
An Instant Messaging Framework for Flexible Interaction with Rich Clients

Matthias Book, Volker Gruhn
Chair of Applied Telematics/e-Business, Dept. of Computer Science, University of Leipzig
Klostergasse 3, 04109 Leipzig, Germany; Tel. +49-341-97-32337, Fax +49-341-97-32339

{book, gruhn}@ebus.informatik.uni-leipzig.de

Abstract

Today, we are seeing an increasing number of soft-
ware applications that users want to use anywhere, any-
time. Such mobile applications often deliver their user in-
terfaces (UIs) to client devices over the World Wide Web.
However, web-based UIs cannot provide the same level of
usability as window-based UIs on mobile devices with their
small screens and occasional network dropouts. To address
this challenge, we present a UI framework that combines
the usability of a full-featured UI with the flexibility of a
thin presentation logic: We exchange interface specifica-
tions and events between the application logic on the server
and a generic UI rendering engine on the client device
using an instant messaging infrastructure. The paper gives
an overview of the framework architecture and the features
of the communication protocol, and discusses performance
measurements obtained on a public network.

1. Introduction

Many information systems that are intended for mobile
access are implemented as thin client applications today for
reasons such as reduced infrastructure cost, reduced deploy-
ment and maintenance effort, and increased user flexibility.
Often, these thin client applications take the form of web-
based applications whose hypertext user interface (UI) can
be easily rendered by web browsers, which are ubiquitous
tools on most client devices by now, while all application
logic remains on a central server [1].

However, web-based UIs still cannot offer the same level
of usability that window-based applications do, since they
do not provide intrinsic support for complex widgets (e.g.
tree views, type-ahead combo boxes etc.) or interaction pat-
terns (e.g. direct manipulation of objects, multiple window
panes, context menus etc.) [8]. Besides these limitations
of HTML, the underlying request-response communication
pattern imposed by HTTP restricts web-based UIs on mo-
bile devices further: Not only must any interaction be initi-

ated by the user (since the server cannot update the UI on
its own by “pushing” data to the client [13]), but the combi-
nation of content and markup produces a high communica-
tions overhead. Recently, a combination of web technolo-
gies collectively termed Ajax (Asynchronous JavaScript
and XML) [2] is being touted as the solution to these prob-
lems. The approach uses JavaScript to manipulate one web
page’s Document Object Model (DOM) at run-time accord-
ing to XML-based update instructions requested from the
server. However, while Ajax provides a smoother user ex-
perience, largely due to the elimination of page jumps, it
still relies on the same web technologies and therefore re-
quires quite a bit of communications overhead to present a
more sophisticated UI. This overhead can be a critical fac-
tor on mobile networks, which are often characterized by
low bandwidth and high transmission costs.

Due to their limited usability and high overhead, we con-
sider web-based UIs sub-optimal for mobile devices. The
use of mobile devices’ native UIs would reduce these dis-
advantages, however, they derive most of their expressive
power from the close coupling between application and
presentation logic, which seems to preclude a thin client
approach where the application logic resides on a remote
server. In order to retain the usability and efficiency of
devices’ native UIs without giving up the flexibility of a
thin client architecture, this paper presents a user inter-
face framework that combines their benefits. Our frame-
work enables developers to build thin client applications
with window-based UIs, where clients communicate with
the server using an instant messaging (IM) protocol. By ex-
changing user interface descriptions and events over pub-
lic IM networks, clients and servers can communicate very
flexibly, and the use of a powerful user interface descrip-
tion language allows developers to let sophisticated GUIs
be rendered on mobile clients.

In the following sections, we present the architecture
and protocol of our IM framework (Sect. 2), as well as the
results of initial performance measurements (Sect. 3). We
conclude with an overview of related work (Sect. 4) and an
outlook on future research opportunities (Sect. 5).



2. Instant Messaging Infrastructure

Request-response communication as implemented in
HTTP is a one-sided, synchronous pull mechanism: Only
the client can initiate communication and needs to wait
for a response before it can proceed with the next in-
teraction. For highly interactive thin client UIs, a more
flexible communication scheme would be more desir-
able. Ideally, both the client and the server should be able
to transmit (i.e. push) messages anytime on their own ini-
tiative, and without having to wait for a response (i.e.
asynchronously). These messages should require low band-
width in order to save costs on mobile networks, and be
delivered quickly in order to avoid the sluggish response of-
ten experienced in web-based applications.

Existing IM protocols such as the Extensible Messag-
ing and Presence Protocol (XMPP) [11] fulfill these require-
ments: Typically employed for chat networks, they are tai-
lored to the asynchronous, nearly instantaneous transmis-
sion of small messages between peers, and thus provide an
ideal medium for communicating UI events (i.e. user ges-
tures and interface reactions) between a thin client and its
application server.

In order to keep the client as thin as possible, we do not
want to deploy any application-specific code on the client,
but only require the presence of an IM client for handling
communications, and a generic GUI engine for rendering
the interface. Much like a web browser interpreting and ren-
dering HTML code, this GUI engine interprets and renders
a window-based interface described in the XML User Inter-
face Language (XUL) [6] or a comparable format.

Figure 1 gives a coarse overview of this instant messag-
ing infrastructure for thin client applications: The mobile
or stationary client devices are running an IM client that
shows the typical “buddy list” of other users on the IM net-
work. In addition to showing online users, however, it also
shows the applications that are currently accessible via the
IM network. When the user selects an application from the
list, the GUI engine will download and render the respective
UI description markup. While the user works with the ap-
plication, all client-server interactions are transmitted as in-
stant messages to the application server, which is connected
to the central IM server just like any other peer. Since both
thin clients and application servers are equal peers on the
IM network, they can communicate freely over the IM in-
frastructure and use its special features, e.g. peers’ presence
information (see Sect. 2.1.3).

2.1. Framework Features

To support the development of applications that can be
accessed by IM-based thin clients, as described in the pre-
vious section, we developed a framework that encapsulates

Figure 1. IM-based thin client infrastructure

the technical aspects of the IM-based communication and
provides high-level services like session management to the
application. Our framework implementation is independent
of a concrete user interface description language and IM
transport protocol, but application developers will typically
want to use the popular XUL language and the standard-
ized XMPP transport protocol.

In order to reduce mobile bandwidth usage, the frame-
work transmits the complete UI description (i.e. the spec-
ification of all windows and their widgets) to each client
only once. Since the UI structure typically remains static
over time, the client can cache this description and re-use
it the next time the user works with the same application,
without having to receive it again. For devices without suf-
ficient cache memory, or complex applications whose com-
plete UI description is too large to download all at once, it is
also conceivable to transmit only parts of the interface ini-
tially and download other chunks of the UI description dy-
namically if the user enters other areas of the application.

After the UI description has been transmitted, the GUI
engine can render the interface and let the user work with
the application. From now on, only user and application
events need to be transmitted over the IM network anymore.
Each event is encapsulated in a single instant message that
contains all required parameters (e.g. type of the user ges-
ture, entered or selected data, etc.), and is sent to the appli-
cation server through the IM network. If necessary, the ap-
plication server may then react by sending back an instant



message that contains instructions for updating the view
rendered on the client. The application server may also send
such an event on his own initiative (e.g. triggered by the ex-
piry of a timer, the completion of a time-intensive transac-
tion, the fulfillment of a certain condition etc.) to modify the
UI without previous user interaction. The application’s in-
stant messages do not contain low-level drawing commands
(as in e.g. the X Window System [12]), but rather instruc-
tions for modifying the DOM of the UI description (as in
the Ajax approach [2]). Based on the updated UI descrip-
tion, the GUI engine can then display or hide certain win-
dows, enable or gray out certain widgets, fill content areas
with application data etc.

In the following subsections, we will present core fea-
tures of the framework that reflect the special characteris-
tics and challenges that need to be addressed in an IM-based
thin client infrastructure, in contrast to e.g. a web-based in-
frastructure.

2.1.1. Single Sign On. A major advantage of an IM-based
vs. a web-based thin client infrastructure is that all users
must authenticate themselves to the IM server in order to
use the IM network, so each user is uniquely identifiable.
Consequently, IM-based applications do not need to imple-
ment their own authentication mechanisms, but can rely on
the IM server to take care of checking the users’ creden-
tials (which is also more convenient for users, who need
to log in only once to use all applications). An applica-
tion may only require additional authentication if it does not
trust the IM server’s authentication process. Of course, even
with successful authentication, all applications still need to
check the user’s authorization for accessing certain applica-
tion features. For additional security, XMPP provides mech-
anisms for end-to-end signing and encryption [10], which
allow clients and applications to sign and/or encrypt instant
messages using a public key infrastructure.

2.1.2. Session Management. Since all users on the net-
work must log in to the IM server, there are no anonymous
messages – each instant message is unambiguously asso-
ciated with a certain sender and receiver. Therefore, IM-
based applications do not have to implement the cumber-
some session identification and expiry mechanisms known
from web-based applications (such as passing a user ID
along with every request in order to associate it with previ-
ous requests), but can simply associate all application data
with users by their name.

In addition to employing user names for easy session
management, our framework contains additional session
management logic to distinguish “sub-sessions” that occur
when the same user simultaneously works with several in-
stances of the same application, i.e. when he has opened
several windows of the same application (a situation that is

virtually impossible to detect or handle in web-based appli-
cations, where users may clone browser windows).

The framework can also handle persistent sessions: In
contrast to the X Window System [12], where the applica-
tion running on the server is terminated when the user closes
the client window or the connection to the server is lost, our
framework will preserve the user’s application data and UI
state on the server, so users can close the thin client window
and open it again at a later time in order to resume work-
ing where they left off. This way, users can suspend work
with the thin client application (e.g. upon entering a zone
without mobile network coverage) without loss of data.

2.1.3. Presence Information. An additional feature
of our thin client framework that is unique to IM net-
works is the use of so-called presence information (PI)
to convey status information about clients and appli-
cations. In peer-to-peer chat applications, the PI typi-
cally conveys user information such as “online”, “of-
fline”, “away”, etc., but it can also be used to provide
application-specific status information.

Using the PI mechanism, application servers can pub-
lish information about their program version, server load or
maintenance cycles. Transparently for the users, the client
can then update its UI description if an application’s PI in-
dicates that a new version has been deployed. Or, if multi-
ple instances of the same application are available on the IM
network, clients can connect to the application instance that
publishes the lowest server load in its PI, or switch to a dif-
ferent instance if the currently used instance indicates in its
PI that it will be going down for maintenance.

Clients could also use the presence information to pub-
lish information about the quality of the mobile network
connection they are currently experiencing, which appli-
cations might react to by adapting the volume or priority
of transmitted messages. Using positioning information de-
rived from GPS or cellular network topology data (if avail-
able), mobile devices could also publish their current geo-
graphical coordinates in the PI to enable applications to pro-
vide them with location-based content and services [7].

2.2. Thin Client Protocol

In order to enable thin clients and application servers
to communicate with each other over the IM network, our
framework uses an XML-based communication protocol
whose commands and notifications are transmitted in in-
stant messages. One might argue that an XML-based pro-
tocol introduces quite a bit of communication overhead, but
the messages are typically very small, and the extensibil-
ity of XML allows flexible communication between clients
and servers that do not all implement the same protocol.

The protocol elements we defined are wrapped into
XMPP messages using a separate namespace, which is the



default way of deploying extensions to the XMPP proto-
col. This way, clients that are unable to process these ex-
tensions will simply ignore them. Our approach could be
implemented using other IM protocols as well, but un-
less those protocols used a similar extension mecha-
nism, the commands would have to be incorporated
into the body of the sent messages, making them visi-
ble to all clients.

For the sake of brevity, we will not go into the details of
the various messages defined by our protocol, but just give
an overview of the message classes here. They include:

• system and control messages, used for error handling,
timer synchronization, and several other framework
functions that do not affect the client or the applica-
tion directly.

• session management messages, used to establish, re-
sume or close sessions.

• UI description and definition messages, used to de-
scribe the user interface provided by the application.

• event messages, generated by user interactions or by
triggers in the application logic. They are handled with
highest priority.

• data transfer messages, used to transfer general data
such as multimedia content or complete UI descrip-
tions through the framework. They are handled with
lowest priority.

2.3. Framework Architecture

Our framework comprises a set of components that im-
plement the IM-based communication protocol outlined in
Sect. 2.2. The framework serves as an interface between the
IM transport protocol and the application or client logic, as
shown in Fig. 2.

The framework is connected to the transport layer using
a suitable third-party API, such as the open-source Smack
API for the XMPP protocol [3] (to access a different API,
only the Transport interface of the framework needs to be
adapted). Since our framework only serves as a middleware
for the presentation logic, it does not require exclusive ac-
cess to the transport API. Rather, if the application or client
need to communicate other domain-specific data over the
IM network, they can access the transport API directly to
do this, without having to go through the framework.

In order to allow thin clients’ UIs to remain responsive
while data is sent to the application server, all incoming
and outgoing traffic is processed asynchronously. To ensure
that the UI responds quickly to user interactions that require
communication with the application server, all traffic is pri-
oritized according to the message type: Events generated by
user interactions need to be processed as soon as possible,

(A)

(B)

(C)

(C)

(B)

(A)

Figure 2. Framework architecture

while data transfers or control messages can be transmit-
ted with lower priority. To handle the messages according
to their priority, the Dispatcher/Scheduler component iden-
tifies the type of each incoming message and passes it to the
according Packet Handler (for UI, data, and control mes-
sages, respectively). All three packet handlers run concur-
rently, but with different priorities. They extract the content
from each message and pass it to the Front-End interface.

While the packet processing component is the same for
clients and application servers, the front-end works differ-
ently depending on whether the framework is deployed in
a client or application server context. On the client side,
it serves as an API for the GUI rendering engine, while
on the server side, it serves as an API for the application
logic. The packet handlers are managed by a central Con-
troller and supported by Service components that handle
tasks such as timer synchronization, presence data etc. The
framework’s components can exchange asynchronous mes-
sages internally using the Notification System.

3. Performance Measurement

Response time contributes significantly to the overall us-
ability of any application, and can become a decisive factor
in thin client applications that frequently communicate with
the server in order to react to user interactions. To measure
the response times that can be achieved with our IM frame-



work, we implemented a simple prototype application that
contains only trivial application logic, but employs the core
communication features of our framework.

After initializing the session, the prototype application
displays three buttons that change their color when the user
clicks on them. Every time a user clicks on a button, the
client sends an event message to the server, which sends
an UI update message with the new color back to the client.
While this behavior looks like a request-response cycle, it is
implemented using asynchronous instant messages, so the
interface is not blocked during the very brief cycle times.
In an actual application, we are obviously not restricted to
the request-response pattern – the application may not have
to answer to every user event, or send update messages on
its own initiative. In this prototype, however, the request-
response pattern enables us to easily measure the round-trip
communication time by taking the time between the trans-
mission of the user event message and the receipt of the UI
update message.

In order to identify critical sections in the infrastructure,
we took timings at different steps in the communications
pipeline (Table 1). The values shown in the table are the av-
eraged results of ten round-trip cycles on a 2x 1 GHz dou-
ble processor machine running Linux (Kernel 2.4). To fa-
cilitate easy comparison between the timings on the client
and the application server side, both the application and the
thin client were deployed on the same host. To obtain realis-
tic measurements of the public IM infrastructure, we sent all
messages through the public Jabber network using the pub-
lic server jabber.ccc.de. Since our focus was on test-
ing the latency impact of our IM framework and the public
IM infrastructure, rather than a particular mobile network’s
characteristics (which vary widely with the type of mobile
network and environmental conditions anyway), we ran our
experiment on a 100 MBit/s LAN connected to the Inter-
net. Our measurements thus indicate the lower bound to be
expected for latency times on a mobile network.

As the table shows, our framework itself handles mes-
sages quite efficiently (steps 3 and 6), however, the process-
ing of messages by the Smack API, which encapsulates the
XMPP functionality, took a much longer time (steps 2 and
5) – actually, longer in total than the delay introduced by
transmitting the messages over the public network (steps 1
and 4). Even then, the total response time for this configu-
ration averages about 163 ms, which means that the delay
is noticed by the user, but not experienced as a disturbing
interruption [14]. With suitable optimization of the Smack
API, we hope to reduce the overall response time further.

4. Related Work

Providing a complex GUI on a thin client has been a
challenge for many years. Among the first proposed solu-

Step Time [ms]
1 Client-server message transmission 27.7
2 Server-side Smack API processing 52.6
3 Server-side IM framework processing 2.7
4 Server-client message transmission 31.2
5 Client-side Smack API processing 29.1
6 Client-side IM framework processing 20.0

Total response time 163.3

Table 1. Average processing and transmis-
sion times on client and application server

tions was the X Window System [12], a network-transparent
window manager following the client-server paradigm. An
X server consists of a device-independent layer, which pro-
vides an interface for graphical operations to the applica-
tion, and a device-specific layer, which is adapted to the
characteristics of a particular operating system and graph-
ics hardware. The X protocol defines a number of messages
that can be exchanged between client and server to initi-
ate operations such as opening a window. In comparison to
our approach, the X protocol offers more graphical flexibil-
ity since it works on a lower level, however, it also places
a higher implementation effort on the application developer
since more features need to be implemented manually. The
low-level implementation also requires more constant and
high-bandwidth network connectivity than our framework
does, where the user can perform basic interactions with the
user interface (e.g. sizing windows, filling form fields) with-
out having to communicate with the server.

Originally derived from the X Window System, Virtual
Network Computing (VNC) [9] is another client-server ap-
proach to presenting a GUI on remote thin clients. Since
VNC works on the frame buffer level, it can be used to
transmit any graphical interface to a graphics-enabled client
and communicate keystrokes and mouse gestures back to
the server. Even though the VNC protocol implements a
number of compression algorithms, the transmission of pure
pixel data is quite data-intensive, so a high-bandwidth con-
nection is necessary for fluent work.

Due to their strong server dependence and high band-
width requirements, the low-level solutions are unsuitable
for use on mobile networks. In order to move further away
from this low interface level, the client needs to take up
more rendering and execution responsibilities: The Remote
Java Foundation Classes (RJFC) approach [4] is an exten-
sion to the existing JFC model, where a client builds the user
interface from local JFC instances, which are proxies for the
actual JFC implementations on the server. All communica-
tion between the interface and application logic is then per-
formed by Remote Method Invocation (RMI), which keeps



the bandwidth requirements low. However, the UI cannot be
adapted as flexibly to different client devices’ capabilities
as with the user interface description language employed in
our approach, and firewalls typically preclude RMI commu-
nication over wide-area networks.

In the area of web-based solutions, the Ajax approach al-
ready mentioned in the introduction [2] and Macromedia’s
Flex framework [5] both strive to enhance the user expe-
rience beyond simple page-to-page navigation. While Ajax
manipulates web pages’ DOM in order to let the interface
react to user interaction, Flex allows developers to specify
the user interface in the XML-based description language
MXML, which is compiled into Shockwave applications on
the server that are transmitted to the client. This way, Flex
offers developers more freedom in designing the user in-
terface than Ajax can. However, both approaches rely on
HTTP as the underlying protocol and thus are also limited
to its request-response communication scheme, which does
not allow the server to initiate interactions on its own.

5. Conclusion

In this paper, we presented the architecture of a frame-
work for developing thin client applications that employ
a public instant messaging infrastructure to transmit user
interface descriptions and user events between the server-
side application logic and a generic GUI rendering engine
(comparable to a browser) on the client. The advantage of
this approach is the device-independent specification of the
user interface using a language like XUL, and the flexible
communication model in which client and server are equal
peers who can initiate transmissions individually and asyn-
chronously. Due to its low bandwidth requirements and ro-
bustness against temporary losses of connection, this ap-
proach is especially suitable for thin client applications on
mobile networks.

In our ongoing work, we are focusing on improving
the performance of the framework by incorporating mecha-
nisms for measuring the quality of the connection between
the application server and different clients, and adapting the
message prioritization and scheduling accordingly. We are
also working on improvements to the framework API that
will allow better integration with client-side GUI renderers
and the server-side application logic. This way, we are striv-
ing to gain more insights into the impact of the framework
on the application development process, the suitability of
IM communication for complex GUI interactions, as well
as the response times and communication costs incurred on
mobile networks. From these factors, we can then deduce
the suitability of the IM-based approach for developing mo-
bile applications with rich user interfaces that are more so-
phisticated than those that can be realized in a web browser.

Acknowledgments

The authors wish to thank Gerald Mücke for implement-
ing the IM framework prototype and carrying out the perfor-
mance measurements. The Chair of Applied Telematics/e-
Business is endowed by Deutsche Telekom AG.

References

[1] M. Gaedke, M. Beigl, H.-W. Gellersen, and C. Segor. Web
content delivery to heterogeneous mobile platforms. In ER
Workshops, pages 205–217, 1998.

[2] J. Garrett. Ajax: A new approach to web applications.
www.adaptivepath.com/publications/essays/archives/
000385.php, Feb 2005.

[3] Jive Software. Smack API. www.jivesoftware.org/smack.
[4] S. Lok, S. Feiner, W. Chiong, and Y. Hirsch. A graphical user

interface toolkit approach to thin-client computing. In Pro-
ceedings of the 11th Intl Conf on the World Wide Web (WWW
2002), pages 718–725. ACM Press, 2002.

[5] Macromedia Inc. Macromedia flex: The presentation tier
solution for delivering enterprise rich internet applications.
www.macromedia.com/software/flex/whitepapers/pdf/
flex15 tech wp.pdf, 2004.

[6] Mozilla.org. XUL. developer.mozilla.org/en/docs/XUL.
[7] A. J. H. Peddemors, M. M. Lankhorst, and J. de Heer. Pres-

ence, location, and instant messaging in a context-aware
application framework. In MDM ’03: Proceedings of the
4th International Conference on Mobile Data Management,
pages 325–330. Springer-Verlag, 2003.

[8] J. Rice, A. Farquhar, P. Piernot, and T. Gruber. Using the
web instead of a window system. In Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI
‘96), pages 103–110, 1996.

[9] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hop-
per. Virtual network computing. IEEE Internet Computing,
2(1):33–38, 1999.

[10] P. Saint-Andre. End-to-end signing and object encryption
for the extensible messaging and presence protocol (XMPP).
www.ietf.org/rfc/rfc3923.txt, Oct. 2004.

[11] P. Saint-Andre. Extensible messaging and presence protocol
(XMPP): Core. www.ietf.org/rfc/rfc3920.txt, Oct. 2004.

[12] X.Org Foundation. X window system. www.x.org.
[13] W. Zhao, D. Kearney, and G. Gioiosa. Architectures for web

based applications. In 4th Australasian Workshop on Soft-
ware and Systems Architectures (AWSA 2002), 2002.

[14] H.-J. Zuberbühler. Wahrnehmung von Verzögerung in netz-
vermittelter Kommunikation. e-collection.ethbib.ethz.ch/
show?type=bericht&nr=301, November 2002.


