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Article

Exact one-sided confidence limits
for Cohen’s kappa as a
measurement of agreement

Guogen Shan1 and Weizhen Wang2,3

Abstract

Cohen’s kappa coefficient, �, is a statistical measure of inter-rater agreement or inter-annotator

agreement for qualitative items. In this paper, we focus on interval estimation of � in the case of two

raters and binary items. So far, only asymptotic and bootstrap intervals are available for � due to

its complexity. However, there is no guarantee that such intervals will capture � with the desired

nominal level 1–�. In other words, the statistical inferences based on these intervals are not reliable.

We apply the Buehler method to obtain exact confidence intervals based on four widely used asymptotic

intervals, three Wald-type confidence intervals and one interval constructed from a profile variance.

These exact intervals are compared with regard to coverage probability and length for small to

medium sample sizes. The exact intervals based on the Garner interval and the Lee and Tu interval

are generally recommended for use in practice due to good performance in both coverage probability and

length.

Keywords

Buehler method, coverage probability, exact confidence interval, order, expected length

1 Introduction

In scientific studies, it is often the case that multiple raters are available to assess subjects. A typical
example is that independent raters assess each subject with binary outcomes (e.g. Yes/No and
Response/No Response). For the case with two raters A and B, the data can be organized in a
2� 2 contingency table as from a matched pairs experiment, see Table 1. The observation vector,
X ¼ ðn11, n10, n01Þ, follows a multinomial distribution with N independent and identical trials and
probabilities p11, p10 and p01, respectively. For example, n10 is the number of subjects on which the
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two raters’ assessment is (A,B)¼ (1,0) and p10¼P(A¼ 1,B¼ 0). The probability mass function of
X is

pm x; p11, p10, p01ð Þ ¼
N!

n11!n10!n01!n00!
pn1111 p

n10
10 p

n01
01 p

n00
00 ð1Þ

on a sample space

S ¼ x ¼ n11, n10, n01ð Þ : 0 � n11 þ n10 þ n01 � N, nij is a nonnegative integer
� �

ð2Þ

with a total of

m ¼
ðNþ 1ÞðNþ 2ÞðNþ 3Þ

6
ð3Þ

sample points, and the parameter space is given as

H ¼ ð p11, p10, p01, p00Þ : pij 2 ½0, 1�, ði ¼ 0, 1; j ¼ 0, 1Þ; p11 þ p10 þ p01 þ p00 ¼ 1
� �

ð4Þ

The parameter space actually is a three-dimensional space because of the one constraint.
It is often of interest to perform statistical inference regarding the agreement between the two

raters, i.e. whether the rater A and the rater B provide the same assessment, (1,1) and (0,0). The
simple percent agreement is defined as

ps ¼ PðA ¼ BÞ ¼ PðA ¼ 1 ¼ BÞ þ PðA ¼ 0 ¼ BÞ ¼ p11 þ p00

Intuitively, we would expect to see a large value of ps for a high level of agreement between the
two raters. However, ps does not account for the chance agreement that is measured by

pc ¼ PðA ¼ BjA and B are independentÞ ¼ p1�p�1 þ ð1� p1�Þð1� p�1Þ

where p1* and p*1 are marginal probabilities, see Table 1.
So Cohen1 proposed the Cohen’s kappa coefficient

� ¼
ps � pc
1� pc

ð5Þ

Table 1. Observations nij and associated probabilities (pij) for two independent raters assessing N subjects with

binary outcomes.

The rater A

The rater B

Total1 0

1 n11 n10 n1*¼ n11þ n10

(p11) (p10) (p1*¼ p11þ p10)

0 n01 n00 N – n1*

(p01) (p00) ð1� p1�Þ

Total n*1¼ n11þ n01 N – n*1 N

(p*1¼ p11þ p01) ð1� p�1Þ

2 Statistical Methods in Medical Research 0(0)
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This is a measurement combining both the simple percent agreement and the chance agreement
and is the most widely used measurement for agreement. It has the range [�1,1]: �¼ 1 if and only if
ps¼ 1, i.e. there is complete agreement between the two raters; �¼�1 if p10¼ p01¼ 0.5, one case of
complete disagreement; �> 0 if ps exceeds pc; and �< 0 if ps is less than pc. This coefficient can be
alternatively written as

� ¼
2ð p11 � p1�p�1Þ

p1� þ p�1 � 2p1�p�1
ð6Þ

Note that � is a monotone function of p11 given the marginal probabilities, and it is obvious that
the range of � depends on the marginal probabilities p1* and p*1. The lower and upper bounds for �
for given marginal probabilities can be found in Lee and Tu.2 They discussed the relationship
between the range of � and the marginal probabilities of agreement by providing various
graphical interpretations. The goal of this paper is to estimate � using confidence intervals based
on X. To better understand the problem, consider the following two examples.

Example 1. A clinical study (see Kilpikoski et al.3) was conducted to examine the inter-examiner

reliability using the McKenzie method for assessing subjects with low back pain. In the study, 39
(¼N) subjects were assessed by two independent physical therapists (Clinician A and Clinician B), and
a binary decision was made from each clinician, either low back pain was present or absent. It is often
important to test whether the two clinicians have the same diagnostic conclusion. The observation is

x ¼ ð28, 3, 6Þ that shows an agreement on 30 out of 39 subjects, see Table 2. We will assess the agreement
by using confidence intervals for � in Section 4.
Example 2. A cancer clinical trial with a subpopulation of females (N ¼ 30) was described by Hansen

et al.4 Each patient was measured by two commonly used methods to determine the size change of tumors
after the treatment. The outcome was either ‘‘did not shrink’’ or ‘‘shrink’’ by definition of the two
methods. The first method is an objective method, the result of which is based on a computed

tomography imaging scan. The second method is based on the pain score, which is considered a
subjective method. It is of interest to establish consistency between the two methods, as the second is
much easier to implement but the first is much more reliable. The observation is given in Table 3. This
data set was also discussed by Klar et al.,5 where they used a bootstrap interval to estimate �. More

details for estimating � are given in Section 4.

The maximum likelihood estimator for � is

�̂ ¼
bps � bpc
1� bpc ¼ ðn11 þ n00Þ=N� ½n1�n�1 þ ðN� n1�ÞðN� n�1Þ�=N

2

1� ½n1�n�1 þ ðN� n1�ÞðN� n�1Þ�=N2
ð7Þ

Table 2. Data from the physical therapy study for low back pain in Kilpikoski et al.3

Clinician B

Clinician A Present Absent Total

Present n11¼ 28 n10¼ 3 n1*¼ 31

Absent n01¼ 6 n00¼ 2 N – n1*¼ 8

Total n*1¼ 34 N – n*1¼ 5 N¼ 39
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i.e. each probability in equation (5) is replaced by the estimator of relative frequency. Following the
asymptotic theory, the maximum likelihood estimator �̂ approximately follows a normal distribution
at each parameter configuration as N becomes large. Asymptotic confidence intervals for � are then
constructed under this fact. Many attempts have been made to improve the estimated variance of �̂.
Fleiss et al.6 were among the first to propose an estimator for the variance of �̂. Their approach is
widely used in commercial statistical software, including SAS. Later, Bloch and Kraemer7 proposed
another estimator of variance based on the first-order Taylor expansion. Garner8 gave a variance
estimator based on a parsimonious log-linear model. However, these improvements were still found
to be associated with unsatisfactory performance under certain cases, as pointed out by Jobe and
David.9 Lee and Tu2 proposed another confidence interval based on a profile variance and
conducted an extensive simulation study to show that their interval had better performance than
the other three intervals considered in their article. All four asymptotic confidence intervals do not
guarantee correct coverage probabilities, especially in small sample settings. This is not a surprise at
all. In fact, deriving confidence intervals based on asymptotic normality is fundamentally wrong,
even though it has been used in practice for a long time. This is because a confidence interval should
capture the parameter of interest on all parameter configurations at a given sample size; however,
asymptotic normality only assures reliable capture for a fixed parameter configuration at a large
sample size. See Wang and Zhang10 for more discussion.

There were also efforts to estimate � using bootstrap confidence intervals.5,11,12 Since � is a
complicated function of pij’s, researchers might agree that a bootstrap interval would be an ideal
solution for estimating �. However, Wang13 recently proved that any bootstrap interval for any
function of pij’s, including �, has a zero infimum coverage probability (ICP) for any sample size N.
So it is highly risky to estimate � using bootstrap intervals.

In order to have satisfactory coverage probability, deriving exact intervals seems to be the only
solution, and with modern computing power, it is feasible. An exact 1–� confidence interval
CðXÞ ¼ ½LðXÞ,UðXÞ� for � means that its coverage probability never goes under 1–� on the entire
parameter space H. i.e.

CoverCð p11, p10, p01Þ ¼
defX

x2S

ICðxÞð�Þ pmðx; p11, p10, p01Þ � 1� �, 8 ð p11, p10, p01Þ 2 H ð8Þ

where I�(�) is the indicator function of set � and pm is the probability mass function as given in
equation (1). The ICP over H measures the reliability of using the interval CðXÞ. For binary data
from a match paired experiment, it is difficult to find a pivotal quantity for � or conduct an exact
level 1–� test for H0 : � ¼ �0 for a given value �0.

14 Agresti14 pointed out that it is not possible to
calculate exact confidence intervals based on the conditional approach for any measurements which
is not a function of the odds ratio, because the nuisance parameters cannot be eliminated by the

Table 3. Data from the cancer clinical trial in Hansen et al.4

The subjective method

The objective method Did not shrink Shrink Total

Did not shrink n11¼ 22 n10¼ 1 n1*¼ 23

Shrink n01¼ 3 n00¼ 4 N – n1*¼ 7

Total n*1¼ 25 N – n*1¼ 5 N¼ 30

4 Statistical Methods in Medical Research 0(0)
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conditional approach. So exact confidence intervals are hard to obtain by using pivotal quantity or
inversion of tests, the two major confidence interval construction methods, see Casella and Berger.15

Buehler16 proposed a direct construction on the smallest exact one-sided confidence intervals
provided that an order � on the sample space S is predetermined. In our case, exact 1–� one-
sided intervals for � are of the forms: ½LðXÞ, 1� (lower one-sided) and ½�1,UðXÞ� (upper one-
sided). Then the interval ½LðXÞ,UðXÞ� is of level 1–2�. One can show that the smallest one-sided
intervals are the smallest in terms of set inclusion among all exact 1–� confidence intervals whose
limits, LðXÞ or UðXÞ, preserve the same order as �, see for example, Theorem 4 in Wang.17

Therefore, the smallest intervals not only have correct coverage probabilities but also are optimal
if a good order � is picked. Here, we will use four asymptotic intervals for � to define eight orders
(note there are eight confidence limits and each yields an order) on S and then derive the
corresponding exact interval for each order following the Buehler method. This idea has been
successfully applied to the risk ratio and the odds ratio in a 2� 2 table.18,19 To the best of our
knowledge, no exact confidence intervals are available for � with binary outcomes. We will use the
Buehler method to modify four approximate intervals to four exact intervals and compare their
performance on coverage probability and length.

The rest of this article is organized as follows. In Section 2, we briefly review four commonly used
asymptotic confidence intervals for �. We construct exact intervals following the Buehler method
using the orders generated from the four asymptotic intervals in Section 3. Examples 1 and 2 are
revisited in Section 4 to illustrate the application of exact intervals. In Section 5, we compare the
performance of exact and asymptotic intervals by studying their coverage probabilities and lengths
of intervals under a wide range of conditions. Section 6 is given to discussion.

2 Four approximate confidence intervals for j

Traditional confidence intervals are all based on asymptotic normality, and they are widely used in
the literature and practice. In particular, the maximum likelihood estimator �̂ is nearly unbiased for
� and is approximately normally distributed as N becomes large, and the 1–� Wald-type
approximate interval has the general form as

�̂	 z�=2
ffiffiffiffiffiffiffiffiffiffiffiffifficvarð�̂Þp

where z�/2 is the upper 100(�/2)th percentile of a standard normal distribution and cvarð�̂Þ is an
estimator of the variance of �̂. There were several attempts to estimate varð�̂Þ.

Fleiss et al.6 used the delta method to estimate the variance of �̂ which has the expression as

cvarFð�̂Þ ¼ Uþ V�W

Nð1� p̂cÞ
2

where U ¼ p̂00½1� ðp̂�1 þ p̂1�Þð1� �̂Þ�
2
þ p̂11½1� ð2� p̂1� � p̂�1Þð1� �̂Þ�

2,V ¼ ð1� �̂Þ2½p̂01ð1� p̂1�þ
p̂�1Þ þ p̂10ð1þ p̂1� � p̂�1Þ

2
�,W ¼ ½�̂� p̂cð1� �̂Þ�

2, and p̂c is the estimated chance agreement by
plugging in the estimated cell probabilities. We write the interval as

CFðXÞ ¼ LFðXÞ,UFðXÞ½ � ¼ �̂� z�=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarFð�̂Þp

, �̂þ z�=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarFð�̂Þph i

and name it as the Fleiss interval. This interval is utilized in the PROC FREQ of the statistical
software SAS for Cohen’s kappa.

Shan and Wang 5
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Bloch and Kraemer7 presented another estimator based on the first-order Taylor expansion
(referred as the BK interval). The estimator of asymptotic variance is given as

cvarBKð�̂Þ ¼ 1� �̂

N
ð1� �̂Þð1� 2�̂Þ þ

�̂ð2� �̂Þ

ðp̂�1 þ p̂1�Þð1� ðp̂�1 þ p̂1�Þ=2Þ

� �

They numerically showed that the proposed variance estimate tends to underestimate the
true variance and also found that the sample distribution of �̂ is not symmetric when � is near
either 0 or 1.

Garner8 proposed an estimator of variance for �̂ for a general r� r case based on a parsimonious
log-linear model and derived an explicit formula for a special case with r¼ 2

cvarGð�̂Þ ¼ 4

1� p̂cð Þ
2N2

P1
i¼0

P1
j¼0 1= nij þ 1

� �	 
 ð9Þ

Garner8 pointed out that the distribution of �̂ is not symmetric in small sample settings and a
transformation may help to improve the performance of the interval. The relationship between the
estimated variance by Garner8 and the one by Bloch and Kraemer7 was given in Blackman and
Koval.20

The last confidence interval is based on a profile variance, and a reparameterization of the � in
Lee and Tu2 as shown in equation (6). The confidence limits are calculated by solving the following
inequality of �

ð�� �̂Þ2cvarLTð�Þ � z2�=2

where cvarLTð�Þ is the estimated variance as in Lee and Tu.2 They proposed two versions of the profile
variance estimator. The one based on profile variance after reparameterization generally has better
performance than the other base on the profile variance only. The better version is Method 4 in Lee
and Tu2 and is given below

cvarLTð�Þ ¼ ð�� 1Þ½�ð2p̂�1 � 1Þð2p̂1� � 1Þð2p̂�1p̂1� � p̂�1 � p̂1�Þ�
2

þ 2�ð6p̂2�1p̂
2
1� � 6p̂2�1p̂1� � 6p̂�1p̂

2
1� þ 2p̂2�1 þ 2p̂21� þ 4p̂�1p̂1� � p̂�1 � p̂1�Þ

�4p̂�1p̂1�ðp̂�1p̂1� � p̂�1 � p̂1� þ 1Þ�=½Nðp̂�1 þ p̂1� � 2p̂�1p̂1�Þ
2
�

The lower and upper confidence limits would be the two roots of a cubic equation that are closest
to �̂, as in general, there are three roots for such an equation. Lee and Tu2 mentioned that the third
root is typically outside the range of �. By conducting extensive simulation studies, they showed that
this confidence interval has shorter length and better coverage than others in most settings. Later,
Klar et al.5 compared a bootstrap confidence interval with the one from Method 4 in Lee and Tu2

and concluded that the bootstrap interval gives slightly better coverage than Lee and Tu’s interval,
but the length of the bootstrap interval is generally longer.

To draw a coverage probability for an interval CðXÞ as a function of � in a plane, we introduce

Cover�Cð�Þ ¼ inf
ð p11, p10, p01Þ2Dð�Þ

CoverCð p11, p10, p01Þ ð10Þ

6 Statistical Methods in Medical Research 0(0)
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where

Dð�Þ ¼ p11, p01, p10ð Þ : p11, p01, p10, p00ð Þ 2 H and
ps � pc
1� pc

¼ �

� �
ð11Þ

is a two-dimensional set for a fixed value of � by the one constraint (equation 5). Then the new
coverage probability function Cover�C is reduced to a univariate function from the original coverage
probability function CoverC, a trivariate function. The detailed formula for CoverC is given in
equation (8). For a given �-value, there are only two independent nuisance parameters, say p01
and p10, in the function CoverC due to the constraint (equation 5). Then Cover�C is calculated as
the minimum of CoverC over p01 and p10. Since these two nuisance parameters are both bounded
from 0 to 1, we use the two-stage grid search algorithm to compute the minimum of CoverC for the
given �. In the first stage, we use a 50 by 50 grid to search the smallest possible value. Once this point
of form (p01,p10) is identified, then in the second stage an even finer grid around this point is used to
find the minimum of CoverC, which is the coverage probability Cover�Cð�Þ. In this process, the
minimum is found by exact probability computation, in particular, by equation (8), and no
statistical simulation is involved.

Figures 1 and 2 show the coverage probabilities Cover�Cð�Þ for the four asymptotic lower and
upper one-sided intervals for sample size N¼ 30 at a 95% confidence level. The �-values used to
evaluate the coverage are not equally spaced in [�1, 1]. For Figure 1, the coverage at the lower limits
LðxÞ’s and some points very close to them is computed and plotted against these �-values; while for
Figure 2, the coverage around the upper limits UðxÞ’s is computed. The plots are typical for other
sample sizes as well. If an interval is truly of level 95%, then the coverage probability curve should
be always at or above the line of 0.95 for any � 2 ½�1, 1�. However, it can be seen from the plots that
none of them are acceptable with regard to the coverage requirement. As can be seen in Figure 1 for
the lower asymptotic intervals, all of them do not guarantee the coverage. The Garner interval is
generally better than others regarding the coverage. For upper intervals in Figure 2, although the
Garner one-sided upper interval has good coverage for positive �-values, it substantially violates the
coverage requirement when � is negative. The other three upper intervals generally have coverage
much lower than 1–�. In particular, when � is close to zero, both the Fleiss interval and the Lee–Tu
interval have a very low coverage.

The coverage requirement of these asymptotic intervals is not well satisfied even though some
previous studies claimed their good performance. This may be due to the fact that the simulation
study can not be complete especially when, as in our case, there are too many parameter
configurations. The coverage probability for any bootstrap interval for � would touch the line 0
for any N and any level 1–�, as being proved by Wang.13

3 Exact confidence intervals for j

We first derive exact 1–� lower and upper one-sided intervals, then 1–2� two-sided intervals are
obtained from them. Exact one-sided intervals due to Buehler16 attain the nominal level at all
observed values. The conservatism of exact one-sided intervals is minimized. We construct the
two-sided intervals from exact one-sided intervals. Both one-sided intervals are exact, but the
two-sided interval would be conservative due to the discrete observations.

The construction of one-sided intervals by the Buehler method requires an order on the entire
sample space S. This order on S provides an order by the confidence limit LðXÞ (and UðXÞ). In
particular, when the sample space is discrete, the order reveals which sample point(s) yields the

Shan and Wang 7
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largest confidence limit, which sample point(s) yields the second largest confidence limit and so on.
Intuitively, x0 ¼ ðN, 0, 0Þ that has a complete agreement and would yield the largest L (also the
largest U), i.e. Lðx0Þ ¼ maxx2S LðxÞ. Ties are allowed, for example, x ¼ ðN� 1, 0, 0Þ and x0 ¼ ð1, 0, 0Þ
should be tied by intuition. Therefore, the confidence limits at these two points should be equal.
However, an order with more ties yields a wider interval.

The Buehler method has obvious advantage and disadvantage. For any given order on S, this
method automatically produces the smallest exact lower (upper) one-sided interval among all exact
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Figure 1. Coverage for the four asymptotic 95% lower one-sided confidence intervals when N¼ 30 (Cover�C
versus �).
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intervals that have the same order on the confidence limit as the given order. From a mathematical
point of view, it specifies a class of exact intervals, shows the existence of the best interval in this class
and also successfully identifies the best interval. On the other hand, for a sample space S with m
sample points, there are 2m possible orders on S, and each order yields a best interval under that
order. In Example 2 with N¼ 30, then m¼ 5456 by equation (3), there are 25456 possible orders. How
to choose an optimal one from the best intervals that are from 2m different orders is generally
unknown, and the Buehler method does not resolve this problem. Wang17 proposed an inductive
method to construct an order on any finite sample space that yields an admissible interval under the
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Figure 2. Coverage for the four asymptotic 95% upper one-sided confidence intervals when N¼ 30 (Cover�C
versus �).
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set inclusion criterion. But his interval computation seems heavy, especially when there are multiple
nuisance parameters.

In this paper, we apply the Buehler method to some given orders specified by the four asymptotic
intervals in Section 2. For a given statistic OðXÞ on S in (equation 2), we define an order �O on S as
follows. For any two sample points x and x0 in S, x is said to be less than or equal to x0 if OðxÞ is less
than or equal to OðxÞ; and they are equal if OðxÞ ¼ Oðx0Þ. This relationship is denoted by

x�Oð
OÞ x
0 if OðxÞ � ð¼ÞOðx0Þ

Therefore, any statistic on S can be used to introduce an order on S. Let BLO be a class of exact
1–� lower one-sided intervals for � of form ½LðXÞ, 1� satisfying

(1) LðxÞ � Lðx0Þ if OðxÞ � Oðx0Þ
(2) LðxÞ ¼ Lðx0Þ if OðxÞ ¼ Oðx0Þ

i.e. the lower limit L is a nondecreasing function with respect to the order �O. The best interval
½LOðXÞ, 1� in B

L
O is given in the following lemma.

Lemma 3.1 Assume � 2 (0,1). For a given function OðXÞ on S and any x 2 S, let

hxð�Þ ¼ inf
ð p11, p10, p01Þ2Dð�Þ

X
fx02S:Oðx0Þ5OðxÞg

pmðx
0; p11, p10, p01Þ ð12Þ

Let

Hx ¼ � 2 ½�1, 1� : hxð�Þ ¼ 1� �
� �

ð13Þ

Define

LOðxÞ ¼
inf Hx, if Hx 6¼ �;
�1, otherwise

�
ð14Þ

Then we have

(i) ½LOðXÞ, 1� belongs to B
L
O (i.e. it is of level 1–� and satisfies 1) and 2));

(ii) for any interval ½LðXÞ, 1� 2 BLO,LðXÞ � LOðXÞ

The proof can be found in Lloyd and Kabaila21 and Wang.17 The interval ½LOðXÞ, 1� is the best in
B
L
O because it has the largest lower limit. Hence it is a subset of any interval in BLO, and it is the

smallest interval under the set inclusion criterion. On the other hand, if the class BLO is small (i.e. it
does not have enough intervals), then the best interval in BLO is not equal to a good interval. An
extreme case is that if OðXÞ is a constant, then this BLO only contains one interval and ½LOðXÞ, 1� that
also assumes a constant value is still the best in BLO, but is not good at all. Therefore, a much more
challenging issue is to identify a large class of intervals by identifying an appropriate function OðXÞ.

For upper one-sided intervals, let BUO be a class of exact 1–� upper one-sided intervals for � of
form ½�1,UðXÞ� satisfying

(1) UðxÞ � Uðx0Þ if OðxÞ � Oðx0Þ

10 Statistical Methods in Medical Research 0(0)
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(2) UðxÞ ¼ Uðx0Þ if OðxÞ ¼ Oðx0Þ

The best interval ½�1,UOðXÞ� in B
U
O is given as follows.

Lemma 3.2 Assume � 2 (0,1). For a given function OðXÞ on S and any x 2 S, let

jxð�Þ ¼ inf
ð p11, p10, p01Þ2Dð�Þ

X
fx02S:Oðx0Þ4OðxÞg

pm x0; p11, p10, p01ð Þ ð15Þ

Let

Jx ¼ � 2 ½�1, 1� : jxð�Þ ¼ 1� �
� �

ð16Þ

Define

UOðxÞ ¼
sup Jx, if Jx 6¼ �;
B, otherwise

�
ð17Þ

Then we have

(i) �1,UOðXÞ½ � belongs to BUO (i.e. it is of level 1–� and satisfies 1) and 2));
(ii) for any interval ½�1,UðXÞ� 2 BUO,UOðXÞ � UðXÞ

In this paper, the function OðXÞ is equal to each of the confidence limits for the four asymptotic
intervals in Section 2. More precisely, consider the 90% Garner interval when N¼ 30

CGðXÞ ¼ ½LGðXÞ,UGðXÞ� ¼
def
�̂	 z0:05

ffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarGð�̂Þph i
ð18Þ

where �̂ and cvarGð�̂Þ are given in equations (7) and (9), respectively. The order by LGðXÞ also depends
on the confidence level. We derive LG,OðXÞ with OðXÞ ¼ LGðXÞ and �¼ 0.05 following Lemma 3.1 and
UG,OðXÞ with OðXÞ ¼ UGðXÞ and �¼ 0.05 following Lemma 3.2. Then ½LG,OðXÞ, 1� and ½�1,UG,OðXÞ�
are the smallest exact 95% intervals under the order by LGðXÞ and UGðXÞ, respectively, and
½LG,OðXÞ,UG,OðXÞ� is an exact 90% interval for �. Figure 3 illustrates a coverage probability
comparison between the smallest interval ½LG,OðXÞ, 1� and the asymptotic interval ½LGðXÞ, 1� as well
as a comparison between ½�1,UG,OðXÞ� and ½�1,UGðXÞ�. It is clear that the exact intervals always have
a coverage at least 0.95, while the asymptotic ones have a coverage as low as 0.5. Similar to Figures 1
and 2, we do not evaluate the coverage using equal spacing in �. Instead, we compute the coverage
near the lower (or upper) confidence limits and obtain irregular curves.

4 Examples

Example 1 (continued). For the data from the physical therapy example in Table 2, the estimated
simple percent agreement is p̂s ¼ ð28þ 2Þ=39 ¼ 0:7692 and the estimated chance agreement is
p̂c ¼ 0:7193, and these yield an estimated Cohen’s kappa coefficient �̂ ¼ 0:1778, which indicates a
slight agreement between Clinician A and Clinician B by the criterion from Landis and Koch.22 Both
asymptotic and exact confidence intervals are presented in Table 4 at �¼ 0.05. It takes less than
1min to calculate the interval limits for this example by using a personal computer (Intel Core
i7¼ 2640M CPU@2.80GHz and 6 GB RAM). The asymptotic intervals are unreliable, as evidenced
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in Figures 1 and 2, and should not be directly compared with the corresponding exact intervals due
to the lack of a common ICP. Exact one-sided intervals based on the BK lower limit LBKðXÞ and the
Lee–Tu upper limit ULTðXÞ have the largest (best) lower limit and the smallest (best) upper limit. The
two-sided interval based on the Lee–Tu interval is the shortest among the four exact intervals for
this data set. These intervals do not support an agreement between the two clinicians, as they all
include zero.

To make this example more concrete, we next detail the computation of LG,OðxÞ and UG,OðxÞ at
observation x ¼ ð28, 3, 6Þ with �¼ 0.05 using two orders by two functions LGðXÞ and UGðXÞ given in
equation (18). First, we identify the set of points x0 with LGðx

0Þ5LGðxÞ by calculating LGðx
0Þ on all

11,480 (¼ (Nþ 1)(Nþ 2)(Nþ 3)/6 for N¼ 39) sample points and name it GLx. The set GLx contains
6263 sample points. Second, we compute

hxð�Þ ¼ inf
ð p11, p10, p01Þ2Dð�Þ

X
x02GLx

pmðx
0; p11, p10, p01Þ ð19Þ

reppUrewoL

−1.0 −0.5 0.0 0.5 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

κ

In
fim

um
 c

ov
er

ag
e

Garner−Asy
Garner−Exact

−1.0 −0.5 0.0 0.5 1.0

0.
7

0.
8

0.
9

1.
0

κ
In

fim
um

 c
ov

er
ag

e

Garner−Asy
Garner−Exact

Figure 3. Coverage probabilities for the 95% asymptotic Garner one-sided interval and the corresponding exact

95% interval when N¼ 30.

Table 4. Asymptotic and exact confidence intervals and their lengths at �¼ 0.05 for Example 1.

Fleiss BK Garner Lee–Tu

Lower Upper Length Lower Upper Length Lower Upper Length Lower Upper Length

Asy �0.1237 0.4797 0.6034 �0.1331 0.4891 0.6221 �0.1665 0.5225 0.6890 �0.0505 0.4790 0.5295

Exact �0.1971 0.9312 1.1283 �0.1363 0.9312 1.0675 �0.2578 0.5734 0.8312 �0.1401 0.5569 0.6973

The best intervals and the shortest length are in bold.
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For each given value of �, D(�) is a two-dimensional set defined in equation (6), and the infimum is
calculated by a two-step grid search. We choose a reasonable, equally spaced, partition for D(�)
using p*1 and p1* as nuisance parameters, and a size of 50 by 50 would be fine in the first stage. The
set that yields the smallest value of hxð�Þ is identified in this stage. At the second stage, an even finer
partition in that set is then used to search for the minimum of the function again. Last, solve the
equation

hxð�Þ ¼ 1� 0:05

and the smallest solution is LG,OðxÞ ¼ �0:2578: Similarly, for computing UG,OðxÞ, we introduce a
function

jxð�Þ ¼ inf
ð p11, p10, p01Þ2Dð�Þ

X
x02GUx

pmðx
0; p11, p10, p01Þ

where GUx ¼ fx
0 2 S : UGðx

0Þ4UGðxÞg and the largest solution of jxð�Þ ¼ 1� 0:05 is
UG,OðxÞ ¼ 0:5734: Therefore, we obtain two exact 95% one-sided confidence intervals [�0.2578,
1] and [�1, 0.5734] and an exact two-sided 90% interval [�0.2578, 0.5734] for � based on the
asymptotic Garner interval.

Example 2 (continued). Using the data in Table 3, we obtain p̂s ¼ ð22þ 4Þ=30 ¼ 0:8667,
p̂c ¼ 0:6778 and �̂ ¼ 0:5862, which indicates a moderate agreement between the subjective and
objective methods by the criterion from Landis and Koch.22 In this example, the 90% exact
interval based on the Garner interval is [�0.0497, 0.9054] and is the shortest among the four
exact intervals. All the four intervals include zero and then do not suggest an agreement between
the subjective and objective methods.

5 Numerical study

We now compare the performance of four asymptotic intervals, the Fleiss interval (CF), the BK
interval (CBK), the Garner interval (CG) and the Lee–Tu interval (CLT). We will also examine their
corresponding exact intervals, CF,O, CBK,O, CG,O and CLT,O through the ICP, the average length
(AL) of intervals over the entire sample space and the expected length (EL) over the parameter
space. All numerical calculation results in the paper are based on exact probability computation, and
no simulation is involved. One such example is given in Example 1 (continued) when we compute
hxð�Þ in equation (19).

First, the ICP of a confidence interval CðXÞ for � is defined as

ICPðCÞ ¼ inf
ð p11, p10, p01Þ2H

CoverCð p11, p10, p01Þ ¼ inf
�2½�1,1�

Cover�Cð�Þ

where CoverCð p11, p10, p01Þ and Cover�Cð�Þ are given in equations (8) and (10). This measures the
reliability of using the interval CðXÞ, and we wish it to be equal to the given nominal level 1–�. If
ICP(C) is less than 1–�, then there is no guarantee that CðXÞ captures � with the desired probability
which, from a mathematical point of view, makes applying the confidence interval baseless. Table 5
provides the ICP for the four asymptotic two-sided intervals for N up to 30. It can be seen that the
ICP values for asymptotic intervals are very low, less than 30% for all of them and some of them are
extremely low, less than 1%. This is not surprising as we see in Figure 3 that the ICP values for
upper one-sided intervals are not well satisfied. On the other hand, exact intervals guarantee the
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nominal level by mathematical proofs and the ICP values for all exact intervals are greater than or
equal to 90%.

Second, the efficiency of a confidence interval is measured by its length. We compute the AL of
CðXÞ ¼ ½LðXÞ,UðXÞ� over the sample space S

ALC ¼
1

m

X
x2S

ðUðxÞ � LðxÞÞ

where m is the number of all sample points in S as given in equation (3). The smaller the AL, the
better the interval. Table 6 provides the ALs for the exact and asymptotic lower one-sided intervals
of form ½LðXÞ, 1� for the four methods, and Table 7 provides a similar comparison for the upper
intervals. The exact intervals generally have longer lengths as compared to the corresponding
asymptotic intervals; however, it is not a meaningful comparison since the asymptotic intervals
have ICPs smaller than the nominal level. For a fixed value of N, the exact interval with the
shortest AL in the two tables is in bold. The exact lower one-sided interval based on the BK
interval performs better than the other three. The exact upper intervals based on the Lee–Tu
interval and the Garner interval are competitive, and they are better than the other two.

We also compare the AL for the exact two-sided confidence intervals ½LðXÞ,UðXÞ� for the four
methods. The result is presented in Table 8 and the shortest ones are in bold. However, pointed out
by a reviewer, a shorter two-sided interval can be constructed with lower and upper intervals from
different methods. For example, if N¼ 10, let [LBK,O,1] denote the exact 95% BK interval in Table 6
and let [�1, UG,O] denote the exact 95% Garner interval in Table 7. Then [LBK,O,UG,O] is an exact
90% two-sided interval with an AL¼ 1.5363þ 1.4829 � 2¼ 1.0192, which is smaller than the AL
(¼ 1.1955) for the Garner interval in Table 8.

Table 5. Infimum coverage probability ICP of the 90% asymptotic two-sided intervals.

Method N¼ 10 20 30

Fleiss <0.01 <0.01 <0.01

BK <0.01 <0.01 <0.01

Garner 0.0966 0.1838 0.2626

Lee–Tu <0.01 <0.01 0.0322

Table 6. Average length ALC of the 95% exact and asymptotic lower one-sided intervals.

N¼ 10 20 30 40 50

Exact interval

Fleiss 1.6182 1.4277 1.3507 1.3091 1.2787

BK 1.5363 1.3985 1.3407 1.3073 1.2805

Garner 1.7126 1.5256 1.4347 1.3814 1.3378

Lee–Tu 1.7968 1.4318 1.3592 1.3188 1.2870

Asy interval

Fleiss 1.2740 1.2326 1.1971 1.1722 1.1539

BK 1.4093 1.3042 1.2495 1.2152 1.1912

Garner 1.4844 1.3015 1.2258 1.1844 1.1578

Lee–Tu 1.2919 1.2593 1.2090 1.1793 1.1589

The shortest average lengths are in bold.
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In addition, we compute the EL of CðXÞ

ELCð p11, p10, p01Þ ¼ E UðXÞ � LðXÞð Þ ¼
X
x2S

ðUðxÞ � LðxÞÞ pm x; p11, p10, p01ð Þ

At different sample sizes, the EL of four 90% exact two-sided intervals at 10,660 parameter
configurations is calculated. These 10,660 parameter points are uniformly picked over the three-
dimensional parameter space (p11, p10 and p01). The proportions of these configurations on which
each interval has the shortest EL are reported in Table 9. For example, when N¼ 20, the exact
interval CLT,OðXÞ based on the Lee–Tu interval CLTðXÞ has the shortest EL among the four exact
intervals at 71.4% of parameter configurations. It can be seen in Table 9 that CLT,OðXÞ has the short
EL in general.

In practice, negative kappa estimates do not have practical interpretation and small kappa
estimates are also not interested to clinicians. According to the standard for strength of
agreement for the kappa coefficient by Landis and Koch,22 the kappa estimate between 0.4 and
0.6 is considered as moderate agreement between two raters and the kappa estimate above 0.6 is
considered as substantial and almost perfect agreement. For this reason, we also compare the AL of
exact intervals for the sample points with kappa estimate between 0.4 and 0.6 in Table 10 and above
0.6 in Table 11. In both cases, the exact Garner interval is the best for other large sample sizes
considered, N¼ 30, 40 and 50. For small sample size, the exact BK interval has the best performance
when kappa estimate is moderate and the exact intervals based on the Lee–Tu interval are shorter
than those based on other intervals for the case with kappa above 0.6.

Table 7. Average length ALC of the 95% exact and asymptotic upper one-sided intervals.

N¼ 10 20 30 40 50

Exact interval

Fleiss 1.7734 1.7099 1.6789 1.6484 1.6283

BK 1.7098 1.6645 1.6367 1.6154 1.5974

Garner 1.4829 1.3542 1.3028 1.2727 1.2496

Lee–Tu 1.5103 1.3737 1.3102 1.2714 1.2415

Asy interval

Fleiss 1.3344 1.2819 1.2447 1.2192 1.2006

BK 1.4634 1.3520 1.2967 1.2620 1.2378

Garner 1.5124 1.3413 1.2696 1.2295 1.2034

Lee–Tu 1.3466 1.2793 1.2405 1.2152 1.1970

The shortest average lengths are in bold.

Table 8. Average length ALC of the 90% exact two-sided intervals.

N¼ 10 20 30 40 50

Fleiss 1.3915 1.1376 1.0296 0.9575 0.9070

BK 1.2462 1.0630 0.9775 0.9227 0.8779

Garner 1.1955 0.8798 0.7376 0.6542 0.5874

Lee–Tu 1.3071 0.8055 0.6694 0.5902 0.5286

The shortest average lengths are in bold.
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6 Conclusion

Cohen’s kappa coefficient, �, is the most important measurement of agreement between two raters.
In this paper, we estimate it using confidence intervals in a matched pair experiment. Our numerical
study shows that four widely used asymptotic intervals, CF, CBK, CG and CLT, have ICPs much less
than the nominal level, which indicates that the statistical inferences based on these intervals are not
reliable. This is the motivation for deriving exact confidence intervals for �.

The two traditional confidence interval construction methods, the pivotal quantity and the
inversion of tests, cannot be applied efficiently to �. So we utilize the Buehler method to
construct the smallest exact one-sided intervals for � and obtain two-sided intervals using the
intersection of two one-sided intervals. The Buehler method needs a predetermined order on the
sample space S for a valid interval construction. In this paper, we use the lower and upper limits of
the four asymptotic intervals to define orders on S. The exact intervals CG,O and CLT,O which are
based on CG and CLT, respectively, are generally better than others and recommended for practice.
These intervals are reliable due to correct coverage probabilities. The program to implement the

Table 10. Average length ALC of the 90% exact two-sided intervals for the data with �̂ between 0.4 and 0.6.

N¼ 10 20 30 40 50

Fleiss 1.2216 1.0144 0.9828 0.9689 0.9526

BK 1.1179 1.0061 0.9815 0.9685 0.9524

Garner 1.1417 0.8960 0.8315 0.7903 0.7527

Lee–Tu 1.2930 0.9142 0.8577 0.8115 0.7680

The shortest average lengths are in bold.

Table 9. Proportions of the 10,660 parameter configurations from which each of four exact intervals has the

smallest expected length.

N¼ 10 20 30 40 50

Exact interval

Fleiss 1.7 0.1 2.3 3.9 5.1

BK 38.4 0.1 0.3 0.4 0.7

Garner 55.3 28.4 32.6 32.3 28.5

Lee–Tu 4.6 71.4 64.8 63.4 65.7

Total 100 100 100 100 100

The largest proportions are in bold.

Table 11. Average length ALC of the 90% exact two-sided intervals for the data with �̂ � 0:6.

N¼ 10 20 30 40 50

Fleiss 1.1437 1.0524 1.0075 0.9862 0.9657

BK 1.1483 1.0523 1.0074 0.9860 0.9658

Garner 1.2111 1.0589 0.9921 0.9580 0.9236

Lee–Tu 1.1324 1.0375 1.0025 0.9857 0.9619

The shortest average lengths are in bold.

16 Statistical Methods in Medical Research 0(0)

 at WRIGHT STATE UNIV on October 7, 2014smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2014) [24.9.2014–2:34pm] [1–17]
//blrnas3.glyph.com/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/140106/APPFile/SG-SMMJ140106.3d (SMM) [PREPRINTER
stage]

exact one-sided or two-sided intervals is written in the statistical software R and is available from the
first author.

Can the derived intervals be further improved? That is, are there intervals that are of level 1–�
and are subset of the derived intervals? The quick answer is ‘‘yes’’. This is because the orders of the
asymptotic confidence limits generate too many ties. One can obtain a uniform improvement by
breaking ties, see Proposition 2 in Wang.17 However, the computation is tedious.

As mentioned before, there are 2m possible orders on S, where m¼ (Nþ 1)(Nþ 2)(Nþ 3)/6.
Which order yields an optimal interval among these orders? An admissible interval under the set
inclusion criterion may be the possible answer, i.e. any subinterval of this interval is of level strictly
less than 1–�. Wang17 developed such an order on any finite sample space using an inductive
construction. Two such intervals were successfully derived for the difference of two proportions,
see Wang,17 Wang23 and Shan and Wang.24 From a mathematical point of view, his result can be
extended to the case of �. The implementation of the interval in programming is challenging.
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