Petri Net Plans
A Formal Model for Representation and Execution of Multi-Robot Plans

V. A. Ziparo¹, L. Iocchi², D. Nardi¹, P.F. Palamara¹, H. Costelha² *

¹Dipartimento di Informatica e Sistemistica
Via Ariosto 25, I-00185 Rome, Italy
{ziparo,iocchi,nardi}@dis.uniroma1.it

²Institute for Systems and Robotics, IST, Lisboa Polytech. Inst. of Leiria, ESTG, Leiria Portugal
hcostelha@isr.ist.utl.pt

ABSTRACT
The aim of this paper is to describe a novel representation framework for high level robot and multi-robot programming, called Petri Net Plans (PNP), that allows for representing all the action features that are needed for describing complex plans in dynamic environments. We provide a sound and complete execution algorithm for PNPs based on the semantics of Petri nets. Moreover, we show that multi-robot PNPs allow for a sound and complete distributed execution algorithm, given that a reliable communication channel is provided. PNPs have been used for describing effective plans for actual robotic agents which inhabit dynamic, partially observable and unpredictable environments, and experimented in different application scenarios.

1. INTRODUCTION
High level programming of mobile robots is very important for developing complex and reliable robotic applications. High level programming is usually performed by defining plans, i.e. program structures describing action execution control. To develop complex applications, plans should represent many features such as sensing, loops, concurrency, non-instantaneous actions, action failures, and action synchronization in a multi-agent context. We can roughly classify high-level robot programming methods as follows.

1. Hand-written behaviors directly coded in robot program. In this case there is no explicit representation of actions and plans. It is thus very difficult to design, write and debug plans.

2. Hand-written behaviors using behavior oriented languages (e.g. Xabsl [8] and Colbert [7]). These languages consist of behavioral routines, but, although a framework for designing plans is defined, there is no formal specification of the language and thus it is not possible to verify properties of these programs/behaviors.

3. Logic based programming (e.g., ConGolog [4]). These are declarative languages with associated reasoning capabilities.

In these frameworks behaviors are specified in a high level programming language based on a formal system. The main drawback of such approaches is that they are computationally very expensive and inadequate to control very complex real time systems.

Our approach lies between the second and the third categories. On the one hand, as for other behavior oriented languages, we provide for an efficient framework for designing, writing, executing, and debugging plans. On the other hand, as in logic based programming, we clearly distinguish action specification and implementation and we provide a formal specification of our plans which allows for implementing reasoning and verification procedures.

The aim of this paper is thus to describe a representation framework for high level robot and multi-robot programming, called Petri Net Plans (PNP)[13], that allows for representing all the action features that are needed for describing complex plans in dynamic environments. PNPs are based on Petri nets [9], a graphical modeling language for dynamic systems, and used for describing effective plans for actual robotic agents which operate dynamic, partially observable and unpredictable environments.

Petri nets (PNs) have already been used to model robotic behaviors, as for example [2] and [12]. The former provides an interesting formal approach for modeling single-robot tasks, while the latter uses PNs to model a multi-robot coordination algorithm, based on an auction mechanism, to perform environment exploration. However, both approaches have only been evaluated through simulation. Our approach allows the modeling of generic multi-robot tasks, and has been evaluated on real robots. Moreover, our approach differs from these works since PNPs are particular Petri nets that embed some of the features of the logics of actions, while keeping the characteristics of a dynamic computational model. More specifically, if we consider an action theory A and a PNP formed as a composition of actions in A that respects the semantics of the action theory, then any execution of the PNP (i.e., a sequence of markings corresponding to a sequence of states) from an initial marking (state) to a goal marking (state) is a solution of a planning problem defined by the given action theory A, initial state and goal state. This property allows for implementing interesting forms of execution monitoring and to state correctness of PNP execution according to an action theory.

In the remainder of the paper, after introducing basic notation in the next section, we define in Section 3 the syntax for single-robot PNPs in terms of operators (i.e., actions) and possible interactions among them. Two types of models for non-instantaneous actions are given: 1) ordinary non-instantaneous actions, which allow complex constructs for action synchronization and failure re-
covery; 2) sensing non-instantaneous actions, which allow for dynamically sensing properties at execution time and thus for knowledge acquisition [11, 3]. We provide a set of operators for handling concurrency, conditionals and iterations. In order to give a clear operational semantics to our modeling language we provide an execution algorithm. After defining what is a correct execution for a plan, we prove that, if a correct execution is possible, then the algorithm will achieve it. We then define multi-robot plans (Section 4) as collections of single-robot PNP, coordinated through synchronization actions which are used to spread information and synchronize actions of different robots. We show that multi-robot PNP can be decomposed into a set of single-agent PNP, whose distributed execution is equivalent to the centralized execution of the original multi-robot PNP. Experimental tests are finally described in Section 5.

2. PETRI NETS

Petri nets [9] graphically depict the structure of a distributed system as a directed, weighted and bipartite graph. As such, a Petri net has two types of nodes connected by directed weighted arcs (if not labeled we assume a weight of one). The first type is called place (Fig. 1a) and may contain zero or more tokens (Fig. 1c). The number of tokens in each place (i.e. marking) denotes the state of the system.

$$\text{Figure 1: (a) A place. (b) A Transition. (c) A Place with one token.}$$

The other type of nodes, called transitions (Fig. 1b), represent the events modeled by the system. Transitions can consume or produce tokens from places according to the rules defining the dynamic behavior of the Petri net (i.e. the firing rule).

More formally, a Petri net can be defined as a tuple

$$PN = (P, T, F, W, M_0)$$

where:
- $$P = \{p_1, p_2, \ldots, p_n\}$$ is a finite set of places.
- $$T = \{t_1, t_2, \ldots, t_n\}$$ is a finite set of transitions.
- $$F \subseteq (P \times T) \cup (T \times P)$$ is a set of edges.
- $$W : F \rightarrow \{1, 2, 3, \ldots\}$$ is a weight function and $$w(p_i, t_j)$$ denotes the weight of the edge from $$p_i$$ to $$t_j$$.
- $$M_0 : P \rightarrow \{0, 1, 2, 3, \ldots\}$$ is the initial marking.
- $$P \cup T \neq \emptyset$$ and $$P \cap T = \emptyset$$

Petri nets are used to model complex systems that can be described in terms of states and their changes. We can define the state changing behavior (i.e. the marking evolution) in a Petri net by the following firing rule:

1. A transition $$t$$ is enabled, if each input place $$p_i$$ (i.e. $$(p_i, t) \in F$$) is marked with at least $$w(p_i, t)$$ tokens.
2. An enabled transition may or may not fire, depending on whether related event occurs or not.
3. If an enabled transition $$t$$ fires, $$w(p_i, t)$$ tokens are removed for each input place $$p_i$$ and $$w(t, p_o)$$ are added to each output place $$p_o$$ such that $$(t, p_o) \in F$$.

3. SINGLE-ROBOT PNP

In this section we formally introduce a modeling language for describing robotic behaviors based on Petri nets. The proposed language allows for specifying plans, called Petri Net Plans (PNP), describing complex behaviors of a mobile robot. These plans are defined by combining different kinds of actions (ordinary actions and sensing actions) using control structures, such as if-then-else, while, concurrent execution and interrupts.

3.1 Syntax

A Petri Net Plan

$$\langle P, T, F, W, M_0, G \rangle$$

is a Petri net $$\langle P, T, F, W, M_0 \rangle$$ augmented with a set of goal markings $$G$$ such that:

1. Places $$p_i$$ represent the execution phases of actions; each action $$\alpha$$ is described by a place corresponding to its initiation (we call it initial place of $$\alpha$$), one corresponding to its execution (we call it execution place of $$\alpha$$) and one corresponding to its termination (we call it termination place of $$\alpha$$);
2. Transitions $$t_i$$ represent events and are grouped in different categories: action starting transitions, action terminating transitions, action interrupts and control transitions (i.e. transitions that are part of an operator). Transitions may be labeled with conditions that control their firing.
3. $$w(f_i, f_j) = 1$$, for each $$(f_i, f_j) \in F$$.
4. $$M_0$$ is the initial marking representing a description of the initial state of the robot.
5. $$G$$ is the set of desired markings for the agent and is a proper subset of the possible markings that the PNP may reach.

In the following we will focus on the structure of a PNP (i.e. considering only the terms $$\langle P, T, F \rangle$$). A Petri Net Plan is formally defined by a set of elementary structures (i.e. no-action, ordinary action, sensing action) and constructs for combining PNP (i.e. sequences, loops, concurrent execution, interrupts). The following description of single-robot PNP is provided in terms of the graphical representation of Petri nets (see [13] for a detailed description).

3.1.1 Elementary structures

Elementary PNP are defined as follows:

1. no-action is a PNP defined by a single place and no transitions, i.e. $$\langle \{p_0\}, \emptyset, \emptyset \rangle$$ (see Fig.1a), where $$p_0$$ is both an initial and a terminating place.

$$\text{Figure 2: An ordinary non-instantaneous action.}$$

2. ordinary-action, depicted in Figure 2, is a PNP defined by 3 places and 2 transitions where:

- $$p_i, p_o$$ and $$p_o$$ are the initial, execution and terminating place, respectively.
- $$t_s$$ and $$t_e$$ are the transitions starting and terminating the action, respectively.
3. **sensing-action**, depicted in Figure 3, is a PNP defined by places and transitions where transitions and places are the same of the previous example except for:

- t_{e} and t_{f} are, respectively, the transitions ending the action when the sensed property is true and when it is false.
- p_{o} and p_{f} are, respectively, the places terminating the action when the sensed property is true and when it is false.

3.1.2 Operators

PNPs can be combined by using the operator sequence, conditional, loops, concurrent execution and interrupts.

Sequence operator

The **sequence** operator allows to sequence in time two PNPs. This operator allows for merging two PNPs by choosing a terminating place for an action, an initial place for another action and join the two nets making such places to be the same. A graphical representation of this operator is given in Figure 4.

Conditional operator

The **conditional** operator, depicted in Figure 5, allows for describing conditional structures that are implemented through sensing actions. Given a sensing action α, three PNPs Γ_1, Γ_2, Γ_3, the conditional structure is obtained by sequencing Γ_1 with α, and by sequencing each outcomes of α with either Γ_2 or Γ_3. The structure specifies that after executing Γ_1, depending on the outcome of α, Γ_2 or Γ_3 will be executed.

Loop operator

The **loop** operator, depicted in Figure 6, is used to obtain indefinite iterations while a sensed condition remains true. Its implementation is a similar to a conditional structure, except that one sensing outcome is sequenced with Γ_1 forming a loop. The result is a net executing Γ_1 until the sensed property becomes true.

Concurrent execution of actions is defined by the **fork** and **join** operators. The fork operator, Figure 8(a), is obtained by generating two tokens (representing two parallel threads of execution) from a single token (representing a single thread of execution) through a control transition. In a similar way we can define the join operator, depicted in Figure 8(b), which produces one thread of execution (i.e. token), from two distinct ones.

Finally, we introduce the **interrupt** operator, depicted in Figure 7, which is a very powerful tool for handling action failures. In fact, it can interrupt actions upon failure events and activate recovery procedures.

Labeling transitions

In order to specify external events occurring during task execution, we define a labeling mechanism for transitions in the net. In particular, all transitions may be labeled with conditions which must be verified in order to be fired when enabled. A condition ϕ on the transition t is denoted with $t.\phi$. If no condition is specified for a transition, we will assume that it is the condition *True*. Sometimes it is useful to set the condition of ending transitions to *False*.
to model non-terminating actions (for example, support actions run in parallel with another main action).

3.2 Semantics

In this section we provide an operational semantics for the execution of PNP

 definitio

 Definition 3.1 Possible Transitions in a PNP. Given two markings M_i,M_{i+1}, a transition from M_i to M_{i+1} is possible iff $\exists t \in T$, such that (i) $\forall p' \in P$, s.t. $(p',t) \in F$, then $M_i(p') > 0$; (ii) $M_i+1(p') = M_i(p') + 1$ for each $p' \in P$, s.t. $(p', t) \in F$; (iii) $M_i+1(p') = 1$ for each $p' \in P$, s.t. $(t, p') \in F$.

 A possible transition from M_i to M_{i+1} is denoted by $M_i \rightarrow M_{i+1}$.

 Definition 3.2 Executable transition in a PNP. Given two markings M_i, M_{i+1} and a K_i, at time i, a transition from M_i to M_{i+1} is executable iff $\exists t \in T$, such that a transition from M_i to M_{i+1} is possible and the event condition t labelling the transition t (denoted with $t.\phi$) holds in K_i, (i.e. $K_i \models \phi$).

 An executable transition from M_i to M_{i+1} is denoted by $M_i \Rightarrow M_{i+1}$.

 Definition 3.3 Executable PNP. A PNP P is executable iff it exists a finite sequence of markings $\{M_0, ..., M_n\}$, such that M_0 is the initial marking, M_n is a goal marking (i.e. $M_n \in G$) and $M_i \Rightarrow M_{i+1}$, for each $i = 0, ..., n - 1$.

 Definition 3.4 Correct execution of a PNP. An executable PNP P can be correctly executed iff there exists a finite sequence of markings $\{M_0, ..., M_n\}$, such that M_0 is the initial marking, M_n is a goal marking (i.e. $M_n \in G$) and $M_i \Rightarrow M_{i+1}$, for each $i = 0, ..., n - 1$.

 3.2.1 PNP Execution Algorithm

 Algorithm 3.1 PNP Execution Algorithm

 Domains:

 - $A = \{ a_1, ..., a_k \}$: Set of Implemented actions
 - Φ : Set of terms and formulas about the environment
 - $TrType = \{ start, end, interrupt, standard \}$

 Structures:

 - $Transition : (a \in A, \phi \in \Phi, t \in TrType)$
 - $Action : (start(), end(), interrupt())$

 Global Variables:

 - $KnowledgeBase : KB$

 procedure execute(PNP (P,T,F,W,M_0,G))
 1: $CurrentMarking = M_0$
 2: while $CurrentMarking \notin G$ do
 3: for all $t \in T$ do
 4: if enabled$(t) \land KB \models t.\phi$ then
 5: handleTransition(t)
 6: $CurrentMarking = fire(t)$

 procedure handleTransition(t)
 if $t.t = start$ then
 $t.a.start()$
 else if $t.t = end$ then
 $t.a.end()$
 else if $t.t = interrupt$ then
 $t.a.interrupt()$

 In the following, we present an algorithm which correctly executes a PNP. Algorithm 3.1 assumes the availability of a set of implemented actions $A = \{ a_1, ..., a_k \}$. Each action considered here is an abstraction for the implementation of a specific behavior that the robots can execute: we assume the action can be accessed by the three functions $start$, end and $interrupt$, that, respectively, start, terminate and suspend the execution of such a behavior. We also assume that actual behavior execution will be performed in a separate thread with respect to the execution of Algorithm 3.1. This means that after an action is started, it will remain active until either end or $interrupt$ will be invoked.

 Moreover, since we can not assume that the agent has complete knowledge about all the properties of the environment at each point in time, the evolution of the plan must be controlled according to the robot actual knowledge about the environment (i.e., according to its epistemic state of knowledge). Therefore, we assume that the robot maintains a knowledge base KB containing information.
about the environment. This knowledge base can be implemented in any form with any formalism: for example, on heterogeneous cognitive robots normally epistemic knowledge is represented both at an operational level (as data structures) and at a deliberative level (as predicates). Pairwise, queries over the environment Φ can be represented as terms or formulas in any formalism consistent with the knowledge base. For the purposes of our plan execution method, we only require that the agent is able to evaluate queries over the current model of the world, i.e., to calculate KB |= t.o.

The procedure `execute` takes as input a PNP (P, T, F, W, M₀, G) and evolves it producing the control commands for the basic behaviors (which are associated to the firing of transitions). This process generates a sequence of transitions {M₀, ..., Mₙ} that evolve the system from the initial marking M₀ to a goal marking Mₙ ∈ G.

In particular, at each step, Algorithm 3.1 checks (line 4) if each transition t ∈ T is enabled (enabled(t)) and if the related event occurs. In our setting, an event occurs if the formula φ guarding t is satisfied given the current knowledge KB (i.e. KB |= t.o.). If these two conditions are satisfied the transition t is fired (line 6) and the relative procedures for action control are handled within the sub-procedure `handleTransition` (line 5) that takes care of appropriately activating, interrupting or deactivating the related action. The details of how this is done depend on the actual implementation of the system.

The algorithm correctly executes a PNP as shown by the following theorem.

Theorem 3.1 [13] If a PNP can be correctly executed, then Algorithm 3.1 computes a sequence of transitions {M₀, ..., Mₙ}, such that M₀ is the initial marking, Mₙ is a goal marking, and Mᵢ ⇒ Mᵢ₊₁ for each i = 0, ..., n − 1.

4. MULTI-ROBOT PNPS

The design of multi-robot plans has been considered either as plan sharing (or centralized planning), where the objective is to distribute a global plan to agents executing them, or as plan merging, where individual plans are merged into a multiagent plan (see [5] for details). In our work we followed the centralized planning approach that has been easily implemented in our formalism as described in this section. In particular, we show how to represent a multi-robot PNP which can be produced in a centralized manner and we provide a distributed execution model for it by implementing the centralized planning for distributed plans approach [5]. The distributed execution model allows to execute a set of single-robot PNPs, derived from the multi-robot PNP, without the need of a central coordinator agent. The correctness of the distributed execution with respect to the multi-robot PNP is enforced using the communication primitives `send(id)`, `receive(id)` and `sync(id, id')`, where id and id’ are unique identifiers for the state of execution of single-robot plans, as we will show in the following. The primitives are modeled as single-robot ordinary non-instantaneous actions and represent communication acts.

4.1 Syntax

A multi-robot PNP, for agents {1, ..., n}, can be defined as the union of n single-robot PNPs enriched with synchronization constraints between actions of different robots. When writing a multirobot plan, the syntax is not much different from the single robot case, except that actions are labeled with a unique id for the robot. Given n single-robot PNPs \(\{(P_i, T_i, F_i)\}_i \), appropriately labeled, the simplest way to define a multi-robot plan is:

\[M _ PNP = \{M _ P, M _ T, M _ F\} \]

where \(M _ P = \bigcup_{i=1}^{n} P_i \), \(M _ T = \bigcup_{i=1}^{n} T_i \), \(M _ F = \bigcup_{i=1}^{n} F_i \).

Such a multi-robot plan consists simply of n independent plans. When dealing with multi-robot systems, the main issue is how to represent the interactions among actions performed by different agents (i.e. among plans). The multi-robot plan, as previously defined, fails to capture such interactions and may result in the execution of conflicting actions. In particular, we want to be able to order actions across plans so that overall consistency is maintained and conflicting situations are avoided.

In our approach, we model multi-robot plans as a collection of single-robot plans enriched with synchronization constraints to avoid unsafe interactions. In particular, we introduce new types of operators, assuming that robots can communicate through a reliable channel. In the following we describe a hard synchronization operator that synchronizes two plans in a given point in time and a soft synchronization operator which introduces a precedence relation among the actions of two plans. Another synchronization operator that allows for relating interrupts between the actions of two robots is shown within the example in Section 5.2.

4.1.1 Hard Synchronization

We define a hard synchronization operator among two robots s and r, depicted in Figure 9(a), and denote it \(h _ sync(s, r, id_s, id_r) \):

\[\{(p_{1s}, p_{1r}, t_s, t_r), \{(t_s, t_r), (p_{1s}, p_{1r}), (t_s, p_{1s}), (t_r, p_{1r})\}\}\]

The operator synchronizes in time two single-robot plans and allows for information share among them, through the communication of \(id_s \) and \(id_r \) which encode the state of execution for the plan of agent s and agent r, respectively. This operator is similar in structure to an ordinary non-instantaneous action, except that it does not belong to any agent and it is labeled with a unique pair \((id_s, id_r)\).

![Figure 9](image_url)

Figure 9: (a) A multi-robot PNP for hard synchronization. (b) The single-robot PNPs obtained from the multi-robot one.

For example, Figure 9(a) shows a multi-robot PNP for two robots which have to lift a table. The nodes for action structures and synchronization operators are grouped, for readability, by a common label. In this example R1 and R2 have to reach the two sides of a table and lift it simultaneously. The \(h _ sync \) operator ensures that the robots will start to lift the table when both have reached it. In particular, the input transition \(t_s \) acts as a join waiting for both actions \(R1 _ goto _ Left _ Side _ Table \) and \(R1 _ goto _ Right _ Side _ Table \) to terminate. The place \(p \) represents the state in which the communication, necessary for synchronization, is in progress. Finally, the
ending transition of \(t_e \) acts like a fork enabling the performance of the lift actions.

We now provide the formal definition of the hard synchronization operator. Consider, without loss of generality, a sequence of actions, \(R_1.act1 \) and \(R_1.act2 \), of robot R1, and a sequence of actions, \(R_2.act1 \) and \(R_2.act2 \), of robot R2. Assume that \(p_{or} \) and \(p_{or'} \) are the output and input place of \(R_2.act1 \) and \(R_1.act2 \), respectively. Moreover, assume that \(p_{or} \) and \(p_{or'} \) are the output and input place of \(R_2.act1 \) and \(R_2.act2 \), respectively. The multi-robot plan, which enforces \(R_1.act2 \) and \(R_2.act2 \) to start simultaneously, is the union of the four actions and the \(h_sync \) operator, with the constraint that:

\[
p_{or} = p_{or} \wedge p_{or'} = p_{or} \wedge p_{or'} = p_{or} = p_{or} = p_{or}
\]

4.1.2 Soft Synchronization

We want to enforce \(h_sync(id_1, id_2) \) the two communication primitives are \(sync(id_1, id_2) \) and \(sync(id_2, id_1) \), defined as follows:

\[
sync(id_1, id_2) = \{(p_{i_d}, p_{i_d}, p_{o_d}), \{t_{i_d}, t_{e_d}\}, \{(p_{i_d}, t_{i_d}, t_{e_d}, (t_{e_d}, p_{i_d})\}
\]

\[
sync(id_2, id_1) = \{(p_{i_d}, p_{i_d}, p_{o_d}), \{t_{i_d}, t_{e_d}\}, \{(p_{i_d}, t_{i_d}, t_{e_d}, (t_{e_d}, p_{i_d})\}
\]

These two (robot) primitives, when performed jointly by robots \(s \) and \(r \), establish a communication link between \(s \) and \(r \), based on which a protocol for synchronization is started. In particular, each action, for example \(sync(id_1, id_2) \) performed by \(s \), at first sends the \(id_2 \) encoding the state of execution its plan to \(r \) and, then, waits for \(id_1 \), from \(r \), which is acknowledged upon reception. Finally, it waits an acknowledgment of reception of \(id \), by \(r \) to terminate. Notice that the exchange of information is based on the \(ids \) which encode the state of execution of each single plan (e.g. which sensing branches are performed during execution). Note that network delay may affect exact simultaneous starting of the two actions; however, the formalism ensures that the two actions will be generally executed at the same time by the two robots.

A soft synchronization operator \(s_sync(id) \) can be decomposed into two communication primitives: a blocking \(receive(id) \) and a non-blocking \(send(id) \):

\[
send(id) = \{(p_{i_d}, p_{i_d}, p_{o_d}), \{t_{i_d}, t_{e_d}\}, \{(p_{i_d}, t_{i_d}, t_{e_d}, (t_{e_d}, p_{i_d})\}
\]

\[
receive(id) = \{(p_{i_d}, p_{i_d}, p_{o_d}), \{t_{i_d}, t_{e_d}\}, \{(p_{i_d}, t_{i_d}, t_{e_d}, (t_{e_d}, p_{i_d})\}
\]

Consider the example in Figure 10 where we want to enforce that \(act1 \) precedes \(act4 \). Intuitively, a sender robot performs a \(send(id) \) action to inform a receiver that he ended action \(act1 \). The action is performed on a separate thread because there is no need to wait for executing \(act2 \). Nevertheless, the receiver robot performs the \(receive(id) \) on the main thread because it has to be sure that \(act1 \) has ended before performing \(act4 \).

We now provide a formal characterization of the single-robot PNPs. We denote with \(P_i \subseteq M_{PN} \) the subset of \(M_{PN} \) composed by the operators labeled with agent \(i \). Recall that synchronization operators do not belong to any agent. Given a multi-agent plan \(M_{PN} \), the single-robot plan for agent \(i \), \(S_{PNP} = \{S_P, S_T, S_F\} \), is the
where the synchronization operators are replaced by send the multi-robot PNPs in the first part (Figures 9(a) and 10(a)) are communications allow robots to maintain local also used for exchanging relevant information for cooperation (see of the soft synchronization. Notice that synchronization actions are similar way, Conditions 4 and 5 enforce the correct interpretation single-robot part of the plan, but does not take into account syn-
trol different robotic systems in different domains. A plan executor

minimal net such that:

\[P_t \subseteq S_{P_t} \land T_t \subseteq S_{T_t} \land F_t \subseteq S_{F_t} \] (1)

\[\forall t, t' \in T_t \forall p, p' \in M_{P_t} (p, p' \in h_{\text{sync}}(t, t_1, t_2, id_2) \land (t, p) \in M_F \land (p', t') \in M_F) \implies ((\{p_{id}, p_{\text{id}}, t_{\text{id}}, t_1\} \subseteq S_{P_t} \land \{t_{\text{id}}, t_1\} \subseteq S_{T_t} \land \{t, t_1\} \subseteq S_{F_t}) \subseteq \{t_{\text{id}}, p_{\text{id}}, t_1\} \subseteq S_{F_t}) \] (2)

\[\forall t, t' \in T_t \forall p, p' \in M_{P_t} (p, p' \in h_{\text{sync}}(S, i, id_1, id_2) \land (t, p) \in M_F \land (p', t') \in M_F) \implies ((\{p_{id}, p_{\text{id}}, t_{\text{id}}, t_1\} \subseteq S_{P_t} \land \{t_{\text{id}}, t_1\} \subseteq S_{T_t} \land \{t, t_1\} \subseteq S_{F_t}) \subseteq \{t_{\text{id}}, p_{\text{id}}, t_1\} \subseteq S_{F_t}) \] (3)

\[\forall t \in T_t \forall p \in M_{P_t} (p \in s_{\text{sync}}(id)) \implies ((\{p_{\text{id}}, p_{\text{e}}, p_{\text{r}}, t_{\text{id}}, t_{\text{e}}, t_{\text{r}}\} \subseteq S_{P_t} \land \{t_{\text{e}}, t_{\text{r}}\} \subseteq S_{T_t} \land \{t, t_{\text{r}}, t_{\text{e}}\} \subseteq S_{F_t}) \subseteq \{t_{\text{e}}, p_{\text{r}}, t_{\text{r}}\} \subseteq S_{F_t}) \] (4)

\[\forall t \in T_t \forall p, p' \in M_{P_t} (p \in s_{\text{sync}}(id) \land (p, t) \in M_F \land (p', t') \in M_F) \implies ((\{p_{\text{e}}, p_{\text{r}}\} \subseteq S_{P_t} \land \{t_{\text{r}}, t_{\text{e}}\} \subseteq S_{T_t} \land (p', t') \subseteq S_{F_t} \land \{p_{\text{e}}, t_{\text{r}}, (p_{\text{r}}, t_{\text{e}}, t') \subseteq S_{F_t}) \subseteq \{t_{\text{e}}, p_{\text{r}}, t_{\text{r}}\} \subseteq S_{F_t}) \] (5)

Condition 1 states that the synchronized plan must include \(i \)'s single-robot part of the plan, but does not take into account syn-
chronization. On the one hand, Conditions 2 and 3 ensure that, respectively, the send and receive primitives are correctly substit-
tuted to each hard synchronization. On the other one hand, in a similar way, Conditions 4 and 5 enforce the correct interpretation of the soft synchronization. Notice that synchronization actions are also used for exchanging relevant information for cooperation (see the passing experiment in the next section for an example). These communications allow robots to maintain local K Bs.

Examples of this process are shown in Figures 9 and 10. Here the multi-robot PNPs in the first part (Figures 9(a) and 10(a)) are divided in two PNPs for the two agents (Figures 9(b) and 10(b)), where the synchronization operators are replaced by send, receive and sync actions. The synchronized single-robot plans are then executed as shown in Section 3.2. The communication primitives will guarantee the consistency of the distributed multi-robot plan.

The following theorem (see [1] for the proof) ensures correctness of distributed execution of a multi-robot PNP.

Theorem 4.1 The execution of a multi-robot PNP is equivalent to the distributed execution of the single-robot PNPs derived from it.

5. EXPERIMENTAL TESTS

The proposed framework has been implemented and used to control different robotic systems in different domains. A plan executor

for PNP formalism has been implemented with a set of tools for designing and debugging plans. Plans are executed reacting to the events occurring in the environment and to the state of the robot. During the execution of a PNP, the robot makes use of a set of functions that can access the internal state of the robot and return truth values about relevant properties for the execution of the plan. Among the many applications, we describe here two experi-
mental tests implemented with AIBO robots: a cooperative foraging test and a passing test. The objective of these tests is to highlight the features of the formalism in representing the multi-robot plans needed to accomplish them. Complete multi-robot plans, derived single robot plans and videos showing the execution of these tasks with the AIBO robots are available at [1].

5.1 Cooperative foraging

The cooperative foraging test we have considered is set by three robots that perform a synchronized operation on a set of similar objects scattered in the environment. In order to achieve such a complex foraging task it is necessary to be able to synchronize ac-
tions across plans. Each robot can take one of two tasks: collector, that grabs the object (a ball), supporter, that supports the collector robot during the grabbing phase. Tasks are assigned to the robots by an external module [6] that dynamically decides which robot is in best condition to execute the task. While multi-robot PNPs are used here to specify the coordinated behavior of the two robots that execute the collector and supporter tasks.

Figure 11 shows the multi-robot plan. Hard synchronization is used to synchronize the robot after they reach the corresponding target positions. Then the collector robot waits for the supporter one to push the ball below his neck. After that collector robot grabs the ball and the supporter robot moves away. Finally, the collector robot brings the object in the target area. All these synchronization activities are implemented on the robots by pairs of communication actions.

5.2 Passing

The passing test has the objective of showing the ability of the multi-robot PNP formalism to address both action synchronization and dynamic task assignment. In contrast with the previous test, here there is no external module for dynamic task assignment, while this is accomplished by using the PNP structures described in the previous sections. Two interesting portions of the multi-robot plan are shown in Figure 12. In the first picture, the hard synchro-
nization construct ensures that the robots synchronize their activi-
ties after they both see the ball. Within the synchronization mes-
sage, the robots also exchange their knowledge about the position of the ball. Then role assignment is based on sensing actions and the one which is closer to the ball will go and grab the ball, while the other will prepare to receive the pass. Note that this assignment is dynamic and depends on the actual position of the ball. Another interesting feature of this plan is shown in the second picture, where we show how an interrupt in the execution of an action performed by one robot (i.e., the robot loses the ball when it is grabbing it) im-
plies the interrupt of an action in the other robot (i.e., the other robot will interrupt the ‘receive-pass’ action). This is achieved through a h-sync and it allows the robots to restart the coordination activity (dashed lines in the figure): for example, if the second robot is now closer to the ball, it will start the grabbing phase.

6. CONCLUSIONS

In this paper we have presented a new formalism for high level programming of multi-robot systems that is able to represent plans with many important features such as sensing, loops, concurrency.
non-instantaneous actions, action failures, and different types of action synchronization.

The main advantage of the Petri Net Plan framework is the clear definition of the modeling language and of its semantics in terms of Petri nets. From one side, the high expressiveness of PNPs allows for effectively capturing and dealing with most of the situations encountered when designing autonomous robots and multi-robot systems. From the other side, we have a formal method to distinguish action implementation and specification and we can use standard tools to evaluate properties of the nets such us liveness and reachability of the goal states. Finally, the graphical representation of Petri nets allows for an easy understanding and debugging of the plans which speeds up the development process.

Such high expressiveness is also a limitation when designer is interested in using plan generation techniques. Although we provide an operational semantics for our plans, in order to have a clear specification of the behavior of the robots during execution, it may still be difficult to write plans, especially Multi-Agent plans, for very complex tasks, like playing soccer.

Our future work will include two main streams: first, we want to study the possibility of extending plan generation techniques to automatically produce (at least partial) PNPs; second, we want to investigate learning techniques (e.g., genetic programming) for refining or generating plans by experiments and user training.

7. REFERENCES