Wiener number of hexagonal jagged-rectangles

W.C. Shiu, C.S. Tong, P.C.B. Lam

Department of Mathematics, Hong Kong Baptist University,
224 Waterloo Road, Kowloon, Hong Kong

Received 23 July 1996; received in revised form 10 March 1997; accepted 14 April 1997

Abstract

The Wiener number of a connected graph is equal to the sum of distances between all pairs of its vertices. A graph formed by a row of \(n \) hexagonal cells is called an \(n \)-hexagonal chain. Wiener number of an \(n \times m \) hexagonal rectangle was found by the authors. An \(n \times m \) hexagonal jagged-rectangle whose shape forms a rectangle and the number of hexagonal cells in each chain alternate between \(n \) and \(n-1 \). In the paper, we obtain the Wiener numbers of three types of \(n \times m \) hexagonal jagged-rectangles.

AMS classifications: 05C12

Keywords: Wiener number; Hexagonal rectangle; Hexagonal jagged-rectangle

1. Introduction

An important invariant of connected graphs is called the Wiener number (or Wiener index) \(W \). This number is equal to the sum of distances between all pairs of vertices of the respective graph. American physico-chemist Harold Wiener first examined the quantity \(W \) in 1947 and 1948 [18–22]. He conceived this index in an attempt to formulate a mathematical model capable of describing molecular shapes. Wiener, and after him numerous researchers, including Wiener, reported the existence of correlation between \(W \) and a variety of physico-chemical properties of alkanes. For recent reviews on this matter and references to previous work in this area, see [8, 12]. The Wiener number was extensively studied also in the mathematical literature (see, for instance, [4, 11, 13, 23]). For generalization of the Wiener number, refer to [3, 9].

Despite large number of works on the theory of the Wiener number, some basic problems still remain open. For example, no recursive method is known for the calculation of \(W \) of a general graph, especially of polycyclic graphs. This is particularly frustrating in chemical applications, where the majority of molecular graphs is polycyclic. There is a significant breakthrough with regard to this problem by designing a
method for finding the expression for \(W(H_n) \) (see [14]), where \(H_n \) is a hexagonal system consisting of one central hexagon, surrounded by \(n - 1 \) layers of hexagonal cells, \(n \geq 2 \). Note that \(H_n \) is a molecular graph, corresponding to benzene \((n = 1)\), coronene \((n = 2)\), circumcoronene \((n = 3)\), etc. \(H_n \) was much examined in the theory of benzene hydrocarbons (see, for instance, [1, 5, 7]). Other types of hexagonal systems, hexagonal parallelogram \(Q_{n,m} \) (it was denoted by \(Q_{m,n} \) in [16]), hexagonal rectangles \(R_{n,m} \), hexagonal triangles \(T_n \), hexagonal bitrapeziums \(S_{n,m} \) and hexagonal trapeziums \(T_{n,m} \) were considered in [15-17].

In [17], one type of \(n \times m \) hexagonal rectangle was studied. In this paper, we shall study other types of \(n \times m \) hexagonal rectangles. We shall call these \textit{hexagonal jagged-rectangles}, or simply \textit{HJR}. In the hexagonal rectangle of [17], every hexagonal chain is of the same length \(n \). In the HJR the number of hexagonal cells in each chain alternative between \(n \) and \(n - 1 \). These result in 3-types of HJR. If the top and bottom rows are longer we shall call it HJR of type \(I \) and denoted by \(I^{n,m} \). If the top and bottom rows are shorter we shall call it HJR of type \(K \) and denoted by \(K^{n,m} \). The last one is called HJR of type \(J \) and denoted by \(J^{n,m} \). Note that \(J^{n,1} = T_{n,2} \) and \(K^{n,1} = S_{n,2} \) in [15]; \(I_{n,m}^{1,m} \), \(J_{n,m}^{1,m} \) and \(K_{n,m}^{1,m} \) are same as \(I_m \), \(J_m \) and \(K_m \) in [10], respectively.

Notation and terminology of graph theory not defined in this paper is the same as the one described in the book of Bondy and Murty [2].

2. Preliminary results

\textbf{Definition.} Let \(G = (V, E) \) be a graph. For \(v, w \in V \), let \(\rho(v, w) \) be the distance between \(v \) and \(w \). The \textit{Wiener number} of \(G \) is defined by \(W(G) = \frac{1}{2} \sum_{v, w \in V} \rho(v, w) \).

\textbf{Definition.} Let \(G = (V, E) \) be an infinite graph where \(V = \mathbb{Z} \times \mathbb{Z} \) and \(\{(x_1, y_1), (x_2, y_2)\} \in E \) if (1) \(y_1 = y_2 \) and \(|x_1 - x_2| = 1 \), or, (2) \(x_1 = x_2 \), \(|y_1 - y_2| = 1 \) and \(x_1 + y_1 + x_2 + y_2 \equiv 1 \) (mod 4) (see below). This graph is called the \textit{wall} which was defined in [14].

Let \(G = (V, E) \) be the wall. For \(n \geq 2 \) we identify the \(n \times m \) hexagonal rectangles \(I^{n,m} \), \(J^{n,m} \) and \(K^{n,m} \) as subgraphs of \(G \), where

\[
V(I^{n,m}) = V_I = \{(x, y) | 0 \leq x \leq 2n, 0 \leq y \leq 2m - 1\},
\]

\[
V(J^{n,m}) = V_J = V_I \cup \{(x, -1) | 1 \leq x \leq 2n - 1\}
\]
and

\[V(K'^{n,m}) = V_K \cong V_j \cup \{(x, 2m) \mid 1 \leq x \leq 2n - 1\}. \]

We shall call these three kinds of hexagonal rectangles to be *hexagonal jagged-rectangles of type I, J and K*, respectively. In Sections 3–5 we shall find recurrence relations between their Wiener numbers.

The following lemma is a useful tool for computing the distance between two vertices in some "convex" subgraphs of the wall. It was proved by Shiu and Lam [14].

Lemma A. Suppose \(d \geq b \). The distance between two vertices \((a, b)\) and \((c, d)\) in the wall is

\[
\rho((a, b), (c, d)) = \begin{cases}
2(d - b) & \text{if } |c - a| \leq (d - b) \text{ and } \\
2(d - b) + 1 & \text{if } |c - a| \leq (d - b), \\
2(d - b) - 1 & \text{if } |c - a| \leq (d - b), \\
(d - b) + |c - a| & \text{if } |c - a| > (d - b).
\end{cases}
\]

Moreover, a shortest path between \((a, b)\) and \((c, d)\) lies in the rectangle spanned by \((a, b)\) and \((c, d)\).

For convenience, we write \(\rho(V_1, V_2) = \sum_{v_1 \in V_1} \sum_{v_2 \in V_2} \rho(v_1, v_2) \) for any subsets \(V_1, V_2 \) of the vertex set of the considered graph. If \(V_1 = \{v\} \) we write \(\rho(V_1, V_2) \) by \(\rho(v, V_2) \).

3. Relationship of Wiener numbers of HJRs of Type I and Type J (part 1)

In this section we shall formulate the Wiener number of HJR of type I in terms of the Wiener number of HJR of type J.
Let
\[A = \{(a,0) \mid 0 \leq a \leq 2n\} \quad \text{and} \quad B = V_I \setminus (A \cup \{(0,1),(2n,1)\}). \]

Then
\[
W(I_n^{m,1}) = \frac{1}{2} \rho(V_I, V_I)
\]
\[
\quad = \frac{1}{2} [\rho(B,B) + \rho(A,A) + \rho(\{(0,1),(2n,1)\}, \{(0,1),(2n,1)\})
\quad + 2\rho(A,B) + 2\rho(A,\{(0,1),(2n,1)\}) + 2\rho(B,\{(0,1),(2n,1)\})]
\quad = \frac{1}{2} [\rho(B,B) + \rho(A,A) + \rho(\{(0,1),(2n,1)\}, \{(0,1),(2n,1)\})
\quad + 2\rho(A,V_I \setminus A) + 2\rho(\{(0,1),(2n,1)\}, V_I \setminus A)]
\quad = W(J_{n,m}^{1,1}) + W(P_{2n+1}) + \rho(A, V_I \setminus A)
\quad \quad + \rho(\{(0,1),(2n,1)\}, V_I \setminus A) - \rho((0,1),(2n,1)),
\]

where \(P_r \) is the path with \(r \) vertices and \(W(P_r) = \frac{1}{6} r(r-1)(r+1) \), [4, 6].

Let \(T(v) = \sum_{w \in V_I \setminus A} \rho(v,w), \ v \in A. \)

Since \(T((2n,1)) = T((0,1)) = T((0,0)) = (2n+1)(2m-1) \) and \(\rho((0,1),(2n,1)) = 2n \), we have
\[
W(I_n^{m,1}) = W(J_{n,m}^{1,1}) + W(P_{2n+1}) + \rho(A, V_I \setminus A)
\quad \quad + 2T((0,0)) - 2(2n+1)(2m-1) - 2n.
\]

To compute \(T(v) \) we consider the following three cases.

Case 1: \(1 \leq m \leq \frac{1}{2} (n+1). \)

Since \(T((a,0)) = T((2n-a,0)) \), \(\rho(A, V_I \setminus A) = 2 \sum_{a=0}^{2m-1} T((a,0)) + \sum_{a=2m}^{2n-2m} T((a,0)). \)

(a) If \(0 \leq a \leq 2m-1 \), \(T((a,0)) \) is equal to the sum of the following four summands:

By using Lemma A and a direct computation we have

(i) \(\sum_{y=1}^{a} \sum_{x=0}^{a-y} (a - x + y) = \frac{1}{2} a(1 + a)^2; \)

(ii) \(\sum_{y=1}^{a} \sum_{x=a+y}^{2m-1} (x - a + y) = \frac{1}{2} (-1 + 2m)(-a + a^2 + 4m - 2am - 4m^2)
\quad \quad + 2n - 4an + 4mn + 4n^2; \)

(iii) \(\sum_{y=1}^{a} \sum_{x=a-y+1}^{y+a-1} \rho((a,0),(x,y)) = \sum_{y=1}^{a} \{2y(2y-1) - (-1)^a y\}
\quad \quad = \frac{1}{2} a(1 + a)\{2 - 3(-1)^a + 8a\}; \)

(iv) \(\sum_{y=a+1}^{2m-1} \sum_{x=0}^{y+a-1} \rho((a,0),(x,y)) = \sum_{y=a+1}^{2m-1} \{2y(a + y) - (-1)^a \left[\frac{a + y}{2} \right]\} \)
\[
\begin{align*}
\frac{1}{12} (8a - 15a^2 - 20a^3 + 8m - 36am - 60a^2 + 48am^2 + 64m^3) & \quad \text{if } a \text{ is even} \\
\frac{1}{12} (-3 - 16a - 33a^2 - 20a^3 + 8m - 12am - 36m^2 + 48am^2 + 64m^3) & \quad \text{if } a \text{ is odd}
\end{align*}
\]
\[
= \frac{1}{12} \{ (-1)^a \left(\frac{3}{2} + 12a + 9a^2 - 12am - 12m^2 \right) - \frac{3}{2} - 4a - 24a^2 \\
- 20a^3 + 8m - 24am - 48m^2 + 48am^2 + 64m^3 \}.
\]

where \([x]\) is the least integer which is greater than \(x\).

Summing up the above results we have
\[
T((a, 0)) = \frac{1}{12} \{ (-1)^a \left(\frac{3}{2} + 6a + 3a^2 - 12am - 12m^2 \right) - \frac{3}{2} + 4a - 6a^2 \\
+ 2a^3 - 16m - 24am + 12a^2m + 24m^2 + 24am^2 + 16m^3 \\
- 12n + 24an - 48amn + 48m^2n - 24n^2 + 48mn^2 \}.
\]

Hence we have
\[
\sum_{a=0}^{2m-1} T((a, 0)) = m(-1 + 2m - 6m^2 + 10m^3 - 4n + 8mn - 4n^2 + 8mn^2).
\]

(b) If \(2m \leq a \leq 2n - 2m\), \(T((a, 0))\) equals to the sum of the following three summands:

(i) \[\sum_{y=1}^{2m-1} \sum_{x=0}^{a-y} (a - x + y) = \frac{1}{2}(-1 + 2m)(a + a^2 + 4m + 2am - 4m^2);\]

(ii) Same as Case 1(a)(ii);

(iii) \[\sum_{y=1}^{2m-1} \sum_{x=a-y+1}^{a-1} \rho((a, 0), (x, y)) = \sum_{y=1}^{2m-1} \{2y(2y - 1) - (-1)^a y\} = \frac{1}{3} m(1 - 2m)(10 + 3(-1)^a - 16m).\]

Thus we have
\[
T((a, 0)) = \frac{1}{3}(-1 + 2m)(3a^2 + 2m - 3(-1)^a m + 4m^2 + 3n - 6an + 6mn + 6n^2),
\]
\[
\sum_{a=2m}^{2n-2m} T((a, 0)) = \frac{1}{3}(3m - 14m^2 + 48m^3 - 64m^4 - 4n + 22mn - 36m^2n + 16m^3n \\
- 12n^2 + 36mn^2 - 24m^2n^2 - 8n^3 + 16mn^3)
\]

and
\[
\rho(A, V_l \setminus A) = \frac{1}{3}(-3m - 2m^2 + 12m^3 - 4m^4 - 4n - 2mn \\
+ 12m^2n + 16m^3n - 12n^2 + 12mn^2 + 24m^2n^2 - 8n^3 + 16mn^3).
\]
Combining the results of part (a) and (b), we finally obtain the desired relationship for case 1:

$$W(I^{n,m}) = W(J^{n,m-1}) + \frac{1}{3}(6 - 23m + 4m^2 + 20m^3 - 4m^4 - 2n - 26mn + 36m^2n$$

$$+ 16m^3n - 18n^2 + 36mn^2 + 24m^2n^2 - 4n^3 + 16mn^3). \quad (3.1)$$

Case 2: $\frac{1}{2}(n + 1) \leq m \leq n$. Since $T((a, 0)) = T((2n - a, 0))$,

$$\rho(A, Y\setminus A) = 2 \sum_{a=0}^{2n-2m+1} T((a, 0)) + 2 \sum_{a=2n-2m+2}^{n} T((a, 0)) - T((n, 0)).$$

(a) $0 \leq a \leq 2n - 2m + 1$. All the summands of $T((a, 0))$ are the same as in Case 1(a).

Hence we have

$$\sum_{a=0}^{2n-2m+1} T((a, 0)) = \frac{1}{3}(-3 - 23m + 26m^2 - 18m^3 - 2m^4 - 5n - 30mn + 96m^2n$$

$$- 48m^3n - 2n^2 - 24mn^2 + 48m^2n^2 + 2n^3 + 2n^4).$$

(b) $2n - 2m + 2 \leq a \leq n$. $T((a, 0))$ is equal to the sum of the following 5 summands:

\begin{itemize}
 \item[(i)] Same as Case 1(a)(i);
 \item[(ii)] $\sum_{y=1}^{2n-a} \sum_{x=a+y}^{2n} (x - a + y) = \frac{1}{2}(-a + 2n)(1 - a + 2n)^2$;
 \item[(iii)] Same as Case 1(a)(iii);
 \item[(iv)] $\sum_{y=a+1}^{2n-a} \sum_{x=0}^{y+a-1} \rho((a, 0), (x, y)) = \sum_{y=a+1}^{2n-a} \left\{ 2y(a + y) - (-1)^a \left\lfloor \frac{a + y}{2} \right\rfloor \right\}$

 $$= \frac{1}{3}(-a + n)\{2 - 3(-1)^a + 6a - 3(-1)^a a$$

 $$+ 4a^2 + 12n - 3(-1)^a n + 4an + 16n^2\};$$
\end{itemize}
(v) \[
\sum_{y=2n-a+1}^{2m-1} \sum_{x=0}^{2n} \rho((a,0),(x,y)) = \sum_{y=2n-a+1}^{2m-1} \left\{ 2y(2n+1) - (-1)^y(n + \frac{1}{2}) + \frac{(-1)^y}{2} \right\}
\]
\[
= \frac{1}{4} \left\{ (-1)^y(1 - 2a - 4m + 8n - 4an - 8mn + 8n^2) - 1 + 4a - 4a^2 - 8m + 16m^2 - 8n + 24an - 8a^2n - 16mn + 32m^2n - 32n^2 + 32an^2 - 32n^3 \right\}.
\]

Also
\[
T((a,0)) = \frac{1}{12} \left\{ (-1)^y(3 + 6a^2 - 12m + 12n - 12an - 24mn + 12n^2) - 3 - 24m + 48m^2 - 4n + 12a^2n - 48mn + 96m^2n - 24an^2 + 16n^3 \right\},
\]
\[
\sum_{a=2n-2m+2}^{m} T((a,0)) = \frac{1}{34} \left\{ (-1)^y(3 - 12m + 12n - 24mn + 6n^2) + 21 - 12m - 168m^2 + 192m^3 + 20n + 184mn - 624m^2n + 448m^3n - 32n^2 + 240mn^2 - 288m^2n^2 - 44n^3 + 64mn^3 - 16n^4 \right\}
\]
and
\[
\rho(A, V_i \setminus A) = \frac{1}{3}(-3m - 2m^2 + 12m^3 - 4m^4 - 4n + 2mn + 12m^2n + 16m^3n - 12n^2 + 12mn^2 + 24m^2n^2 - 8n^3 + 16mn^3).\]

Summarizing above results, we get the following relationship for case 2:
\[
W(I^n,m) = W(J^n,m-1) + \frac{1}{3}(6 - 23m + 4m^2 + 20m^3 - 4m^4 - 2n - 26mn + 36m^2n + 16m^3n - 18n^2 + 36mn^2 + 24m^2n^2 - 4n^3 + 16mn^3). \tag{3.2}
\]
which is identical to (3.1).

Case 3: \(n + 1 \leq m\). When \(0 \leq a \leq n\), all the summands of \(T((a,0))\) are the same as in Case 2(b). Since \(\rho(A, V_i \setminus A) = 2 \sum_{a=0}^{n} T((a,0)) - T((n,0))\), we have
\[
W(I^n,m) = W(J^n,m-1) + \frac{1}{3}(6 - 39m + 36m^2 + 14n - 90mn + 96m^2n + 14n^2 - 24mn^2 + 48m^2n^2 + 16n^4 + 4n^4). \tag{3.3}
\]

4. Relationship of Wiener numbers of HJRs of Type I and Type J (part 2)

In this section we shall express the Wiener number of HJR of type \(J\) in terms of the Wiener number of HJR of type \(I\). Let \(A = \{(a, -1) \mid 1 \leq a \leq 2n - 1\}\). Similar to Section 3, we have
\[
W(J^n,m) = W(I^n,m) + \rho(A, V_j) - W(P_{2n-1}).
\]
Case 1: \(1 \leq m \leq \frac{1}{2} n\). Similar to Section 3 we have
\[
\rho(A, V_j) = 2 \sum_{a=1}^{2m} T((a, -1)) + \sum_{a=2m+1}^{2n} T((a, -1)),
\]
where \(T(v) = \sum_{w \in V_j} \rho(v, w) \) for \(v \in A\).

(a) If \(1 \leq a \leq 2m\), \(T((a, -1))\) is equal to the sum of the following four summands:

By using Lemma A and a direct computation we have

(i) \[
\sum_{y=0}^{a-1} \sum_{x=0}^{a-1-y} (a - x + y + 1) - \rho((a, -1), (0, -1)) = \frac{1}{2} a^2 (3 + a);
\]

(ii) \[
\sum_{y=-1}^{2m-1} \sum_{x=a+1+y}^{2n} (x - a + y + 1) - \rho((a, -1), (2n, -1))
\]
\[
= \frac{1}{2} (1 + 2m) (-a + a^2 + 2m - 2am - 4m^2 + 2n - 4an + 4mn + 4n^2) + a - 2n;
\]

(iii) \[
\sum_{y=0}^{a-1} \sum_{x=a-y}^{y+a} \rho((a, -1), (x, y)) = \sum_{y=0}^{a-1} \{2(y + 1)(2y + 1) + (-1)^y(y + 1)\}
\]
\[
= \frac{1}{6} a(1 + a) \{-2 + 3(-1)^a + 8a\};
\]

(iv) \[
\sum_{y=a}^{2m-1} \sum_{x=0}^{y+a} \rho((a, -1), (x, y))
\]
\[
= \sum_{y=a}^{2m-1} \left\{2(y + 1)(a + y + 1) + (-1)^y \left\lfloor \frac{a + y + 1}{2} \right\rfloor \right\}
\]
\[
= \begin{cases}
\frac{1}{12} (-10a - 33a^2 - 20a^3 + 20m + 36am) \\
+ 60m^2 + 48am^2 + 64m^3) & \text{if } a \text{ is even} \\
\frac{1}{12} (-3 + 2a - 15a^2 - 20a^3 - 4m) \\
+ 12am + 36m^2 + 48am^2 + 64m^3) & \text{if } a \text{ is odd}.
\end{cases}
\]

Summing up the above results we can get \(T((a, -1))\).

Hence we have \(\sum_{a=1}^{2m} T((a, -1)) = \frac{1}{3} m(-1 + 18m + 46m^2 + 30m^3 - 12n + 12n^2 + 24mn^2)\).

(b) If \(2m + 1 \leq a \leq 2n - 2m - 1\), \(T((a, -1))\) is equal to the sum of the following three summands:

(i) \[
\sum_{y=1}^{2m-1} \sum_{x=0}^{a-1-y} (a - x + y + 1) - a
\]
\[
= \frac{1}{2} (-a + a^2 + 2m + 4am + 2a^2m + 4am^2 - 8m^2);
\]

(ii) Same as Case 1(a)(ii);
(iii) \[
\sum_{y=0}^{2m-1} \sum_{x=a-y}^{y+a} \rho((a, -1)(x, y)) = \sum_{y=0}^{2m-1} \{2(y + 1)(2y + 1) + (-1)^a(y + 1)\} = \frac{1}{3}m(1 + 2m)\{-2 + 3(-1)^a + 16m\}.
\]

Thus we have
\[
\sum_{a=2n+1}^{2n-2m-1} T((a, -1)) = \frac{1}{3}(-9m - 50m^2 - 96m^3 - 64m^4 + 4n + 22mn + 12m^2n + 16m^3n - 12n^2 - 12mn^2 - 24m^2n^2 + 8n^3 + 16mn^3)
\]

and
\[
\rho(A, V_f) = \frac{1}{3}(-11m - 14m^2 - 4m^3 - 4m^4 + 4n - 2mn + 12m^2n + 16m^3n - 12n^2 + 24m^2n^2 + 8n^3 + 16mn^3).
\]

Therefore we have the following relationship for Case 1:
\[
W(I^{n,m}) = W(I^{n,m}) + \frac{1}{3}(-11m - 14m^2 - 4m^3 - 4m^4 + 2n - 2mn - 2n^2 - 6n^2 + 12mn^2 + 24m^2n^2 + 4n^3 + 16mn^3).
\]

Case 2: \(\frac{1}{2}n < m < n\). Similarly, we have
\[
\rho(A, V_f) = 2 \sum_{a=1}^{2n-2m} T((a, -1)) + 2 \sum_{a=2n-2m+1}^{n} T((a, -1)) - T((n, -1)).
\]

(a) \(1 \leq a \leq 2n - 2m\). All the summands of \(T((a, -1))\) are the same as Case 1(a).

After direct computation we have
\[
\sum_{a=1}^{2n-2m} T((a, -1)) = \frac{1}{3}(m - 10m^2 - 34m^3 - 2m^4 - n + 18mn + 2m^2n - 48m^3n + 48m^2n^2 + 10n^3 + 2n^4) .
\]

Note that when \(m = n\) the above formula is zero.

(b) \(2n - 2m + 1 \leq a \leq n\). \(T((a, -1))\) is equal to the sum of the following five summands:

(i) Same as Case 1(a)(i);

(ii) \[
\sum_{y=-1}^{2n-a-1} \sum_{x=a+y+1}^{2n} (x - a + y + 1) - \rho((a, -1), (2n, -1)) = \frac{1}{2}(-a + 2n)^2(3 - a + 2n);
\]

(iii) Same as Case 1(a)(iii);
(iv) \[\sum_{y=a}^{2n-a-1} \sum_{x=0}^{y+a} \rho((a,-1),(x,y)) \]

\[= \sum_{y=a}^{2n-a-1} \left\{ 2(y+1)(a+y+1) + (-1)^a \left(\frac{a+y+1}{2} \right) \right\} \]

\[= \frac{1}{3} \left\{ (-a+n)(2+3(-1)^a(1+a+n)+6a+4a^2+12n+4an+16n^2) \right\}; \]

(v) \[\sum_{x=0}^{2n-2n-a} \sum_{y=2n-a}^{2n-1} \rho((a,-1),(x,y)) \]

\[= \sum_{y=2n-1}^{2m-1} \left\{ 2(y+1)(2n+1) + (-1)^a(n+\frac{1}{2}) + \left(\frac{(-1)^y}{2} \right) \right\} \]

\[= \frac{1}{4} \left\{ (1+4a+4m-4n+8mn-8n^2) -1 + 4a - 4a^2 + 8m + 16m^2 - 8n + 24an - 8a^2n + 16mn + 32m^2n + 32n^2 + 32an^2 + 32n^3 \right\}. \]

Thus we have

\[\sum_{a=2n-2m+1}^{n} T((a,-1)) = \frac{1}{24} \left\{ \frac{3(-1)^a(1+4m+8mn-2n^2)-3-28m+72m^2+256m^3+8n-104mn-48m^2n+448m^3n+28n^2+48mn^2-288m^2n^2-44n^3+64mn^3-16n^4)}{24} \right\}. \]

Therefore

\[W(J^{n,m}) = W(I^{n,m}) + \frac{1}{3} \left\{ -11m-14m^2-4m^3-4m^4+2n-2mn+12m^2n+16m^3n-6n^2+12mn^2+24mn^2+4n^3+16mn^3 \right\}. \] (4.2)

Clearly, it is the same as Case 1.

Case 3: \(n \leq m \). When \(1 \leq a \leq n \), all summands of \(T((a,-1)) \) are the same as in Case 2(b). Then \(\rho(A, I^m) = 2 \sum_{a=1}^{n} T((a,-1)) - T((n,-1)) \). Hence the relationship for Case 3 is

\[W(J^{n,m}) = W(I^{n,m}) + \frac{1}{3} \left\{ -9m-12m^2-6mn-4n^2+24mn^2+48m^2n^2+4n^4 \right\}. \] (4.3)

5. Relationship of Wiener numbers of HJR of Type J and Type K

In this section we shall formulate the Wiener number of HJR of type K in terms of the Wiener number of HJR type J. Let \(A = \{(a,-1) \mid 1 \leq a \leq 2n - 1 \} \) and \(B = \{(a,2m) \mid 1 \leq a \leq 2n - 1 \} \).
Clearly, $K^{n,m} - A \cong J^{n,m}$. Similar to Section 3 we have
\begin{align*}
W(K^{n,m}) &= W(J^{n,m}) + \rho(A, V_J) - W(P_{2n-1}) \\
&= W(J^{n,m}) + \rho(A, V_J) + \rho(A, B) - W(P_{2n-1}).
\end{align*}

We compute $\rho(A, B)$ first.

Case 1: $1 \leq m \leq \frac{1}{2} n - 1$. $\rho(A, B) = 2 \sum_{a=1}^{2m+1} \rho(\{(a, -1)\}, B) + \sum_{a=2m+2}^{2n-2m-2} \rho(\{(a, -1)\}, B)$.
(a) When $1 \leq a \leq 2m + 1$,
\begin{align*}
\rho(\{(a, -1)\}, B) &= \sum_{x=1}^{2m+1} \rho((a, -1), (x, 2m)) + \sum_{x=2m+a+1}^{2n+1} (x - a + 2m + 1) \\
&= 2(2m + 1)(2m + a) + (-1)^{m} \left[\frac{2m + a}{2} \right] \\
&\quad + \sum_{x=2m+a+1}^{2n-1} (x - a + 2m + 1) \\
&= \frac{1}{4} \{(-1)^{a}(1 + 2a + 4m) - 5 + 6a + 2a^2 - 4m \\
&\quad + 8an + 8m^2 + 4n - 8an + 16mn + 8n^2 \}.
\end{align*}

(b) When $2m + 2 \leq a \leq 2n - 2m - 2$,
\begin{align*}
\rho(\{(a, -1)\}, B) &= \sum_{x=1}^{2m-a} (a - x + 2m + 1) + \sum_{x=a-2m}^{2m+a} \rho((a, -1), (x, 2m)) \\
&\quad + \sum_{x=2m+a+1}^{2n-1} (x - a + 2m + 1) \\
&= \sum_{x=1}^{2m-a} (a - x + 2m + 1) + 2(2m + 1)(4m + 1) + (-1)^{a}(2m + 1) \\
&\quad + \sum_{x=2m+a+1}^{2n-1} (x - a + 2m + 1) \\
&= (-1)^{a}(1 + 2m) + a^2 + 2m + 4m^2 + n - 2an + 4mn + 2n^2.
\end{align*}

Thus $\rho(A, B) = \frac{1}{4} \{(-3 - 16m - 24m^2 - 8m^3 - 2n + 24m^2n + 24mn^2 + 8n^3 \}$. And
\begin{align*}
W(K^{n,m}) &= W(J^{n,m}) + \frac{1}{3} \{(-3 - 27m - 38m^2 - 12m^3 - 4m^4 - 2mn \\
&\quad + 36m^2n - 6n^2 + 36mn^2 + 24m^2n^2 + 12n^3 + 16mn^3 \}.
\end{align*}
Case 2: $\frac{1}{2}n \leq m \leq n - 2$.

$$
\rho(A, B) = 2 \sum_{a=1}^{2n-2m-2} \rho((a, -1), B) + \sum_{a=2n-2m-1}^{2m+1} \rho((a, -1), B).
$$

(a) When $1 \leq a \leq 2n - 2m - 2$, $\rho((a, -1), B)$ is same as Case 1(a).

(b) When $2n - 2m - 1 < a < 2m + 1$,

$$
\rho((a, -1), B) - \sum_{x=1}^{2n-1} \rho((a, -1), (x, 2m))
$$

$$
= 2(2n - 1)(2m + 1) + (-1)^a(n - \frac{1}{2}) - \frac{1}{2}.
$$

Thus we have

$$
W(K^{n,m}) = W(J^{n,m}) + \frac{1}{3}(-3 - 27m - 38m^2 - 12m^3 - 4m^4 - 2mn
$$

$$
+ 36m^2n - 6n^2 + 36mn^2 + 24m^2n^2 + 12n^3 + 16mn^3).
$$

Clearly, it is the same as Case 1.

Case 3: $m \geq n - 1$.

$$
\rho(A, B) = \sum_{a=1}^{2n-1} \{2(2n - 1)(2m + 1) + (-1)^a(n - \frac{1}{2}) - \frac{1}{2}\}
$$

$$
= (2n - 1)(8mn + 4n - 4m - 3).
$$

and

$$
W(K^{n,m}) = W(J^{n,m}) + \frac{1}{3}(9 + 3m - 12m^2 - 30n - 54mn + 20n^2
$$

$$
+ 72mn^2 + 48m^2n^2 + 4n^4).
$$

In fact, (5.2) and (5.3) are the same when $m = n - 1$.

6. Main results

In this section, the explicit formulae for the Wiener numbers of the three types of HJR are obtained by first considering $J^{n,m}$. There are two cases.

Case 1: If $1 \leq m \leq n$ then by (3.1), (3.2), (4.1) and (4.2) we have

$$
W(J^{n,m}) = W(J^{n,m-1}) + \frac{2}{3}(3 - 17m - 5m^2 + 8m^3 - 4m^4 - 14mn
$$

$$
+ 24m^2n + 16m^3n - 12n^2 + 24mn^2 + 24m^2n^2 + 16mn^3). \quad (6.1)
$$

By (4.1) and $W(I^{n,1}) = \frac{1}{3}(16n^3 + 36n^2 + 26n + 3)$, see [6, 15–17], we have

$$
W(J^{n,1}) = 12n^3 + 22n^2 + 18n - 10.
$$
Note that it can be seen that $W(J^{n,1}) = W(T_{n,2})$ where $T_{n,m}$ is defined in [17].

Solving (6.1) we get

\[
W(J^{n,m}) = \frac{2}{15} \left(40m^2n^3 + 40mn^3 + 10n^3 + 40m^3n^2 + 120m^2n^2 \\
+ 20mn^2 - 15n^2 + 20m^4n + 80m^3n + 45m^2n - 15mn \\
+ 5n - 4m^5 + 5m^3 - 45m^2 - 31m \right).
\]

(6.2)

Case 2: If $n \leq m$ then by (3.3) and (4.3) we have

\[
W(J^{n,m}) = W(J^{n,m-1}) + \frac{2}{3} (1 + 2n)(3 - 24m + 12m^2 + n + 24m^2n + 3n^2 + 2n^3).
\]

(6.3)

Solving (6.3) with the initial value obtained from (6.2) with $m = n$:

\[
W(J^{n,n}) = \frac{2}{15} (96n^5 + 240n^4 + 80n^3 - 75n^2 - 26n),
\]

we get

\[
W(J^{n,m}) = \frac{2}{15} \left(-4n^5 + 20mn^4 + 40mn^3 - 5n^3 + 80m^3n^2 + 120m^2n^2 \\
+ 65mn^2 + 80m^3n - 45mn + 9n + 20m^3 - 30m^2 - 35m \right).
\]

(6.4)

In fact the above formula holds when $m = n - 1$. Thus we have the following theorem:

Theorem 6.1. The Wiener number of $J^{n,m}$ is

\[
\begin{cases}
\frac{2}{15} \left(40m^2n^3 + 40mn^3 + 10n^3 + 40m^3n^2 + 120m^2n^2 + 20mn^2 \\
- 15n^2 + 20m^4n + 80m^3n + 45m^2n - 15mn + 5n - 4m^5 \\
+ 5m^3 - 45m^2 - 31m \right) & \text{if } 1 \leq m \leq n, \\
\frac{2}{15} \left(-4n^5 + 20mn^4 + 40mn^3 - 5n^3 + 80m^3n^2 + 120m^2n^2 \\
+ 65mn^2 + 80m^3n - 45mn + 9n + 20m^3 - 30m^2 - 35m \right) & \text{if } n - 1 \leq m.
\end{cases}
\]

By substituting $W(J^{n,m})$ into (3.1) and (3.2) we get

Theorem 6.2. The Wiener number of $I^{n,m}$ is

\[
\begin{cases}
\frac{1}{15} m(80mn^3 + 80m^2n^2 + 120mn^2 - 20n^2 + 40m^3n + 80m^2n \\
+ 30mn - 20n - 8m^4 + 20m^3 + 30m^2 - 20m - 7) & \text{if } 1 \leq m \leq n, \\
\frac{1}{15} \left(-8n^5 + 40mn^4 - 20n^4 + 80mn^3 - 10n^3 + 160m^3n^2 \\
+ 10mn^2 + 20n^2 + 160m^3n - 60mn + 18n + 40m^3 - 25m \right) & \text{if } n \leq m.
\end{cases}
\]

Finally by substituting $W(J^{n,m})$ into (5.1) to (5.3) we get
Theorem 6.3. The Wiener number of K^m,n is

\[
\begin{aligned}
\frac{1}{15} (80m^2n^3 + 160mn^3 + 80n^3 + 80m^3n^2 + 360m^2n^2 \\
+ 220mn^2 - 60n^2 + 40m^4n + 240m^3n + 270m^2n - 40mn \\
+ 10n - 8m^5 - 20m^4 - 50m^3 - 280m^2 - 197m - 15) & \quad \text{if } 1 \leq m \leq n - 1, \\
\frac{1}{15} (-8n^5 + 40mn^4 + 20n^4 + 80mn^3 - 10n^3 + 160m^3n^2 \\
+ 480m^2n^2 + 490mn^2 + 100n^2 + 160m^3n - 360mn \\
- 132n + 40m^3 - 120m^2 - 55m + 45) & \quad \text{if } n - 1 \leq m.
\end{aligned}
\]

We have verified the formulae above by direct computer evaluations for $1 \leq m, n \leq 10$.

References

