FINDING IRREFUTABLE CERTIFICATES FOR S^2_p VIA ARTHUR AND MERLIN

VENKATESAN T. CHAKARAVARTHY AND SAMBUDDHA ROY

IBM India Research Lab, New Delhi.
E-mail address: {vechakra,sambuddha}@in.ibm.com

Abstract. We show that $S^2_p \subseteq P^{prAM}$, where S^2_p is the symmetric alternation class and prAM refers to the promise version of the Arthur-Merlin class AM. This is derived as a consequence of our main result that presents an FP^{prAM} algorithm for finding a small set of “collectively irrefutable certificates” of a given S_2-type matrix. The main result also yields some new consequences of the hypothesis that NP has polynomial size circuits. It is known that the above hypothesis implies a collapse of the polynomial time hierarchy (PH) to $S^p_2 \subseteq ZPP^{NP}$ [5, 14]. Under the same hypothesis, we show that PH collapses to P^{prMA}. We also describe an FP^{prMA} algorithm for learning polynomial size circuits for SAT, assuming such circuits exist. For the same problem, the previously best known result was a ZPP^{NP} algorithm [4].

1. Introduction

We consider the problem of finding irrefutable certificates for the symmetric alternation class S^p_2. The class S^p_2 was introduced by Russell and Sundaram [17] and independently, by Canetti [6]. A language L in the class S^p_2 is characterized by an interactive proof system of the following type. The proof system consists of two computationally all-powerful provers called the Yes-prover and the No-prover, and a polynomial time verifier. The verifier interacts with the two provers to ascertain whether or not an input string x belongs to the language L. The Yes-prover and the No-prover make contradictory claims: $x \in L$ and $x \not\in L$, respectively. Of course, only one of them is honest. To substantiate their claims, the provers provide strings y and z as certificates. The verifier analyzes the input x and the two certificates and votes in favor of one of the provers. If the Yes-prover wins the vote, we say that y beats z and we say that z beats y, otherwise. The requirement is that, if $x \in L$, then the Yes-prover must have a certificate y that beats any certificate z given by the No-prover. Similarly, if $x \not\in L$, the No-prover must have a certificate z that beats any certificate y given by the Yes-prover. We call certificates satisfying the above requirements as irrefutable certificates (written IC). Clearly, for any input string, only the honest prover has an IC.

Cai [5] showed that $S^p_2 \subseteq ZPP^{NP}$. Let us rephrase this result: for any language $L \in S^p_2$, we have a ZPP^{NP} algorithm that takes an input string and decides whether the Yes-prover
has an IC or the No-prover has an IC. The main purpose of this paper is to study the problem of finding IC's for an input string.

The above problem and the related issues regarding S_2^p can conveniently be described in terms of Boolean matrices. Let L be a language in S_2^p and x be an input string. Let n and m, denote the length of the certificates of the Yes-prover and No-prover, respectively. We model the behaviour of the verifier on the input x in the form of a $2^n \times 2^m$ Boolean matrix M. In the matrix M, the rows correspond to the certificates of the Yes-prover and the columns correspond to the certificates of the No-prover. For certificates $y \in \{0,1\}^n$ and $z \in \{0,1\}^m$, if y beats z, then we set $M[y,z] = 1$ and if z beats y, then we set $M[y,z] = 0$. Notice that the matrix M has either a row full of 1's or a column full of 0's. The first scenario happens, when $x \in L$ (here, the row full of 1's corresponds to an IC of the Yes-prover). Similarly, the second scenario happens, when $x \notin L$ (here, the column full of 0's corresponds to an IC of the No-prover). We call any Boolean matrix satisfying the above condition as an S_2-type matrix. A row full of 1's is called a row-side IC and a column full of 0's is called a column-side IC. (Notice that a Boolean matrix cannot have both.) Though the matrix M is exponentially large in the size of the input $|x|$, it can be succinctly encoded in the form of a Boolean circuit C having size polynomial in $|x|$. The circuit C takes as input $y \in \{0,1\}^n$ and $z \in \{0,1\}^m$ and outputs $C(y,z) = M[y,z]$. The circuit achieves this by simulating the verifier's algorithm on the input x. Using standard techniques, we can construct the desired circuit C in time polynomial in $|x|$.

Problems regarding S_2^p can now be expressed as problems on S_2-type matrices, presented succinctly in the form of circuits. First, let us consider the basic problem of membership testing for a language $L \in S_2^p$: given a string x, determine whether $x \in L$ or not. This is equivalent to following problem on S_2-type matrices.

Membership Testing. Given an S_2-type matrix M, presented succinctly in the form of a circuit, distinguish between the two cases: (i) there exists a row-side IC; (ii) there exists a column-side IC.

Cai [5] showed that $S_2^p \subseteq ZPP^{NP}$. Equivalently, this result presents a ZPPNP algorithm for the Membership Testing problem. We consider the more general problem of finding an IC for a given S_2-type matrix.

Problem FindIC: Given an S_2-type matrix M, presented succinctly in the form of a circuit, output an IC either on the row side or on the column side.

Via a simple observation, we show that if there exists a ZPPNP algorithm for the FindIC problem, then the polynomial time hierarchy (PH) collapses. In summary, we can determine in ZPPNP whether an IC is found among the rows or among the columns; but, we cannot find an IC in ZPPNP, unless PH collapses. So, we study the easier problem of finding a set of collectively irrefutable certificates (written CIC).

We say that a set of rows Y collectively beats a column z, if some row $y \in Y$ beats z. The set Y is said to be a row-side CIC, if Y collectively beats every z. The notion of column-side CIC is defined analogously. Notice that an arbitrary Boolean matrix may have both a row-side CIC and a column-side CIC. However, the existence of a row-side CIC precludes there being a column-side IC. Thus, in the case of S_2-type matrices, a row-side CIC shows that there exists a row-side IC (which in turn, means that the input string $x \in L$). Therefore, a row-side CIC is as useful as a row-side IC, in certifying that $x \in L$. Our main result provides an algorithm for finding a CIC of small size (logarithmic in the size of the input matrix).
Problem \textsc{FindCIC}. Given an S_2-type matrix M of size $2^n \times 2^m$, presented succinctly in the form of a circuit, output either a row-side CIC or a column-side CIC of size max\{n, m\}.

Our main result presents an \textsc{FPprAM} algorithm for the \textsc{FindCIC} problem, i.e., the algorithm runs in (deterministic) polynomial time making queries to an \textsc{prAM} oracle; \textsc{prAM} refers to the promise version of the Arthur-Merlin class \textsc{AM}.

\textbf{Main Result.} We present an \textsc{FPprAM} algorithm for the \textsc{FindCIC} problem.

We note that the problem \textsc{FindCIC} can also be solved by a ZPP \textsc{NP} algorithm; such an algorithm is implicit in the work of Cai [5] and Fortnow et al. [9]. The containment relationships between \textsc{FPprAM} and \textsc{ZPPNP} are not known. This issue is discussed in more detail below.

An immediate corollary of the main result is that $S_2^p \subseteq \text{P}^{\text{prAM}}$. This gives a nice counterpart to Cai’s result [5] that $S_2^p \subseteq \text{ZPP}^{\text{NP}}$. The containment relationships between \text{P}^{\text{prAM}} and \text{ZPP}^{\text{NP}} are unknown. (In fact, it has been a long standing open problem to put \textsc{AM} in Σ_2^p). However, we can show that $\text{P}^{\text{prAM}} \subseteq \text{BPP}^{\text{NP}}$. Moreover, Cai’s result can also be derived from the main result.

It is known that $\text{P}^{\text{NP}} \subseteq S_2^p$ [17] and one of the most challenging open problems regarding S_2^p asks whether S_2^p is contained in P^{NP}. Working under a larger framework, Shaltiel and Umans [19] also studied this issue and derived the result $S_2^p = \text{P}^{\text{NP}}$, under a suitable hardness hypothesis. This was achieved by derandomizing Cai’s construction for $S_2^p \subseteq \text{ZPP}^{\text{NP}}$. The above-mentioned hardness hypothesis was the one used by Miltersen and Vinodchandran [15] to derandomize \textsc{AM} to get \textsc{AM} = \text{NP}: there exists a language L in $\text{NE} \cap \text{coNE}$ so that for all but finitely many n, $L \cap \{0, 1\}^n$ has SV-nondeterministic circuit complexity at least $2^\epsilon n$. Thus, under the above hypothesis, Shaltiel and Umans showed that $S_2^p = \text{P}^{\text{NP}}$. Our claim that $S_2^p \subseteq \text{P}^{\text{prAM}}$ yields an alternative proof of the above result. This is obtained by appealing to the hitting set generator of Miltersen and Vinodchandran [15]. A more detailed discussion will be included in the full version of the paper.

The main result yields two new consequences of the assumption that \text{NP} has polynomial size circuits. Under the above assumption, Karp and Lipton [13] showed that the polynomial time hierarchy (PH) collapses to Σ_2^p. Subsequently, their result has been strengthened: Köbler and Watanabe [14] derived the collapse $\text{PH} = \text{ZPP}^{\text{NP}}$; Sengupta observed that $\text{PH} = S_2^p \subseteq \text{ZPP}^{\text{NP}}$ (see [5]); recently, the collapse was improved to $\text{PH} = \text{O}_2^p \subseteq S_2^p$ [7]. It has been a challenging open problem to get the collapse down to P^{NP}. We derive a weaker result: if \text{NP} has polynomial size circuits, then $\text{PH} = \text{P}^{\text{prMA}}$. It is worthwhile to compare this new collapse result with the earlier ones. Though it is known that $\text{P}^{\text{MA}} \subseteq S_2^p$ [17], it is not clear whether P^{prMA} is contained in S_2^p. However, we can show that $\text{P}^{\text{prMA}} \subseteq \text{ZPP}^{\text{NP}}$ (by extending the known result that $\text{MA} \subseteq \text{ZPP}^{\text{NP}}$ [1, 11]).

One implication of the new collapse result is that P^{prMA} cannot have $\text{SIZE}(n^k)$ circuits, for any fixed k. However, a stronger result is known: in a recent breakthrough, Santhanam [18] proved the above circuit lowerbound for the class \text{prMA}.

In the above context, our next result deals with the problem of learning polynomial size circuits for SAT. Under the assumption that NP has polynomial size circuits, Bshouty et al. [4] designed a ZPP^{NP} algorithm that finds a correct circuit for SAT at a given length. We improve their result by presenting a FP^{prMA} algorithm for the same task.

Finally, we show how to generalize our main result to the case of arbitrary Boolean matrices (that may not necessarily be of S_2-type). For this, we make use of a nice and interesting lemma by Goldreich and Wigderson [10]: they showed that any $2^n \times 2^m$ Boolean
matrix M contains a row-side CIC of size m or a column-side CIC of size n (or both). We consider the scenario where the matrix M is presented succinctly in the form of a circuit and describe an FPPRAM algorithm for finding such a CIC; but, our algorithm suffers a small blow-up in the size of the output CIC. The algorithm finds a row-side CIC of size m^2 or a column-side CIC of size n^2.

Proof Techniques. The proof of our main result has a flavor similar to that of Cai’s result [5]. The proof involves a variant of self-reduction and the tools of approximate counting and testing whether a set is “large” or "small". For the latter two tasks, we borrow ideas from the work of Jerrum et al. [12], Stockmeyer [21] and Sipser [20]. We put together all these ideas and show how to solve our problem using a prAM oracle. Our exposition is largely self-contained.

2. Preliminaries

In this section, we develop definitions and notations used throughout the paper.

Symmetric Alternation. A language L is said to be in the class S^p_2, if there exists a polynomial time computable Boolean predicate $V(\cdot,\cdot,\cdot)$ and polynomials $p(\cdot)$ and $q(\cdot)$ such that for any x, we have

\[
\begin{align*}
x \in L & \implies (\exists y \in \{0,1\}^n)(\forall z \in \{0,1\}^m)[V(x,y,z) = 1], \text{ and} \\
x \notin L & \implies (\exists z \in \{0,1\}^m)(\forall y \in \{0,1\}^n)[V(x,y,z) = 0],
\end{align*}
\]

where $n = p(|x|)$ and $m = q(|x|)$. We refer to the y’s and z’s above as certificates. The predicate V is called the verifier.

Matrix representation of the verifier’s computation. Let L be a language in S^p_2 via a verifier predicate V. Fix an input string x. It is convenient to represent the behaviour of the verifier on various certificates in the form of a matrix. Define a Boolean $2^n \times 2^m$ matrix M, such that for $y \in \{0,1\}^n$ and $z \in \{0,1\}^m$, $M[y,z] = V(x,y,z)$. Thus, any row or column in M corresponds to a certificate. We call M as the matrix corresponding to the input x. Matrices constructed in the above fashion have some special properties that are derived from the definition of S^p_2.

S_2-type matrices and irrefutable certificates. Let M be a $2^n \times 2^m$ Boolean matrix. For a row $y \in \{0,1\}^n$ and a column $z \in \{0,1\}^m$, if $M[y,z] = 1$, then y is said to beat z; similarly, z is said to beat y, if $M[y,z] = 0$. A row y is called a row-side IC, if y beats every column $z \in \{0,1\}^m$; a column z is called a column-side IC if z beats every row $y \in \{0,1\}^n$. Notice that a matrix cannot have both a row-side IC and a column-side IC. The matrix M is said to be an S_2-type matrix, if it has either a row-side IC or a column-side IC. A set of rows Y is called a row-side CIC, if for every column z, there exists a row $y \in Y$ such that y beats z. Similarly, a set of columns Z is called a column-side CIC, if for every row y, there exists a column $z \in Z$ such that z beats y.

Remark. Let us put the above discussion in the context of a language $L \in S^p_2$ and make some simple observations. For any input string x, the matrix M corresponding to x is an S_2-type matrix. The matrix M will have a row-side IC, if and only if $x \in L$; similarly, M will have a column-side IC, if and only if $x \notin L$.

Succinct encoding of matrices and sets. A Boolean circuit $C : \{0,1\}^n \times \{0,1\}^m \to \{0,1\}$ is said to succinctly encode a Boolean $2^n \times 2^m$ matrix M, if for all $y \in \{0,1\}^n$ and $z \in \{0,1\}^m$, we have $C(y,z) = M[y,z]$. A Boolean circuit $C : \{0,1\}^m \to \{0,1\}$ is said to succinctly encode a set $X \subseteq \{0,1\}^m$, if for all $x \in \{0,1\}^m$, $x \in X \iff C(x) = 1$.
Remark. Let L be a language in S_2^p via a verifier V. Let x be an input string with the corresponding matrix M. Using standard techniques, we can obtain a Boolean circuit $C : \{0,1\}^n \times \{0,1\}^m \rightarrow \{0,1\}$ such that $C(y, z) = V(x, y, z)$. Given the input x, the above task can be performed in time polynomial in $|x|$. The size of the circuit is also polynomial in $|x|$. Notice that the above circuit C succinctly encodes the matrix M.

Complexity classes. We use standard definitions for complexity classes such as P, NP, P/poly, MA, AM, ZPP$^\text{NP}$ and BPP$^\text{NP}$ [8, 16]. Below, we present definitions for promise and function classes, that are central to our paper.

Promise languages. A promise language Π is a pair (Π_1, Π_2), where $\Pi_1, \Pi_2 \subset \Sigma^*$, such that $\Pi_1 \cap \Pi_2 = \emptyset$. The elements of Π_1 are called the positive instances and those of Π_2 are called the negative instances.

Promise MA (prMA). A promise language $\Pi = (\Pi_1, \Pi_2)$ is said to be in the promise class prMA, if there exists a polynomial time computable Boolean predicate $A(\cdot, \cdot, \cdot)$ and polynomials $p(\cdot)$ and $q(\cdot)$ such that, for all x, we have
\[
x \in \Pi_1 \implies (\exists y \in \{0,1\}^n)(\forall z \in \{0,1\}^m)[A(x, y, z) = 1],
\]
\[
x \in \Pi_2 \implies (\forall y \in \{0,1\}^n) \Pr_{z \in \{0,1\}^m}[A(x, y, z) = 1] \leq \frac{1}{2},
\]
where $n = p(|x|)$ and $m = q(|x|)$. The predicate A is called Arthur's predicate.

Promise AM (prAM). A promise language $\Pi = (\Pi_1, \Pi_2)$ is said to be in the promise class prAM, if there exists a polynomial time computable Boolean predicate $A(\cdot, \cdot, \cdot)$ and polynomials $p(\cdot)$ and $q(\cdot)$ such that, for all x, we have
\[
x \in \Pi_1 \implies (\forall y \in \{0,1\}^n)(\exists z \in \{0,1\}^m)[A(x, y, z) = 1],
\]
\[
x \in \Pi_2 \implies \Pr_{y \in \{0,1\}^n}[(\exists z \in \{0,1\}^m)A(x, y, z) = 1] \leq \frac{1}{2},
\]
where $n = p(|x|)$ and $m = q(|x|)$. The predicate A is called Arthur's predicate.

Oracle access to promise languages. Let A be an algorithm and $\Pi = (\Pi_1, \Pi_2)$ be a promise language. When the algorithm A asks a query q, the oracle behaves as follows: if $q \in \Pi_1$, the oracle replies “yes”; if $q \in \Pi_2$, the oracle replies “no”; if q is neither in Π_1 nor in Π_2, the oracle may reply “yes” or “no”. We allow the algorithm to ask queries of the third type. The requirement is that the algorithm should be able to produce the correct answer, regardless of the answers given by the oracle to the queries of the third type.

Function classes. For a promise language Π, the notation FP$^\Pi$ refers to the class of functions that are computable by a polynomial time machine, given oracle access to Π. For a promise class C, we denote by FP$^\Pi_C$, the union of FP$^\Pi$, for all $\Pi \in C$. Regarding ZPP$^\text{NP}$, we slightly abuse the notation and use this to mean both the standard complexity class and the function class. The function class ZPP$^\text{NP}$ contains functions computable by a zero-error probabilistic polynomial time algorithm given oracle access to NP; the algorithm either outputs a correct value of the function or “?”, the latter with a small probability.

3. Main Result: Finding Collectively Irrefutable Certificates

In this section, we study the problem of finding irrefutable certificates for S_2-type matrices. As discussed in the introduction, finding a single IC in ZPP$^\text{NP}$ would collapse polynomial time hierarchy (PH).

Theorem 3.1. If there exists a ZPP$^\text{NP}$ algorithm for FindIC problem then PH = BPP$^\text{NP}$.

Proof. Suppose there exists a ZPP\(^{NP}\) algorithm \(\mathcal{A}\) that solves the FindIC problem. Then, we show that \(\Sigma^p_2 \subseteq \text{RP}^{NP}\).

Let \(L\) be a language in \(\Sigma^p_2\). There exists a polynomial time computable predicate \(D(\cdot, \cdot, \cdot)\) and polynomials \(p(\cdot)\) and \(q(\cdot)\) such that for any string \(x\),

\[
\begin{align*}
x \in L &\implies (\exists y \in \{0,1\}^n)(\forall z \in \{0,1\}^m)[D(x, y, z) = 1], \\
x \notin L &\implies (\forall y \in \{0,1\}^n)(\exists z \in \{0,1\}^m)[D(x, y, z) = 0],
\end{align*}
\]

where \(n = p(|x|)\) and \(m = q(|x|)\).

Consider an input string \(x\). Represent the computation of the predicate \(D\) in the form of a Boolean matrix \(M\) of size \(2^n \times 2^m\), by setting \(M[y, z] = D(x, y, z)\), for all \(y \in \{0,1\}^n\) and \(z \in \{0,1\}^m\). Using standard techniques, we can construct a circuit \(C\) succinctly encoding the matrix \(M\) in time polynomial in \(|x|\).

We simulate the algorithm \(\mathcal{A}\) on the matrix \(M\). Consider the two cases of \(x \in L\) and \(x \notin L\). If \(x \in L\), then \(M\) is an \(S_2\)-type matrix having a row-side IC and so, the algorithm must output either a row-side IC or "?". If \(x \notin L\), \(M\) need not be an \(S_2\)-type matrix and so, the output of the algorithm can be arbitrary. In either case, let \(s\) denote the output of \(\mathcal{A}\) on input \(M\). Using the NP oracle, check if \(s\) is a row-side IC. If so, accept \(x\); otherwise, reject \(x\).

Let us call the above algorithm \(\mathcal{B}\). Notice that if \(x \in L\), then \(\mathcal{B}\) accepts \(x\) with high probability. On the other hand, if \(x \notin L\), then \(\mathcal{B}\) rejects \(x\) with probability 1; because, \(M\) does not have a row-side IC. Thus, we have shown that \(\Sigma^p_2 \subseteq \text{RP}^{NP}\).

It follows that \(\Sigma^p_2 \subseteq \text{BPP}^{NP}\). It is known that this implies \(\text{PH} = \text{BPP}^{NP}\). \(\square\)

We next focus on finding "small" CIC's and present an FP\(^{prAM}\) algorithm for the FindCIC problem.

Theorem 3.2. There exists a polynomial time algorithm which solves the following problem, given oracle access to prAM. The algorithm takes as input a circuit \(C\) succinctly encoding a \(S_2\)-type matrix \(M\) of size \(2^n \times 2^m\) and produces either a row-side CIC of size \(m\) or a column-side CIC of size \(n\).

For ease of exposition, we have divided the proof into multiple small steps; in each step, the given problem is reduced (in the Turing sense) to a simpler problem. The final algorithm is obtained by composing these reductions. The various steps are grouped into two phases. The first phase reduces the given problem to a problem that we call Prefix Ratio Goodness Testing (PRGT). The second phase describes an algorithm for PRGT.

3.1. Reduction to Prefix Ratio Goodness Testing

We are given an \(S_2\)-type matrix \(M\). By definition, \(M\) is guaranteed to have either a row-side IC or a column-side IC. Our goal is to find a small CIC. This problem reduces to the problem addressed in Lemma 3.3, given below. The lemma presents an FP\(^{prAM}\) algorithm for finding a small row-side CIC for matrices that are guaranteed to have a row-side IC. Via an easy transformation, we can obtain an analogous algorithm for finding a small column side CIC for matrices guaranteed to have a column-side IC. We run both these algorithms on the given \(S_2\)-type matrix \(M\). Notice that one of these runs must output a CIC. The other run would output some arbitrary result, because the input matrix does not satisfy the requirements of the concerned algorithm. We check which of the two outputs is indeed a CIC and output the same. This check can be performed by making a single NP query. Thus, we get the FP\(^{prAM}\) algorithm claimed in Theorem 3.2.
Lemma 3.3. There exists an FPprAM algorithm that takes as input a circuit C succinctly encoding a $2^n \times 2^m$ matrix M that is guaranteed to have a row-side IIC and outputs a row-side CIC of size m.

The algorithm computes the required CIC using a standard iterative approach: in each iteration, we find a row y that beats at least half of the columns that are as yet unbeaten by the rows found in the previous iterations. Formally, we start with an empty set Y and proceed iteratively, adding a row to Y in each iteration. Consider the k^{th} iteration. Let U_k be the set of columns as yet unbeaten by any row in Y (i.e., $U_k = \{z \in \{0,1\}^m | \text{no } y \in Y \text{ beats } z\}$). We find a row y^* such that y^* beats at least half the columns in U_k and add y^* to Y. Notice that such a y^* exists, since we are guaranteed that M has a row-side IIC. Clearly, the algorithm terminates in m steps and produces a row-side CIC of size m. Of course, the main step lies in finding the required y^* in each iteration. This task is accomplished by the algorithm described in Lemma 3.4, given below. The algorithm, in fact, solves a more general problem: given any set of columns $X \subseteq \{0,1\}^m$, it produces a row beating at least half of the columns in X. In each iteration, we invoke the algorithm by setting $X = U_k$. There is one minor issue that needs to be addressed: the set U_k could be exponentially large. So, we represent the set U_k in the form of a circuit C' succinctly encoding it. For this, given any column $z \in \{0,1\}^m$, C' has to test whether z is beaten by any of the rows in Y. This test involves a simulation of $C(y, z)$, for all $y \in Y$. Since Y contains at most m rows, we can succinctly encode U_k by a circuit of size polynomial in the size of C. We have proved Lemma 3.3, modulo Lemma 3.4.

Lemma 3.4. There exists an FPprAM algorithm that takes two inputs: (i) a $2^n \times 2^m$ Boolean matrix M that is guaranteed to have a row-side IIC; (ii) a set of columns $X \subseteq \{0,1\}^m$. It outputs a row y^* that beats at least half the columns in X. The matrix M and the set X are presented succinctly in the form of circuits.

We build the required string y^* (of length n) in n iterations using an approach similar to self-reduction. We maintain a prefix of y^* and add one suitable bit in each iteration. However, we cannot directly employ self-reduction, since a query of the form “does there exist a row that beats at least half the columns in X” is a PP query and we cannot hope to find the answer using a prAM oracle. Nevertheless, we show how to converge on a y^* by performing self-reduction that incurs a small amount of “loss” in the “goodness” of the final y^*, in each iteration. We formalize the notion of goodness and then describe the algorithm.

Consider a $2^p \times 2^q$ Boolean matrix A and let $Q \subseteq \{0,1\}^q$ be a subset of the columns of A. For a row $y \in \{0,1\}^p$, define $\mu(y, Q)$ to be the fraction of columns in Q that y beats:

$$\mu(y, Q) = \frac{|\{z \in Q : y \text{ beats } z\}|}{|Q|}.$$ Let α be a string of length at most p. We say that a row $y \in \{0,1\}^p$ extends α, if α is a prefix of y. For $\rho \leq 1$, we say that α is ρ–good with respect to Q, if there exists a row y extending α such that $\mu(y, Q) \geq \rho$.

The algorithm claimed in Lemma 3.4 constructs the string y^* in n iterations. Starting with the empty string, we keep building a prefix of y^*. At the end of the $(k-1)^{th}$ iteration, we have a prefix α_{k-1} of length $k-1$. In the k^{th} iteration, we extend α_{k-1} by one more bit b to get a prefix α_{k} of length k. To start with, we are guaranteed the existence of a row-side IIC in M, meaning a row with goodness=1. Consider the k^{th} iteration. Suppose the prefix α_{k-1} is ρ–good with respect to X, for some ρ. Below, we describe a mechanism for finding
a bit b such that the string $\alpha_{k-1}b$ is $(\rho - \epsilon)$-good. The value ϵ is a parameter to be fixed suitably later. Thus, in each iteration, we suffer a loss of ϵ and so, the accumulated loss at the end of n iterations is ne. Choosing ϵ suitably small, we get a string y^* having goodness at least $1/2$.

The main step lies in choosing a suitable bit b in each iteration. Consider the k^{th} iteration. At the end of $(k - 1)^{th}$ iteration, we have prefix α of length $k - 1$. Write $\rho = 1 - (k-1)\epsilon$. By induction, assume that α is ρ-good with respect to X. Our task is to find a bit b such that αb is $(\rho - \epsilon)$-good. This is accomplished by invoking the algorithm given in Lemma 3.5, which solves the Prefix Ratio Goodness Testing problem (PRGT), defined below. The main observation is that at least one of $\alpha 0$ or $\alpha 1$ is ρ-good, because α is ρ-good. We run the algorithm given in Lemma 3.5 twice with $\beta = \alpha 0$ and $\beta = \alpha 1$ as inputs, respectively. By the above observation, at least one these two runs must output “yes”. Let b be a bit such that the algorithm outputs “yes” on input αb. We choose b as the required bit. It is easy to see that αb is $(\rho - \epsilon)$-good; otherwise, the algorithm should have output “no” on αb.

Proceeding this way for n iterations, we end up with a string y^* which is $(1 - ne)$-good.

Setting $\epsilon = 1/n^2$, we see that y^* beats at least a fraction of $(1 - 1/n) \geq 1/2$ columns in X.

We have proved Lemma 3.4, modulo Lemma 3.5.

Prefix Ratio Goodness Testing (PRGT): The instances of this promise language have four components: (i) a $2^n \times 2^m$ Boolean matrix M; (ii) a set of columns $X \subseteq \{0,1\}^m$; (iii) a prefix β of length at most n. (iv) parameters $\rho > 0$ and $\epsilon > 0$. The matrix M and the set X are represented succinctly in the form of circuits.

Positive Instances: There exists a row y extending β such that $\mu(y, X) \geq \rho$.

Negative Instances: For all rows y extending β, it is the case that $\mu(y, X) \leq \rho - \epsilon$.

Lemma 3.5. There exists an FP^PRAM that solves the PRGT problem. Namely, for positive instances, the output is “yes”; for negative instances, the output is “no”; for other instances, the output can be arbitrary. The running time of the algorithm has a polynomial dependence on $1/\epsilon$.

3.2. Prefix Ratio Goodness Testing: Proof of Lemma 3.5

In this section, we prove Lemma 3.5. One of the hurdles in trying to construct the desired algorithm is that the gap between the two cases we need to distinguish is small. So, as a first step, we amplify the gap using standard techniques.

The amplification process involves a parameter t, which we will fix suitably. Construct a matrix \overline{M} from M as follows. Each row in \overline{M} corresponds to a row in M and each column \overline{x} in \overline{M} corresponds to a sequence $\langle z_1, z_2, \ldots, z_t \rangle$ of t columns from M. Thus, the matrix \overline{M} is of size $2^n \times 2^{mt}$, where $mt = m t$. Consider a row $y \in \{0,1\}^n$ and a column $\overline{z} = \langle z_1, z_2, \ldots, z_t \rangle$, where each z_i is a column in M. Set the entry $\overline{M}[y, \overline{z}] = 1$, if y beats at least $(\rho - \frac{\epsilon}{t})$ fraction of the z_i’s (with respect to M); otherwise, set it to 0. Analogously, denote by X the t-wise cartesian product of X with itself, i.e., $X = \{\langle z_1, z_2, \ldots, z_t \rangle : z_i \in X\}$. We fix $t = 16m/\epsilon^2$.

An application of Chernoff bounds yields the following claim.

Lemma 3.6. For any $y \in \{0,1\}^n$, we have the following.

- If $\mu(y, X) \geq \rho$ in M then $\mu(y, \overline{X}) \geq 1/2$ in \overline{M}.
- If $\mu(y, X) \leq \rho - \epsilon$ in M then $\mu(y, \overline{X}) \leq 1/m^4$ in \overline{M}.
Given the above amplification, the problem considered in Lemma 3.5 reduces to the problem addressed in Lemma 3.7. Formally, the algorithm claimed in Lemma 3.5 works as follows. Given a circuit C succinctly encoding the matrix M, a circuit C_X succinctly encoding a set of columns X, prefix β and parameters ρ and ϵ, we consider the matrix \overline{M} and the set \overline{X}, as described above. Notice that we can construct in polynomial time a circuit C succinctly encoding M. Similarly, we can construct in polynomial time a circuit C_X succinctly encoding the set X. Then, we invoke the algorithm given in Lemma 3.7 with C, C_X and β as inputs. We output “yes”, if the algorithm outputs “yes” and output “no”, otherwise. This completes the proof of Lemma 3.5, modulo Lemma 3.7.

Lemma 3.7. There exists an FP_{prAM} algorithm that takes three inputs: (i) a $2^n \times 2^n$ Boolean matrix M; (ii) a set of columns $X \subseteq \{0,1\}^m$. (iii) a prefix β of length at most n. The matrix M and the set X are presented succinctly in the form of circuits. The algorithm has the following property:

- Case (a) : If there exists a row y extending β such that $\mu(y,X) \geq 1/2$, then it outputs “yes”.
- Case (b) : If all rows y extending β are such that $\mu(y,X) \leq 1/m^4$, then it outputs “no”.

If neither of the above conditions is true, then the output of the algorithm is arbitrary.

There are two stages in the algorithm. In the first stage, we get an estimate on the size of X. And in the second stage, we use the above estimate to distinguish between the cases (a) and (b) in the lemma. Both the stages make queries to a prAM language given as oracle. A lemma, due to Sipser [20], is useful in establishing that the concerned language indeed lies in the class prAM. The following notation is needed for describing the lemma.

Let H be a family of functions mapping $\{0,1\}^m$ to $\{0,1\}^k$. Recall that H is said to be 2-universal, if for any distinct $z, z' \in \{0,1\}^m$ and any $x, x' \in \{0,1\}^k$,

$$\Pr_{h \in H} [h(z) = x \text{ and } h(z') = x'] = \frac{1}{2^k}.$$

It is well known that such a family can easily be constructed. For instance, the set of all $m \times k$ Boolean matrices yield such a family; a matrix B represents the function h given by $h(z) = zB$ (modulo 2).

For a function $h \in H$ and a string $z \in \{0,1\}^m$, we say that z has a collision under h, if there exists a $z' \in \{0,1\}^m$ such that $z \neq z'$ and $h(z) = h(z')$. For a set of hash functions $H \subseteq H$, we say that z has a collision under H, if for all $h \in H$, z has a collision under h. A set $S \subseteq \{0,1\}^m$ is said to have a collision under H, if there exists a $z \in S$ such that z has a collision under H.

Lemma 3.8 ([20]). Let $S \subseteq \{0,1\}^m$ and $k \leq m$. Let H be a 2-universal family of hash functions from $\{0,1\}^m$ to $\{0,1\}^k$. Uniformly and independently pick a set of hash functions h_1, h_2, \ldots, h_k from H and let $H = \{h_1, h_2, \ldots, h_k\}$. Then,

- If $|S| > 2k^k$, then $\Pr_{H}[S \text{ has a collision under } H] = 1$.
- If $|S| \leq 2^k - 1$, then $\Pr_{H}[S \text{ has a collision under } H] \leq 1/2$.

We define a promise language called set largeness testing (SLT) and then use Lemma 3.8 to show that it lies in the class prAM.

Set Largeness Testing (SLT): The instances in this language consist of a set $X \subseteq \{0,1\}^m$, presented succinctly in the form of a circuit, and an integer $k \leq m$.
Positive instances: $|X| > k2^k$.
Negative instances: $|X| \leq 2^{k-1}$.

Lemma 3.9. The promise language SLT belongs to the class prAM.

Proof. Let H be a 2-universal family of hash functions from $\{0,1\}^m$ to $\{0,1\}^k$. The proof is based on the observation that for a given set $H \subseteq \mathcal{H}$, testing whether X has a collision under H is an NP predicate.

The AM protocol proceeds as follows. Arthur picks a set of hash functions $H = \{h_1, h_2, \ldots, h_k\}$ uniformly and independently at random from \mathcal{H}. Merlin must exhibit an element $z \in X$ and prove that z has a collision under H. Arthur accepts, if Merlin proves that such a collision exists; otherwise, Arthur rejects. The correctness of the protocol follows from Lemma 3.8.

The following lemma provides an algorithm for estimating the size of a set, given SLT as oracle.

Lemma 3.10. There exists an FPprAM that takes a set $X \subseteq \{0,1\}^m$, presented succinctly in the form of a circuit, and outputs an estimate U such that $\frac{|U|}{4m} \leq |X| \leq |U|$.

Proof. The algorithm takes the promise language SLT as the oracle. We iteratively consider every integer k in the range 1 through m and ask the query (X, k) to the oracle. Let k_0 be the first time, we get a “no” answer from the oracle. Compute $|U| = m2^{k_e}$. We shall argue that U satisfies the stated bounds.

Let k_0 be the largest integer such that $|X| > k_02^{k_0}$ and let k_1 be the smallest integer such that $|X| \leq 2^{k_1-1}$. Notice that $k_0 + 1 \leq k_e \leq k_1$. By the property of k_0, k_e satisfies $|X| \leq k_e2^{k_e} \leq m2^{k_e}$. By the property of k_1, we have that $2^{k_1-2} < |X| \leq 2^{k_1-1}$. It follows that $2^{k_e} \leq 2^{k_1} < 4|X|$. The claimed bounds on $|U|$ follow from the above inequalities.

Returning to Lemma 3.7, the first stage of the algorithm (finding an estimate on $|X|$) can now be performed using Lemma 3.10. We turn to the second stage that involves distinguishing between the two cases in Lemma 3.7. For this, we will make use of the following promise language as an oracle.

Prefix Cardinality Goodness Testing (PCGT): The instances of this language consist of four components: (i) a $2^n \times 2^m$ Boolean matrix M; (ii) a set $X \subseteq \{0,1\}^m$; (iii) a prefix β of length at most n; (iv) a number k. The matrix M and the set X are presented succinctly in the form of circuits.

Positive instances: There exists a row y extending β such that y beats at least $k2^k$ columns in X.

Negative instances: For all rows y extending β, y beats at most 2^{k-1} columns in X.

Lemma 3.11. The promise language PCGT belongs to the class prAM.

Proof. The proof is similar to that of Lemma 3.9 and makes use of Lemma 3.8. We present an MAM protocol. It is well known that such a protocol can be converted to an AM protocol [3].

Merlin claims that a given instance is of the positive type. To prove this, he provides a row y extending β. Let $Z \subseteq X$ be the set of columns from X that are beaten by y. Arthur needs to distinguish between the cases of $|Z| > k2^k$ and $|Z| \leq 2^{k-1}$. This situation is the same as that of Lemma 3.9. By repeating the argument from there, we get an MAM protocol.

Proof of Lemma 3.7: Our algorithm will make use of both SLT and PCGT as oracles. Let us rephrase the two cases that we wish to distinguish:
• Case (a): There exists a row y extending β such that y beats at least $|X|/2$ columns from X.
• Case (b): For any row y extending β, y beats at most $|X|/m^4$ columns from X.

We first run the algorithm claimed in Lemma 3.10 to get an estimate U such that $|U|/4m \leq |X| \leq |U|$. Our next goal is to reduce the task of distinguishing the above two cases to a PCTG query. Consider any row y. Let Z be the number of columns from X that y beats.

We wish to choose a number k satisfying two conditions: (i) if $Z \geq |X|/2$ then $Z > k^2$; (ii) if $Z \leq |X|/m^4$ then $Z \leq 2^{k-1}$. A simple calculation reveals that it suffices for k to satisfy the following inequalities in terms of U:

$$\frac{2U}{m^4} \leq 2^k \leq \frac{U}{8m^2}.$$

Clearly, we can choose $k = \lceil \log \frac{U}{8m^2} \rceil$. Then, we call the PCTG oracle with the parameters M, X, β and k. We output “yes”, if the oracle says “yes”; and output “no”, if the oracle says “no.”

4. Applications of the Main Result

In this section, we apply Theorem 3.2 in three different settings and derive some corollaries. The first deals with upperbounds on the power of S^p_2. The second is about the consequences of NP having polynomial size circuits. In the third part, we generalize Theorem 3.2 to the case of arbitrary Boolean matrices.

4.1. Upperbounds for S^p_2

Theorem 4.1. $S^p_2 \subseteq P^{prAM}$.

Proof. The claim follows directly from Theorem 3.2. Let L be a language in S^p_2. Let x be the input string. Consider the S_2-type matrix M corresponding to x (see Section 2). We can obtain a circuit C succinctly encoding the matrix M in time polynomial in $|x|$. Invoking the algorithm given in Theorem 3.2 on C, we get either a row-side CIC or a column-side CIC. Notice that in the former case $x \in L$ and in the latter case $x \notin L$. \hfill \square

Having proven the above theorem, it is natural to ask how large the class P^{prAM} is. It is easy to see that $P^{AM} \subseteq BPP^{NP}$. We observe that this claim extends to the case where the oracle is a prAM oracle.

Theorem 4.2. $P^{prAM} \subseteq BPP^{NP}$.

Cai [5] showed that S^p_2 is contained in ZPP^{NP}, whereas our result puts S^p_2 in the class P^{prAM}. The containment relationships between ZPP^{NP} and P^{prAM} are unknown. Here, we observe that an alternative proof of Cai’s result can be derived using Theorem 3.2.

Theorem 4.3 ([5]). $S^p_2 \subseteq ZPP^{NP}$.

Proof. Consider a language $L \in S^p_2$ and we shall describe a ZPP algorithm for deciding L. Given an input x, we first construct a circuit C succinctly encoding the S_2-type matrix M corresponding to x (see Section 2). We next invoke the algorithm given in Theorem 3.2 with M as the input. Whenever a prAM oracle query q is issued by the algorithm, we simulate the prAM protocol on q by making use of the NP oracle and by tossing coins. With high probability, the simulation yields the correct answer for q. Continuing this way,
we obtain an output s. We would expect s to be a row-side CIC or a column-side CIC. But, it is possible that s is not a CIC, because of the error in our simulation of the prAM protocol. However, this event occurs with a low probability. The output of our procedure is as follows: if s is a row-side CIC, output "$x \in L$"; if s is a column-side CIC, output "$x \notin L$"; if both the tests fail, output "?".

Since M is an S_2-type matrix, the presence of a row-side CIC implies that $x \in L$. Similarly, the presence of a column-side CIC implies that $x \notin L$. This means that our procedure has zero-error. We already observed that the procedure has high probability of success. Thus, we have exhibited a ZPP$^\text{NP}$ algorithm for L.

4.2. Consequences of NP having small circuits

A body of prior work has dealt with the implications of the assumption that NP has polynomial size circuits. Our main theorem yields some new results in this context, which are described in this section.

Suppose NP is contained in P/poly. Karp and Lipton [13] showed that, under this assumption, the polynomial time hierarchy (PH) collapses to $\Sigma^p_2 \cap \Pi^p_2$, i.e., $\text{PH} = \Sigma^p_2 \cap \Pi^p_2$. Köbler and Watanabe [14] improved the collapse to ZPP$^{\text{NP}}$. Sengupta (see [5]) observed that the collapse can be brought down to S^p_2. This has been further improved via a collapse to O^p_2, the oblivious version of S^p_2 [7]. It has been an interesting open problem to obtain a collapse to the class P$^{\text{NP}}$. Here, we show a collapse to P$^{\text{prMA}}$.

Theorem 4.4. If NP \subseteq P/poly, then PH = P$^{\text{prMA}}$.

Proof. By Sengupta’s observation [5], the assumption implies that $\text{PH} = S^p_2$. Combining this with Theorem 4.1, we get $\text{PH} = P^{\text{prAM}}$. Arvind et al. [2] showed that if NP \subseteq P/poly then AM = MA. We observe that this result carries over to the promise versions, namely the same assumption implies prAM = prMA. The claim follows.

Though the above theorem yields a new consequence, we note that it is not clear whether this is an improvement over the previously best known collapse. It is known that MA \subseteq ZPP$^{\text{NP}}$ [1, 11] and MA \subseteq S^p_2 [17]. Extending the former claim, we can show that P$^{\text{prMA}}$ \subseteq ZPP$^{\text{NP}}$. However, we do not know how to accomplish the same for the second claim. Namely, it remains open whether P$^{\text{prMA}}$ is contained in S^p_2.

Under the assumption NP has polynomial size circuits, Bebouty et. al [4] studied the problem of learning a correct circuit for SAT and designed a ZPP$^{\text{NP}}$ algorithm. As an application of Theorem 3.2, we obtain an FP$^{\text{prMA}}$ algorithm for the same problem. We can show that FP$^{\text{prMA}}$ \subseteq ZPP$^{\text{NP}}$ and thus, the new result provides an improvement for this problem. The proof uses a construction similar to the one used by Fortnow et. al [9].

Theorem 4.5. If NP \subseteq P/poly, then there exists an FP$^{\text{prMA}}$ algorithm that takes as input a number n (in unary) and outputs a correct circuit for SAT at length n.

Proof. Our assumption implies that SAT is computed by circuits of size n^k, for some constant k.

Let C be a (possibly incorrect) circuit claimed to compute SAT at a certain length n. We say that C is nice, if C does not accept unsatisfiable formulas. It is well-known that the circuit C can be converted into a nice circuit C' while preserving correctness; namely, if C is a correct then C' is also a correct circuit. The above transformation goes via self-reducibility and it can be performed in polynomial time.
We shall first describe an \textsc{FPPrAM} algorithm for finding a correct circuit for \textsc{SAT} at the given length \(n \). Define a matrix \(M \) as follows. Each circuit of size \(n^k \) is a row in this matrix. Each column in \(M \) corresponds to a pair \(\langle \varphi, t \rangle \), where \(\varphi \) is a formula of length \(n \) and \(t \) is a truth assignment for \(\varphi \). The length of the pair is \(2n \). Altogether the matrix \(M \) is of size \(2^{n^k} \times 2^n \). The entry \(M[C, \langle \varphi, t \rangle] \) is given by the following procedure. Convert \(C \) into a nice circuit \(\bar{C} \) and consider the two cases:

- Case 1: Suppose \(\varphi(t) = \text{true} \). If \(\bar{C}[\varphi] = 1 \), set the entry to 1, else set it to 0.
- Case 2: Suppose \(\varphi(t) = \text{false} \). Set the entry to 1.

By our assumption, there exists a circuit \(\bar{C}^* \) of size \(n^k \) that correctly computes \textsc{SAT} at length \(n \). Notice that the row in \(M \) corresponding to \(\bar{C}^* \) is full of 1’s and hence, \(M \) is an \(S_2 \)-type matrix having a row-side \textsc{CIC}. Moreover, we can construct a circuit succinctly encoding the matrix \(M \) in time polynomial in \(n \).

Invoke the algorithm given in Theorem 3.2 and obtain row-side \textsc{CIC} \(C \) of cardinality \(2n \). The set \(C \) consists of \(2n \) circuits, each of size \(n^k \). Convert each circuit \(C \in C \) in to a nice circuit \(\bar{C} \). Let \(\bar{C} \) denote the collection of these nice circuits. We make an observation regarding \(\bar{C} \).

Let \(\varphi \) be any formula of length \(n \) and consider the following two cases:

- \(\varphi \) is unsatisfiable: In this case, every circuit \(\bar{C} \in \bar{C} \) rejects \(\varphi \), because \(\bar{C} \) is a nice circuit.
- \(\varphi \) is satisfiable: Let \(t \) be a satisfying truth assignment of \(\varphi \). Since \(C \) is a \textsc{CIC}, some circuit \(C \in C \) beats \(\langle \varphi, t \rangle \). This means that the nice circuit \(\bar{C} \) corresponding to \(C \) accepts \(\varphi \).

To summarize, any unsatisfiable formula is rejected by all the circuits in \(\bar{C} \) and any satisfiable formula is accepted by at least one of the circuits in \(\bar{C} \).

Based on the above observation, we can construct a correct circuit \(\bar{C} \) for \textsc{SAT} at length \(n \). We simply take \(\bar{C} \) to be the disjunction of all the circuits in \(\bar{C} \), i.e., \(\bar{C} \) accepts a given formula \(\varphi \), if and only if some circuit \(\bar{C} \in \bar{C} \) accepts \(\varphi \). An easy calculation shows that \(\bar{C} \) is of size \(O(n^{k+2}) \).

The above description gives an \textsc{FPPrAM} algorithm for finding circuits for \textsc{SAT}. The theorem now follows from a result due to Arvind et al. [2]: if \(\text{NP} \subseteq \text{P/poly} \) then \(\text{AM} = \text{MA} \).

We observe that this result carries over to the promise versions, namely the same assumption implies \(\text{prAM} = \text{prMA} \).

\[\square \]

4.3. Collectively Irrefutable Certificates for Arbitrary Boolean Matrices

Theorem 3.2 deals only with \(S_2 \)-type matrices. In this section, we describe a generalization that handles arbitrary Boolean matrices.

Any \(S_2 \)-type matrix has either a row-side \textsc{CIC} or a column-side \textsc{CIC}, but not both. But, in the case of arbitrary Boolean matrices, both a row-side \textsc{CIC} and a column-side \textsc{CIC} may exist. Goldreich and Wigderson [10] proved the following combinatorial result that asserts the existence of a small \textsc{CIC} in any Boolean matrix. We rephrase their result (Lemma 6 in [10]) using our terminology:

Theorem 4.6 ([10]). Let \(M \) be any \(2^n \times 2^m \) Boolean matrix. At least one of the following statements is true: (i) there exists a row-side \textsc{CIC} of size \(m \); (ii) there exists a column-side \textsc{CIC} of size \(n \).
We obtain the following constructive version of the above result (with a slight blow-up in the size of the CIC). For this, we will apply Theorem 3.2 and Theorem 4.6.

Theorem 4.7. There exists an FPrAM algorithm that takes as input a circuit C succinctly encoding a $2^n \times 2^m$ Boolean matrix M, and outputs either a row-side CIC of size m^2 or a column-side CIC of size n^2.

Proof. We define two Boolean matrices \overline{M}_1 and \overline{M}_2 as follows.

The matrix \overline{M}_1 is of size $2^{nm} \times 2^m$. Each row of \overline{M}_1 corresponds to a sequence $\langle y_1, y_2, \ldots, y_m \rangle$ of m rows of M. Each column z of \overline{M}_1 corresponds to a single column of M. The entries of \overline{M}_1 are defined as below. For a row $\langle y_1, y_2, \ldots, y_m \rangle \in \{0,1\}^m$ and a column $z \in \{0,1\}^m$, the entry is defined as:

$$\overline{M}_1[\langle y_1, y_2, \ldots, y_m \rangle, z] = \begin{cases} 1 & \text{if some } y_i \text{ beats } z \text{ in } M \\ 0 & \text{otherwise} \end{cases}$$

The matrix \overline{M}_2 is defined analogously. Each row y of \overline{M}_1 corresponds to a single row of M. Each column of \overline{M}_2 corresponds to a sequence $\langle z_1, z_2, \ldots, z_n \rangle$ of n columns of M. Thus, \overline{M}_2 is matrix of size $2^n \times 2^{mn}$. The entries of \overline{M}_2 are defined as below. For a row y and a column $\langle z_1, z_2, \ldots, z_n \rangle \in \{0,1\}^m$, the entry is defined as:

$$\overline{M}_2[y, \langle z_1, z_2, \ldots, z_n \rangle] = \begin{cases} 0 & \text{if some } z_i \text{ beats } y \text{ in } M \\ 1 & \text{otherwise} \end{cases}$$

Using Theorem 4.6, we observe that at least one of the following two claims is true: (i) \overline{M}_1 is an S_2-type matrix having a row-side IC; (ii) \overline{M}_2 is an S_2-type matrix having a column-side IC. The first scenario occurs, if M has a row-side CIC of size m and the second scenario occurs, if M has a column-side CIC of size n.

We can construct in polynomial time circuits \overline{C}_1 and \overline{C}_2 that succinctly encode the matrices \overline{M}_1 and \overline{M}_2, respectively. We run the algorithm given in Theorem 3.2 on both the matrices. Let S_1 and S_2 denote the output of the two runs. The above algorithm requires that the input be an S_2-type matrix. We satisfy this requirement in at least one of the two runs. Thus, at least one of the following claims is true: (i) S_1 is a row-side CIC of size m for \overline{M}_1; (ii) S_2 is a column-side CIC of size n for \overline{M}_2. We can check whether a given set is a row-side (respectively, column-side) CIC by making a single query to an NP oracle. So, these tests can certainly be performed using a prAM oracle. Among the two sets S_1 and S_2, we choose a set that passes the above test. Suppose S_1 is chosen. Then, S_1 is a CIC for \overline{M}_1 of size m. Each row $\overline{y} \in S_1$ is a collection of m rows of M. By taking the union of these collections over all $\overline{y} \in S_1$, we get a row-side CIC of size m^2 for M. On the other hand, if S_2 is chosen, a similar process produces a column-side CIC of size n^2 for M. \[\square \]

The above theorem provides an FPrAM algorithm for finding a small CIC for arbitrary Boolean matrices. We note that the same task can also be accomplished in ZPPNP; this can be shown via an argument similar to that of Theorem 4.3. A ZPPNP algorithm for this problem is also implicit in Cai’s work [5].

Acknowledgments

We thank the anonymous referees for their useful comments and suggestions.
References