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With the development of genomic techniques, the demand for new methods that can
handle high-throughput genome-wide data effectively is becoming stronger than ever
before. Compressed sensing (CS) is an emerging approach in statistics and signal pro-
cessing. With the CS theory, a signal can be uniquely reconstructed or approximated
from its sparse representations, which can therefore better distinguish different types
of signals. However, the application of CS approach to genome-wide data analysis has
been rarely investigated. We propose a novel CS-based approach for genomic data clas-
sification and test its performance in the subtyping of leukemia through gene expression
analysis. The detection of subtypes of cancers such as leukemia according to different
genetic markups is significant, which holds promise for the individualization of therapies
and improvement of treatments. In our work, four statistical features were employed to
select significant genes for the classification. With our selected genes out of 7,129 ones,
the proposed CS method achieved a classification accuracy of 97.4% when evaluated with
the cross validation and 94.3% when evaluated with another independent data set. The
robustness of the method to noise was also tested, giving good performance. Therefore,
this work demonstrates that the CS method can effectively detect subtypes of leukemia,
implying improved accuracy of diagnosis of leukemia.
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1. Introduction

Recently, tons of genome-wide data have been generated and the quantity of the
data is still increasing dramatically. A common property of genome-wide data is the
high dimension, with thousands to millions of measurements (e.g. genes, probes).
Most of the traditional classification methods become inapplicable or perform
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poorly in the subtyping of cancers from genome-wide data.1 In this paper, we
propose a novel compressed sensing (CS) based classification approach to solve the
problem.

Compressed sensing, also called compressive sampling, has been developed
recently in statistics and signal processing and becomes a powerful tool in many
applications. CS theory goes against the traditional Shannon’s celebrated theorem:
the sample rate should be at least twice the maximum signal frequency (Nyquist
rate). It demonstrates that the compressible signals can be recovered from far fewer
samples than that needed by the Nyquist sampling theorem.2 Recently, CS has been
successfully used in multiple disciplines such as medical imaging,3 computational
biology,4 geophysical data analysis,5 and radar technology.6 Moreover, CS method
has been claimed to be applicable in solving signal classification problems.7,8 How-
ever, the application of CS theory to genome-wide data analysis has been limited.
For example, Kim et al. classified multiple cancer types by using multiclass sparse
logistic regression from gene expression data and they achieved high prediction
accuracy.1 They named the method as sparse one-against-all logistic (SOVAL). We
recently used the CS method to classify chromosomes from multicolor fluorescence
in situ hybridization (M-FISH) images,9 and to integrate gene copy number and
gene expression data for identifying gene groups susceptible to cancers.10 In these
studies, we demonstrated the advantages of the CS methods in compact represen-
tation of genomic data, resulting in higher classification accuracies.

In this work, we develop a CS-based classifier and further apply it to sub-
typing of leukemia based on gene expression analysis. Leukemia, like other
cancers, associates with genetic disorders. Leukemia has four main categories:
acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML),
chronic lymphocytic leukemia (CLL), and chronic myelogenous leukemia (CML)
(http://www.webmd.com/cancer/tc/leukemia-topic-overview). It is desirable that
different categories have individualized treatments and therapies.11 Thus, it is sig-
nificant to identify the subtypes of leukemia so that these subtypes can be targeted
with different drugs or treatments. Microarray-based gene expression profiling offers
an opportunity for quantitative analysis of leukemia.12 Mills et al. built a diagnostic
classification model based on gene expression profiles to distinguish three groups:
AML, MDS (myelodysplastic syndrome) and none-of-the-targets (neither leukemia
nor MDS).13 Yeoh et al. analyzed the pattern of genes expressed in leukemic blasts
from ALL patients to investigate whether gene expression profiling could enhance
risk assignment of treatments.14 Zhang and Ke classified ALL and AML by gene
expression data using support vector machine e.g. SVM and CSVM approaches.15

The testing error rate of the classification was 2 out of 34 samples. Sun et al. devel-
oped a rough sets–based method to classify subtypes of leukemia from gene expres-
sion data.16 The rate of the misclassification was 3 out of 38 samples. Leukemia
can also be studied with gene copy number analysis.17 A comparison of different
classification approaches for gene expression analysis can be found in the work of
Dudoit et al.18
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The goal of this work is to develop CS-based classification approach and apply it
to distinguish two subtypes of leukemia: ALL and AML, from gene expression data.
To test the performance of our proposed CS-based classification method, we applied
it to the analysis of a famous leukemia dataset used by many studies.11 When the
tests were performed on the same datasets, the proposed CS-based method shows
potential advantages over existing ones such as the weighted vote,11 SVM,15 sparse
logistic regression method,1 and rough sets method,16 demonstrating improved clas-
sification rates with fewer informative genes. The classification accuracy of the CS
detector is 97.4% when validated with the leave one out (LOO) method, and is
94.3% when tested using independent data, where one set of 38 patients (27 ALL,
11 AML) was used as training data while another dataset of 35 patients (21 ALL
and 14 AML) was used as independent testing data.

2. Methods

2.1. Data collection

The leukemia dataset we used in this study was obtained from a public database
available from the website of Gene Pattern in Broad Institute (http://www.
broadinstitute.org/cancer/software/genepattern/datasets/). The training data
have 38 bone marrow samples (27 ALL and 11 AML) and the testing data have
35 bone marrow samples (21 ALL and 14 AML). The number of total genes for
the expression data is 7,129. A quantitative expression level was obtained for each
gene.11

2.2. Feature design

To distinguish the two groups (e.g. AML and ALL), it is helpful to extract signifi-
cant genes, also called informative genes or marker genes, from the overall 7,129 gene
expression data. For each gene, we extracted four feature characteristics: the stan-
dard deviation of each group (Std1 and Std2), the absolute value of the mean differ-
ence of the two groups (MD), and the Pearson’s linear correlation coefficient (Corr)
between the expression samples and a class distinction vector cd = [1, . . . , 0, . . .]; cd
is a vector that consists ‘1’s in one class (ALL) and ‘0’s in the other class (AML),
respectively. Thus for the ith gene, we have a four-dimensional feature vector
as follows:

Vi = {Stdi1, Std i2, MD i, Corri} ∈ R
4, (1)

where i = 1, 2, . . . , N , and N is the number of genes. Each feature is normalized
by its overall maximum value so that each element of Vi ∈ [0, 1]. Informative genes
were selected by setting the threshold values of Vi, yielding M � N selected genes.
For an informative gene, we expect the expression levels from different patients
within the same subtype to be similar. We also expect that the differences between
the expression levels from two subtypes of leukemia are relatively high. In addition,
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Table 1. By choosing different feature vectors, informative genes of different
numbers were picked out, which lead to different detection accuracies.

Number of genes LOO accuracy (%) Independent testing accuracy (%)

1 97.4 88.6
2 97.4 94.3
3 94.7 94.3
6 94.7 91.4
16 97.4 80.0

Note: The accuracy was evaluated by the LOO cross-validation and independent
data testing, respectively.

it is easy to understand that, if the correlation between the expression values of a
gene with the class distinction vector cd is higher; the gene is more likely to be a
significant marker to distinguish the two subtypes of leukemia. According to the
above analysis, those genes with low standard deviations within each group, high
mean differences between the groups and high Pearson’s correlations are significant
for the classification. Based on this analysis, we selected different numbers of genes
out of 7,129 genes by setting different thresholds in the significance testing of these
features, which lead to different classification accuracies, as shown in Table 1.

2.3. Compressed sensing based classification

2.3.1. Training of the transformation matrix Φ

To compress the original data by using a few informative genes, we design a trans-
formation matrix Φ. The training of transformation matrix can be formulated as a
sparse representation problem as shown in Eq. (2),

Y = ΦS, (2)

where Y = {yi} ∈ R
M×c are the gene expressions of selected genes for the total

samples/patients; yi is the gene expressions of selected genes for the ith sample; c

is the total number of samples; S = {si} ∈ R
N×c are the gene expressions of all

the genes for the total samples/patients, and M � N . The matrix Φ ∈ R
M×N

is a sparse transformation matrix. With most of the entries are ‘0’s, the trans-
formation matrix Φ projects the original signal S to a much smaller dimensional
signal Y . Through this projection, the original gene expression data can be sig-
nificantly reduced or compactly represented by the informative genes, which can
lead to improved classification subsequently. The training of Φ through data S and
selected data Y is given in the following.

Assume there are c1 number of training samples in group 1, c2 number of training
samples in group 2, and so forth, cn number of training samples in group n, and
c = c1 + c2 + · · · + cn for S = [s1, s2, . . . , sc] ∈ R

N×c and Y = [y1,y2, . . . ,yc] ∈
R

M×c.
The transpose of Eq. (2) gives:

STΦT = YT. (3)



September 28, 2011 9:2 WSPC/185-JBCB S0219720011005689

A Compressed Sensing Based Approach for Subtyping of Leukemia 635

Let (ΦT)j ∈ R
N×1 denotes the j th column of ΦT, and (YT)j ∈ R

c×1 denotes the
j th column of YT, where j = 1, 2, . . . , M . Then Eq. (3) can be rewritten as:

ST(ΦT)j = (YT)j , (4)

where ST ∈ R
c×N . The linear system given by (4) is an underdetermined system,

which can be solved by using l-1 norm minimization algorithm such as Homotopy
method, or the Least Angle Regression (LARS) method.19 The l-1 norm optimiza-
tion problem reads:

(P1) (ΦT)j = argmin
(ΦT)j

‖(ΦT)j‖1, subject to ST(ΦT)j = (YT)j , (5)

where ‖(ΦT)j‖1 is the l-1 norm of the vector (ΦT)j , i.e. sum of the absolute values
of entries in vector (ΦT)j .

It can be seen that by introducing the sparse transformation matrix Φ, we
project the original signal si ∈ R

N×1 to a much smaller dimensional signal Φsi ∈
R

M×1. In the following process, instead of dealing with the original signal, we only
use Φsi ∈ R

M×1 and ΦΦT ∈ R
M×M in the construction of the compressive detector

t̃, leading to a fast classification.

2.3.2. Classification

Equation (2) can be rewritten in a vector form as:

yi = Φ(si + ni), (6)

where ni ∼ N (0, σ2IN) is i.i.d. Gaussian noise in the observation signal. To test
whether a given vector yi ∈ R

M belongs to a known signal si ∈ R
N or not, we set

the hypothesis as follows20:

H̃0 : yi = Φni,

H̃1 : yi = Φ(si + ni).
(7)

From (7), we have yi ∼ N (0, σ2ΦΦT) under H̃0, yi ∼ N (Φsi, σ2ΦΦT) under H̃1,
which gives the probability density functions:

f0(yi) =
exp(− 1

2y
T
i (σ2ΦΦT)−1yi)

|σ2ΦΦT| 12 (2π)
N
2

, (8)

and

f1(yi) =
exp(− 1

2 (yi − Φsi)T(σ2ΦΦT)−1(yi − Φsi))

|σ2ΦΦT| 12 (2π)
N
2

. (9)

Thus, the likelihood ratio test is: if f1(y)
f0(y) < 1, yi is under H̃0; otherwise, yi is

under H̃1. The likelihood ratio test can be simplified by taking a logarithm and the
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compressive classification detector t̃ can be derived as following:

t̃ := yT(ΦΦT)−1ΦS, (10)

where t̃ = {t̃i} ∈ R
c,S = {si} ∈ R

N×c, i = 1, 2, . . . , c.
It has been proven by Davenport et al.20 that under the condition of H̃0:

t̃ ∼ N(0, σ2sT
i ΦT(ΦΦT)−1Φsi), (11)

while under the condition of H̃1:

t̃ ∼ N(sT
i ΦT(ΦΦT)−1Φsi, σ

2sT
i ΦT(ΦΦT)−1Φsi). (12)

We then calculate the differences of the standard score of t̃i(dsti) under the two
conditions:

dst i =
|t̃i|
σi

− |t̃i − µi|
σi

, (13)

where

σi = (σ2sT
i ΦT(ΦΦT)−1Φsi)1/2 and µi = sT

i ΦT(ΦΦT)−1Φsi.

We assign a class ID label to the vector yi:

Identity(yi) = argmax
i

(dsti). (14)

If Identity(yi) falls from 1 to c1, yi belongs to class 1; if Identity(yi) falls from
c1 + 1 to c2, yi belongs to class 2.

2.4. Validation

2.4.1. Cross-validation with leave-one-out method

A cross-validation method, Leave-One-Out (LOO),21 is widely used in evaluating
the detection accuracy of different classes. It was employed here to evaluate the per-
formances of the proposed CS-based classification approach. A single bone marrow
sample from the original 38 samples/patients was taken as the validation data, while
the remaining 37 samples/patients were taken as the training data. This procedure
was repeated 38 times until every sample in the database was used once as the
validation data.

2.4.2. Validation with independent data

To overcome potential biases introduced by LOO method, an independent data set
containing 35 bone marrow samples (21 ALL and 14 AML) has been used as testing
data. The compressive detector was trained by another set of 38 patients (27 ALL,
11 AML), which was used as the classifier.
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2.5. Robustness to noise

To test the robustness of the proposed CS method, we simulated Gaussian noise
n in Eq. (6) with different levels. The degree of signal to noise level is expressed
by the signal-to-noise ratio (SNR), which is an important metric to quantify how
much a signal has been contaminated by noise. SNR is defined as:

SNR = 10 log10

Var(s)
Var(n)

, (15)

where Var(s) is the variance of the signal and Var(n) is the variance of the noise.
In this work, the classification accuracy ratio with/without noise under different
SNR levels is used to evaluate the robustness of the method to noise.

3. Results

To test the effectiveness of our proposed CS classification approach, we took the
classification of the two subtypes of leukemia (ALL and AML) as an example.
Informative genes with different numbers were chosen from 7,129 genes based on
four statistical features with different levels, as presented in Table 1. The perfor-
mance of the classification was evaluated by both the LOO cross-validation and the
independent dataset testing. The validation results are also listed in Table 1. The
accuracy of LOO cross-validation test is high (94.7% to 97.4%). The independent
data set testing has lower classification accuracy (80.0% to 94.3%) compared with
LOO validation. Note that the classification accuracy does not always improve with
the increase of informative genes.

Table 2 shows the top six informative genes with the lowest standard deviations
(Std1, Std2), the highest mean difference (MD) and highest Pearson’s linear cor-
relation (Corr). The most significant gene in classifying ALL and AML is marked

Table 2. The first six significant
genes are listed, which are selected
with the lowest standard devia-
tions, the highest mean difference
and Pearson’s linear correlation.

Gene ID Gene annotation

X95735 Zyxin
M84526 Adipsin
L08246 MCL1
M27891 Cystatin C
M57710 Lectin
U46751 p62a

Note: aPhosphotyrosine indepen-
dent ligand p62 for the Lck SH2
domain mRNA.
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Table 3. The comparison of the classification accuracy to the previous four approaches.1,11,15,16

Cross-validation Independent validation Number of genes used

Our proposed CS method 97.4% 94.3% 2
Weighted vote11 94.7% 85.3% 10∼200
SVM15 100.00% 94.1% 6817
Rough sets16 N/A 92.1% 1
SOVAL1 95.9% N/A 33

as X95735, called “Zyxin.” The top six informative genes are: “Zyxin,” “Adipsin,”
“MCL1,” “Cystatin C,” “Lectin,” and “p62.”

The accuracies of the classification based on the proposed CS method are com-
pared with the results of the previous work on the same datasets,1,11,15,16 as shown
in Table 3. Note that the proposed CS classification approach achieves higher clas-
sification accuracy with only two informative genes i.e. 97.4% validated by the
cross-validation and 94.3% validated by an independent dataset. These are higher
than all other classifiers, except the SVM approach by Zhang and Ke.15 However,
the SVM approach used 6,817 genes to achieve a classification rate of 100% while
our method used a few genes.

Figure 1 shows the genes for the training dataset (38 bone marrow samples)
when the top 1 (a), the sets of the top 2 (b), top 3 (c), and top 6 (d) informative
genes are chosen for the compressive detector. Each row represents a gene and each
column represents a bone marrow sample of 38 samples (27 samples of ALL and
11 samples of AML). Colors represent levels of expression data. The gene expression
data have been normalized by the largest value of sample in each row, respectively.
The bone marrow samples that were misclassified by the compressive detector are
marked by arrows. One of the misclassified sample, the 29th bone marrow sample in
the AML group (as shown in Fig. 1), was claimed to be abnormal by Golub et al.11

Figure 2 shows the classification accuracy for different numbers of informative
genes with both the LOO validation and independent data validation. For the
LOO validation, the accuracy using the top informative gene and the combination
of the top two is as high as 97.4%. When we increased the numbers of informative
genes to 3, 6, and 16, the detection accuracy dropped down to 94.7% for the top 3
and 6 genes; and went up to 97.4% (top 16 genes). If we continued to increase
the number of informative genes e.g. the number of genes increased to 53, the
accuracy decreased dramatically to 86.8% (as shown in Fig. 2) with the LOO cross-
validation. This might be due to the redundancy of gene expressions; the use of
fewer significant genes is more effective for subtyping. The classification accuracies
evaluated by independent testing data change with the number of selected genes
as shown in Fig. 2. From these tests, we can conclude that the use of fewer but
significant genes will result in better classification accuracy.

Figure 3 displays the genes for the testing data set when the top 1, 2, 3,
and 6 informative genes were chosen, respectively. The bone marrow samples that
were misclassified by the compressive detector are marked by arrows. With the



September 28, 2011 9:2 WSPC/185-JBCB S0219720011005689

A Compressed Sensing Based Approach for Subtyping of Leukemia 639

(a) The top 1 informative gene (b) The top 2 informative genes

(c) The top 3 informative genes (d) The top 6 informative genes

Fig. 1. Display of informative genes selected in feature design for the training dataset. We choose
the 1, 2, 3, and 6 genes. Each row represents a gene and each column represents a bone marrow
sample. Gene expression data is normalized by the largest value in each gene, respectively. The
bone marrow samples with arrows have been misclassified by the compressive detector.

independent data validation, the classification accuracy for the top gene was 88.6%.
When we increased the numbers of informative genes to top 2, 3, 6, 16, 20, and 53,
(as shown in Fig. 2), the detection accuracy went up to 94.3% for the top 2 and
3 genes; and dropped back to 91.4% (top 6 genes), then dropped again to 80.0%
(top 16 genes). The classification accuracy went up again when the number of infor-
mative genes increased to 20 (85.7%) and 53 (88.6%). The use of the combination
of top 2 and 3 genes gave the highest accuracy 94.3% (Fig. 2).

The results of cross-validation indicate that all the bone marrow samples of
ALL are classified correctly and the misclassified subjects are in the group AML
(Fig. 1). It can be observed that the samples that were misclassified have low values
of gene expression. This classification error might be caused by the noise or improper
measurement of gene expression levels.

We also tested the robustness of the CS detector to noise. The Gaussian noise
n in Eq. (6) was used to simulate noise with different levels and was added to
gene expression data. Figure 4 shows the ratio between classification accuracies
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Fig. 2. The classification accuracy of ALL and AML for different numbers of informative genes.
Note that the solid line represents the result of the Leave-One-Out (LOO) validation while the
dash line represents the result of independent validation.

with and without noise under different SNR levels. The simulation result showed
that the classification rate improves with increased SNR. Moreover, the CS method
maintains a high accuracy ratio when SNR > 10 dB, indicating that the method
has a strong resistance to noise.

(a) The top 1 informative gene (b) The top 2 informative genes

Fig. 3. Display of genes distinguishing ALL from AML for the testing dataset. We choose the
1, 2, 3, and 6 genes. Each row represents a gene and each column represents a bone marrow
sample. Gene expression data is normalized by the largest value in each gene, respectively. The
bone marrow samples with arrows indicate those misclassified by the compressive detector.
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(c) The top 3 informative gene (d) The top 6 informative genes

Fig. 3. (Continued )
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Fig. 4. The ratio of the classification accuracies with and without noise under different SNR levels.

4. Conclusions and Discussions

In this work, a CS-based classification method was developed, which was proven to
be effective in the subtyping of leukemia with gene expression data. The proposed
CS classification method allows one to employ a very small subset of genes and their
expression data to identify the correct class. The proposed method has better accu-
racy in subtyping of leukemia than several traditional classification methods that
we have compared. It also helps to reduce computational complexity and memory
storage when processing large datasets.
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By using the LOO validation method, we found that the detection of ALL group
has an accuracy of 100%. The misclassification only occurs in the AML group, which
might be due to the sample size difference. We have 27 ALL subjects and 11 AML
subjects in the original training dataset. If we increase the sample size of AML, the
misclassification rate in the AML group is expected to be decreased. It is interesting
to note that the 29th bone marrow sample is always misclassified (Fig. 1). Visually,
the 29th sample is very similar to ALL samples in the sense that all the genes in
this sample have low gene expression values. Thus it is reasonable that the detector
assigned this sample to ALL. It was stated that this sample was obtained from a
different laboratory following a different sample preparation protocol.11 This might
be the cause that the 29th bone marrow sample was always misclassified.

The more genes we select for the detector, the more information we feed to
the detector. However, experiments showed that choosing too many genes does not
necessarily yield better classification, which indicates that the selection of a suitable
number of informative genes is more significant. The selection of informative genes
for the classification of leukemia was performed by evaluating the four statistical
features.

Although a few works have been published on the classification problem of ALL
and AML,1,11,15,16 the proposed CS-based classification approach demonstrates
more advantages in our evaluations. It is also a notable finding that using only
one gene “Zyxin” can well classify ALL and AML (e.g. with a high accuracy of
97.4% evaluated by LOO method and 88.6% evaluated by independent validation).
It indicates the importance of gene “Zyxin” for differentiating ALL and AML. This
finding was actually validated by a biological research.22 In our work, the number
of genes needed to distinguish the two subtypes has been significantly decreased
compared to those in Golub et al.11 (at least 10 genes), Zhang and Ke15 (all genes
used), and Kim et al.1 (33 genes used). Nevertheless, to further verify the robust-
ness of the genes we selected (as shown in Table 1) for differentiating ALL and
AML, we need more data samples, which will be our future work.

In our current work, we have shown that the CS classifier could classify two
subtypes of leukemia efficiently. It is obvious to see that the CS classifier developed
in this work can be easily extended for multiple-class detection problems, which are
under our current research.
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