external Web services. The interactions occur at the
message level. They include business logic and task execution order, and they can
span applications and organizations to define a long-lived, transactional, multi-
step process model [14]. The business process execution language (BPEL) is the
leading standard language for orchestration of Web services. A BPEL process
defines how multiple service interactions are coordinated to achieve a business
goal, as well as the state and the logic necessary for this coordination [11]. Figure
1(a) shows an example of a business process defined in a typical BPEL manner.

�����������	

�������������
�

��
�������

��������	
������

������
�	��

����������

	�
�����

��
����

�
�������

������

�������
�

�����
�

�

�
�
��
��

�
�

�

�
�
��
�
��
�
�
��
�
�

�
�
�
�
�
�
��
�
�
�
���
��
�
�
�
�
��
�

�
�
��
�
�
�
�
��

�
�

�
�

�
�
��
�
�
�
�
��

�
�

�
�

�
��
�
�
�
�
�!
�
�
�
�
�
��
���
�
�
�

"�
�
��
���
�
�
�
��
�
�
�
��
��
�

"�
�
��
���
�
�
�
��
�
�
�
��
��
�

"�
�
�
�
�

"�
�
�
�
�

#
�
�
�
�
�
��
�
�
�
�
�
�

�
�
�
�
�
�
��
�
�
�
���
��
�
�
�
�
��
�

(a) A traditional BPEL process

����������	

�������������

�������������	��
	����	�
�

�����������
����

����������

	�
�����

��
����

�
�������

������

�������
�

�����
�

�

�
�
��
�
��
�
�
��
�

�
�����

�
��

������ ����������

�
�
�
�
�
�
��
�
�
�
���
��
�
�
�
�
��

�
��
�
�
�
�
��

�
�

�

�
��

�
�
�
�
�
�
�
�
�

!
�
"
�

�
#�
�
�
�
�
�
�
��
�
�
��

�
��

�
�
�
�
�
�
�
�
�

�
��

�
�
�
�
�
�
�
�
�

�
��

�
�
�
�
�
�
�
�
�

�
��

�
�
�
�
�
�
�
�
�

(b) Business event orchestration

Fig. 1. Unstructured versus structured orchestration

We consider a business process for order handling in a telecommunication com-
pany that provides broadband services to its customers. Executing the business
process is done by orchestrating four business services (Sales and Marketing,
Service Provisioning, Finance and Customer Support). As one can see in figure
1(a), in a BPEL process definition typically the sequence of business process ac-
tivities and the sequence of message exchanges needed for the coordination of a
specific activity are interwoven. Business concerns are mixed with technical (e.g.
coordination) aspects. In this way managing business processes means manag-
ing a huge amount of communication messages which is difficult. The fact that
messages required for coordinated processing of a business activity are included
in the BPEL process definition hampers the overview of the high-level business
task or process. Defining business processes as sequence constraints on message
exchanges is a too low-level task. The challenge is to structure the spaghetti of
messages so that business process design and (automated) execution becomes a
less painful and complex job.

2 Towards a structured services composition: raising the
abstraction level

To structure the composition of services we introduce the concept of business
events [7]. From a bottom-up perspective a business event is a grouping of a
set of message exchanges. All grouped messages are relevant for one specific ac-
tivity and match a real-world business phenomenon. We say that the logically
related messages constitute a business event. This allows to separate business

event sequencing and business event notification. Notification refers to the fact
that business events are always related to different parties that need to be no-
tified (the business event participants). These parties are the different business
services used for the processing of a business event. In fact, the notification as-
pect of business events differs from the notification of traditional events. Instead
of notifying parties of an occurred event, notifying business event participants is
about notifying there is a desire to process a specific business event or activity
(thus the business event still needs to occur). As a result, if one looks closely
at the message exchanges, one can see that messages are not only exchanged
for notification purposes, but often also for validation purposes (e.g. checking if
there are unpaid orders). In particular, all parties involved in a business event
may enforce business rules and constraints as preconditions on the event. If one
party finds one or more preconditions to be violated, the entire system rejects
the event, and no processing should take place in any of the applications. If
processing has already occurred, it is rolled back or compensated, depending
on the desired business coordination protocol. In this sense, events incorporate
a transactional aspect. In this way the required architecture for business event
orchestration is different from a fire-and-forget event architecture [3].
Hence, in order to process a business event two aspects need to be taken care
of: notification and coordination. In that way, from a top down perspective a
business event is a business activity which is atomic and which requires a set
of (notification and coordination) messages. It is important to understand why
business event coordination is necessary. In a business event several aspects are
abstracted away. One of these abstractions is about the atomicity of business
event. When designing at the business level, architects count on the consistent
processing of business events. Coordination should be implicitly present. The
business demands that events never are processed just partially. In that way
business events become high-level units of coordination and atomic units of (in-
ter)action. This allows to use business events as building blocks for business
processes (as shown in figure 1(b)) and the process designer does not need to
take care of a number of aspects which are abstracted away.
Introducing the high-level concept of a business event at the business level raises
the abstraction level, and reduces complexity. This leads to several benefits for
the business. By using abstract business events at the business process level it
should be easier to reason about the behavior of systems while executing business
processes. The goal (of abstraction) is to isolate those aspects that are important
for some purpose (e.g. focusing on business processes) and suppress those aspects
that are irrelevant [2, 15]. Important aspects in the context of business events
are the global business activity (called a business event) and the participants
of a business event. This can easily be respresented by a so called service event
table. In this table the rows are about business events and the columns refer to
business services. If a business service is a business event participant the corre-
sponding cell is marked. Temporarily suppressed or abstracted aspects are the
specific messages exchanges needed for event notification and the coordinated
processing of the business activity or event.

Previous research has demonstrated that the concept of business event based
coordination can be mapped to different types of platforms [7]. Furthermore
the use of business events also make life easier in the context of business pro-
cess verification, both in terms of horizontal consistency as in terms of vertical
consistency [1, 17]. Horizontal consistency refers to the mutual compatibility of
different business processes (e.g. of collaborating partners). Vertical consistency
is considered as checking the compatibility between a business process and the
supporting information system.
In previous research we used a descriptive evaluation method [5] to validate the
design of the event based coordination architecture in a (Web) services envi-
ronment [4]. In this research we further validate the concept by implementing a
proof of concept for a Web services based business event architecture. We believe
Web services are very useful to apply the ideas of (structured) services composi-
tion. In the next section we provide a high-level overview of our business event
architecture. Subsequently, in section 4, we focus on the details of the implemen-
tation and illustrate it with our running example. Finally, in section 5 we draw
some conclusions.

3 High-level design of a business event architecture

As noted before our business event architecture is based on a combination of two
existing Web services standards. The choice of this combination of Web services
specifications is the result of previous research [4]. In the following subsection
we briefly summarize the aspects of WS-Brokered Notification (Figure 2(a))
and WS-Coordination Framework (Figure 2(b)). As we will illustrate in section
3.2 these specifications play a central role in our design of a business event
architecture.

3.1 Reuse of existing Web services standards

WS-Brokered Notification WS-Brokered Notification is part of the WS-
notification family of specifications that defines a framework for event notifi-
cation in a Web services context. Figure 2(a) gives an overview of the entities
defined in WS-Brokered Notification. We briefly discuss the different entities.
An event is published by a so called publisher. This entity creates a notifica-
tion message based on an event it is capable of detecting. The publisher does
not have the responsibility for sending the notification message to the appro-
priate receivers. This task is reserved for the notification producer. This entity
distributes notification messages that were created by the publisher. In order
to distribute notification messages the notification producer should make use
of a list of interested and registered notification consumers. This list is kept
by the so called subscription manager. The latter entity is responsible for sub-
scription management tasks (retrieving subscription status, unsubscribing and
renewing). A subscriber is an entity that sends subscription requests to the no-
tification producer on behalf of a notification consumer. To structure the overal

����������
	
�������
��

�
������

���������

	
�������
����
���

	
�������
��

��
�����

���������
��

�����

������
�������������������
��

�����
�������
����

�����
��������������
�����

�
�����

���

���������

����������������� �
���

�
���

(a) WS-Brokered Notification

�������

�������

�
�
�
��
�
�

����������	
���

�������������	�

��	
���
����������

������	������

��	
���

��	�����������	
���

��	��������

��	��������

������������������

�
��
	�
��
��
��
��
�	
��
��
��

�
��
��
�	�
���
�

�������������������

�������������������

�
�
��
�
�
�
�
�	

��
�
	
�

�

�
�
�
�
�
�

�
�
��
�
	
��
�
�

��
���
�	�
���
�

�

����������	

���������	������

������������������

������ �

�

� �

�

�

�

(b) WS-Coordination Framework

Fig. 2. Reused Web services specifications

eventing architecture one can use the concept of a notification broker which bun-
dles the notification producer and subscription manager. In summary, the broker
has two main responsibilities, distributing notification messages (the notification
producer’s task) and managing subscriptions (the subscription manager’s task)
(see figure 2(a)). Beside these basic functionalities the broker can provide addi-
tional added-value functions. Examples of these functions are logging notification
messages, transforming topics or notification message content [10].

WS-Coordination Framework (WS-CF) The purpose of the Web services
Composite Application Framework (WS-CAF) standardized by OASIS is to de-
fine a generic and open framework for applications that contain multiple services
used in combination (composite applications). The framework consists of three
specifications: WS-Context, WS-Coordination Framework (WS-CF) and WS-
Transaction management.
Since we are not interested in the specific coordination protocols (defined in
the WS-Transaction management specification) for the moment, but rather in
the high-level coordination architecture defined in WS-CAF we only discuss the
WS-Context and WS-CF specifications. Figure 2(b) presents an overview of the
architecture defined in the WS-CAF specification.
In general, coordination can be seen as the act of one entity (known as the coor-
dinator) disseminating information to a number of participants or components
for some domain-specific reason. The reason could be to reach consensus on a
decision like in a distributed transaction protocol, or simply to guarantee that
all components obtain a specific message, as occurs in a reliable multicast en-
vironment [9]. All these kinds of coordination have something in common. The
idea is that when components are being coordinated, information known as the
coordination context is propagated to tie together operations which are logically
part of the same coordinated activity. The WS-Coordination Framework specifi-
cation is built starting from this idea. It defines a generic framework which can

be used to propagate context information, independent of the coordination pro-
tocol used. As such a context provides a way to correlate a set of messages into
a larger unit of work by sharing common information such as a security token
exchanged within a single sign on session. It can be used to identify an activity or
a business event. The purpose of WS-Context is to handle and manage context
information [12]. It provides an interface (context service) where components
can request the creation of a coordination context. Since the propagation of con-
text information is necessary before any coordination can occur, the request of
context creation can be seen as the activation of the coordination. Additionally
WS-context defines message exchanges used to query the content of a context
or the state of coordination - this happens via the context manager service. The
latter functionality is especially useful when a context contains a large amount
of data and is not supported in WS-Coordination [8]. Once components have
received context information they can register for coordination by talking to the
registration service mentioned in the context information. Actual coordination
is realized by protocol communication between the participant service and the
participating (registered) services. Context information typically consists of a
reference to the registration service of a coordinator, the coordination type and
protocol-specific information [13].

3.2 A Web services based business event architecture

This subsection shows how one can construct a Web services based business
event architecture using an eventing specification (WS-Brokered Notification)
and a coordination specification (WS-Coordination Framework).
An event based specification is used for notifying business event participants
when an entity triggers a business event and requests processing of a business
event. Because of the atomicity property of a business event we also need an
additional coordination functionality. The WS-CF states that coordination of
multiple Web services in choreography may be required to ensure the correct re-
sult of a series of operations comprising a single business transaction [13]. Since
a business event is precisely an activity that represents a series of operations
comprising a single business transaction, it seems rational to use WS-CF for
business event coordination. The concept of context functions as the glue that
binds all low-level one-to-one messages into a high-level business event.

An event-based specification as the basis WS-Notification defines the pub-
lisher as the entity that publishes the event. In the context of business events
the publisher acts as the entity that triggers (publishes) the business event. This
entity can be a business event participant or a higher-level entity like a business
process engine. As described in the WS-Notification specification it is the respon-
sibility of the notification producer to send event notification messages to the
appropriate event consumers. The notification messages inform the consumers,
which are the business event participants, about the triggered business event.

The notification producer can retrieve a list of business event participants from
the subscription manager. The latter entity stores an overview of business events
and the business event participants. In other terms one can state that the sub-
scription manager holds the service event table. An entity subscribing at the
subscription manager registers itself as a business event participant.

Adding a coordination mechanism A fire-and-forget architecture based on
an event notification specification (e.g. WS-Notification) is not enough to imple-
ment a business event approach. It lacks a coordination mechanism which guards
the atomicity of a business event. The basics of WS-CF are based on dissemi-
nating context information to accomplish the coordination task. The notification
producer should activate a coordination process for each event notification. This
activation occurs by sending a request for context creation to the coordination
entities (in particular the context service). As such the coordination entities can
prepare the coordination process. Next, the basic idea is to include the con-
text information in the traditional notification messages sent by the notification
producer. In that way event consumers or business event participants receive con-
text information and can register themselves for the coordination of the business
event processing (as described in the coordination specifications). In the rest of
this paper when we refer to the business event context we refer to the context
concept defined in the WS-CF specification.

Complete design Figure 3 shows an overview of how one can build a busi-
ness event architecture with the use of WS-Brokered Notification and WS-
Coordination Framework.
First a publisher triggers a business event by sending a message to the notifica-
tion broker. Then the broker’s notification producer activates the coordination
by sending a context creation request and receives context information from the
context service. Subsequently the notification producer retrieves the business
event participants for the triggered event and can notify the appropriate con-
sumers. Context information is included in the notification messages. Next, the
notified business event participants need to be registered for the coordination
process. If we would apply the actions as defined WS-Coordination framework
strictly, the business event participants should register themselves with the reg-
istration service. However, when using a business event approach we want to be
sure that every business event participant (as marked in the service event ta-
ble) is involved in the event coordination process. This implies letting business
event participant register themselves is probably not the best way of working,
since it does not guarantee that every business event participant will be reg-
istered and involved in the processing of a business event. Therefore, it seems
more suitable to delegate the registration process to the notification producer
because this entity is already informed of which business services are business
event participants (this was needed for notifying the correct business services).
Overall business event coordination is done by the specified coordination proto-

col between the coordination entities (connected in the broker) and the business
event participants.

�
�
�
��

�
���	
���������

��	
����

���������������

�����������

�������������

��������

��	����������

�������

���������������������

������	���������� �!"

#������������

�������

������������

�������

��������

������� �������

������������

�������������

�������

$�����������������

������������
����"

$�����������������

������������
����"

�������������	��%��

������	���������� ���%�����������������"

#����������

	��������������

������������

�
�
�
��

�
�

Fig. 3. A business event architecture based on WS-Brokered Notification and WS-
Coordination Framework

4 Implementation of the business event architecture

Although the previous section gives already a good idea how one can construct a
business event architecture we believe it is also valuable to add a proof-of-concept
to our presented business events approach. Therefore we have implemented the
described business event architecture and tested it with a real-life case.

4.1 Java Web services and graphical user interfaces

Java Web services The implementation of the business event architecture and
example business services (the business event participants) is done in Java. All
Web services are implemented as Java Session Beans which were deployed on
a JBoss Application Server 4.2.2. Behind the scenes, all persistent information
relating to business event types, business event instances, business event partici-
pants, business event contexts and registrations is handled by entity beans. The
entities were mapped on a Postgresql 8.2 databases using the Hibernate per-
sistence framework. Each service used different databases to increase the loose
coupling between the services. To simplify the test environment all Web services
were running on the local application server, but since the loose-coupling na-
ture of (Web) services it is quite easy to run the business services on different
locations and machines and still achieving coordinated and structured business
services composition.
In the implementation we ignored the Publisher role as mentioned in the WS-
Brokered notification specification. The focus in our implementation was on the

coordinated processing of business events. Therefore in the test implementation
it is only possible to trigger business event types starting in the notification
producer. There is no so called publisher in our implementation setting. A well-
equipped business processes supporting information system would have an addi-
tional service running to coordinate the sequencing of different business events.
In that way we could really test a full business process, but we believe the most
important task is to process the business events separately in a coordinated way.
If that is proven to work correctly, business events can be used as building blocks
for business processes. Then it is only a small step to implement a system that
triggers business events in a row as defined in the business process.

Graphical user interfaces To evaluate the implementation we made use of a
few graphical user interfaces. We created graphical user interfaces for the notifi-
cation producer, the subscription manager and the different business services or
business event participants. Using the notification producer’s interface it is possi-
ble to trigger business events and see the current status of processing of business
event instances. One can cleary see if a business event instance is still in co-
ordination or is already (un)succesfully finished. Via the subscription manager
you can add business event types (giving a name), business event participants
(giving a name and a WSDL location) and manage the services event table. The
user interface of a business service or business event participant allows to see
received business events context or business event notifications and observe the
current status of processing of business event instances. Furthermore it provides
the test user a way of manually indicating whether preconditions considering a
business event instance are violated or not. For more details about the interfaces
we refer to the following section that discusses a real-life business example.

4.2 Telecommunication company case as test example

In the beginning of this article we mentioned a business process for order han-
dling in a telecommunication company that provides broadband services to its
customers (see figure 1(b)). The business process is composed of four business
services (Sales and Marketing, Service Provisioning, Finance and Customer Sup-
port). As one can see in figure 1(b) the business process can be described with
a specific sequence of business events: create order, install, invoice and pay. It
is important to notice the different preconditions that comes with e.g. create
order event: Price setting ok? Technologically feasible? No unpaid orders? Each
of these preconditions are related to one specific business service. These business
services are called the business event participants. This means these business
services need to be notified of the desire to process the business event and the
business event requires coordinated processing in these services. As discussed
earlier the connections between business events and business services or busi-
ness event participants are summarized in the service event table. This table is
part of the subscription manager. The user interface to manage the service event
table is shown in figure 4.

Fig. 4. The services event table: which business services are involved in processing a
business event

4.3 Details of processing a business event instance

In this subsection we will discuss the details of processing a business event in-
stance. In particular we will focus on the processing of the create order and pay
business events of the example described in section 4.2. We will explain the pro-
cessing by referring to the overal architecture (see figure 3) and some screenshots
of our test implementation (see figures 5, 6(a), 6(b), 6(c), 6(d) and 7).
Firstly we will examine the processing of the create order business event. In

Fig. 5. The notification producer after triggering Create order event

figure 5 one can see that the user interface of the notification producer indicates
that the test user has triggered a business event type, namely the create order
event. This means there is a business event instance (here with id 1) that is
being coordinated. More precisely a lot of activities are happening after some-
one triggered a business event. Firstly the notification producer activates the
coordination process by sending a request for business event context creation to
the context service (see figure 3). Once the coordination context is at hand the
notification producer can start sending out notifications to the appropriate event

consumers or business event participants. To know which business services are
business event participants for the create order event the notification producer
can call the subscription manager. The latter service indeed holds the service
event table (see figure 4). One can observe that it is quite easy to dynamically
add a business service as a business event participant by using the check boxes
shown in figure 4. We also developed a graphical interface for our subscription
manager service which allows adding business event types and business services
at runtime. Adding a business event type only requires a name for the business
event type, while adding a business service requires beside a name also a WSDL
location. All entered business event types and business services are automatically
included in the services event table. In the services event table window one can
subscribe business services for business event types by marking a specific cell in
the table (see check boxes in figure 4).
If one looks closely at the create order row in the service event table one should
notice that there are three business event participants for this business event.
So these three business services (Sales and Marketing, Service Provisioning and
Finance) receive the business event notifications which include also the business
event context. In figure 6(a), 6(b) and 6(c) one can see these service did re-
ceive the notification and context. Next the notification producer registers the
business event participants with the registration service so as to be included in
the coordination process (see figure 3)). Once all business event participants are
registered, the notification producer gives the participant service the green light
to start coordinating the processing of the business event (see figure 3). In the
test environment we only supported a simple twho-phase commit coordination
protocol. This means the participant service starts with asking every business
event participant to check preconditions for the create order event. As such you
can see e.g. in figure 6(a) that the Sales and Marketing service (one of the three
business event participants) has one unanswered preconditions check considering
business event instance create order (1). Next it is up to the test user to make
a decision to send an ok message or a not ok message back to the participant
service. For example in figure 6(b) one can see that the test user (for the Service
Provisioning service, yet another business event participant for create order) did
answer with an ok message considering the business event instance create order
(1). The same thing is shown in figure 6(c) regarding the Finance service. There
one can also notice that an ok message is sent back to the participant service,
but one could also notice the business event instance is totally processed in the
meantime (see the processed business event instances box in figure 6(c)). This
means each business event participant has answered the preconditions check with
an ok message and the participant service had commanded the three business
services to complete the processing of the business event instance. The fact that
the business event instance create order (1) is successfully processed can also be
seen in the notification producer’s interface (see figure 7).
Next we also give an example where not all businss event participant sent an
ok message back to the participant service when the latter service is coordinat-
ing a business event instance. In particular one can observe the processing of a

business event instance pay (2) in figure 6(d). In this case the test user for the
Finance service did indicate the service does not agree with the preconditions.
This means the business event instance pay (2) cannot be processed (as one can
see in figure 7).

(a) (b)

(c) (d)

Fig. 6. Business Services (Business Event Participants)

5 Conclusions

As mentioned in the introduction (see subsections 1.1 and 1.2) an implemented
business process only contains the most detailed description of a business process,
resulting in the loss of the higher level overview. We believe defining business
processes purely as sequence constraints on message exchanges (e.g. in a typical

Fig. 7. The notification producer - create order succeeded while pay failed

BPEL manner) is a too low-level description. Furthermore these descriptions
are often too complex to understand for business users and adapting the im-
plemented business processes to changes imposed by business analysts can be a
very time consuming and challenging task. Therefore we provided an approach
to structure the way of composing and orchestrating business services. The pre-
sented approach is based on so called business events which group messages that
are relevant for one specific business activity and match a real-world business
phenomenon. For each business event we require a coordinated processing so
that business users can use business events as atomic building blocks to make
up a business process. Business events are already proven to be valuable in a
nondistributed environment for the development of small applications as well as
component and service-oriented architectures [6, 7, 16–18]. In previous research
we discussed the idea of using a combination of a notification and coordination
specification to implement a Web services based business event architecture [4].
In this article we presented a proof-of-concept of this business event architec-
ture. We believe our Web services based business event architecture is valuable
because we have successfully tested it using a real-life business process. Further-
more by using the developed graphical interfaces it is quite easy to test and
discover the strengths of our implementation. For example it is very interesting
to see that business services can be added dynamically as business event partic-
ipants. In the future we plan to further extend the business event architecture
e.g. with support for so called business services types. Similar to the difference
between business event instances and business event types we believe it can be
useful to introduce the concept of business services types. In that way it is pos-
sible to model business cases where e.g. an online book store does not want to
use a specific shipper service for all orders, but wants to select a specific shipper
instance at run-time (based on some parameters e.g. the lowest price).

Acknowledgements

This research was part of a project funded by the Research Fund K.U.Leuven
(OT 05/07), whose support is gratefully acknowledged.

References

1. M. De Backer. The use of petri net theory for business process verification. PhD
thesis, PhD dissertation, Faculty of Business and Economics, K.U.Leuven, 2007.

2. E.V. Berard. Abstraction, encapsulation, and information hiding. E. Berard Essays
on Object-Oriented Software Engineering, 1, 1993.

3. P.T.H. Eugster, P.A. Felber, R. Guerraouo, & A.M. Kermarrec. The Many Faces
of Publish/Subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

4. M. Snoeck, G. Monsieur & W. Lemahieu. Coordinated web services orchestration.
Proceedings of the IEEE International Conference on Web Services, 775–783, 2007.

5. A.R. Hevner, S.T. March, J. Park, & S. Ram. Design Science in Information
Systems Research. MIS Quarterly, 28(1):75–105, 2004.

6. W. Lemahieu, M. Snoeck, C. Michiels, & F. Goethals. An Event Based Approach
to Web Service Design and Interaction. 5th Asia-Pacific Web Conference, Apweb
2003, Xian, China, April 23-25, 2002, Proceedings, 2003.

7. W. Lemahieu, M. Snoeck, F. Goethals, M. De Backer, R. Haesen, J. Vandenbulcke,
& G. Dedene. Coordinating COTS applications via a business event layer. IEEE
Softw., 22(4):28–35, 2005.

8. F. Leymann & S. Pottinger. Rethinking the coordination models of WS-
Coordination and WS-CF. Proceedings of the Third European Conference on Web
Services, page 160, Washington, DC, USA, 2005. IEEE Computer Society.

9. M. Little & J. Webber. Introducing WS-Coordination. Web Services Journal, May
2003.

10. P. Niblett & S. Graham. Events and service-oriented architecture: the oasis web
services notification specifications. IBM Syst. J., 44(4):869–886, 2005.

11. Oasis. Web services Business Process Execution Language version 2.0 (BPEL),
May 2006.

12. Oasis. Web services Context (WS-Context), August 2006.
13. Oasis. Web services Coordination Framework (WS-CF), August 2006.
14. C. Peltz. Web services orchestration and choreography. Computer, 36(10):46–52,

2003.
15. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, & W. Lorensen. Object-oriented

modeling and design. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991.
16. M. Snoeck. Object-Oriented Enterprise Modelling with Merode. Leuven University

Press, 1999.
17. M. Snoeck, W. Lemahieu, F. Goethals, G. Dedene, & J. Vandenbulcke. Events as

Atomic Contracts for Application Integration. Data and Knowledge Engineering,
51(1):81–107, 2004.

18. M. Snoeck. On a Process Algebra Approach to the Construction and Analysis of
MERODE-Based Conceptual Models. PhD thesis, PhD dissertation, Faculty of
Science, Dept. of Computer Science, K.U.Leuven, 1995.

