Storing and Replication in Topic-Based Publish/Subscribe Networks

Vasilis Sourlas*, Paris Flegkas†, Georgios S. Paschos*, Dimitrios Katsaros* and Leandros Tassiulas*†

*Department of Computer & Communication Engineering, University of Thessaly, Greece. †CERTH-ITI

Email: vsourlas, pflegkas, gpasxos, dkatsar, leandros @inf.uth.gr

Abstract—In current publish/subscribe networks messages are not stored and only active subscribers receive published messages. However, in a dynamic scenario a user may be interested in content published before the subscription time. In this paper, we introduce a mechanism that enables storing in such networks, while maintaining the main principle of loose-coupled and asynchronous communication. Furthermore, we propose a new storage placement and replication algorithm which differentiates classes of content and minimize the clients response latency. The performance of our proposed placement and replication algorithm and the proposed storing mechanism is evaluated via simulations and insights are given for future work.

I. INTRODUCTION

Applications that exploit a publish/subscribe (pub/sub) communication paradigm (topic based or content based) are organized as a collection of autonomous components, the clients, which interact by publishing events and by subscribing to the classes of events they are interested in. A component of the architecture, the event dispatcher (or rendezvous point or event broker or simply broker), is responsible for collecting subscriptions and forwarding events to subscribers. In pub/sub networks, the selection of a message is determined entirely by the client, which uses expressions (filters) that allow sophisticated matching on the event content.

In a pub/sub network, any message is guaranteed to reach all interested active clients whose subscriptions are known to the network at publish time. However, in a dynamic distributed environment, clients join and leave the network during time, and it is possible that a client joins the network after the publishing of an interesting message. In current pub/sub systems, it is not possible for a new subscriber to retrieve previously published messages that match his/her subscription. Therefore, enabling the retrieval of previously published content by means of storing is one of the most challenging problems in pub/sub networks.

Data storage servers or simply “storages” replicate the whole content of a given server, unlike caches where misses could occur. When a client is interested in the content of that server, his/her request is redirected to one of the existing storages (i.e. the closest one). Since storages serve only a portion of the total requests and are placed closer to the client, clients are served faster. A client’s request is redirected to a storage only if that storage is a replica of the target server otherwise the request is directed and served by the server itself.

In this paper we:

• Enhance the pub/sub paradigm with an advertisement and a request/response mechanism so that storages can advertise the class of the content (topic) that they have stored and clients can retrieve that stored content.
• Propose a new algorithm for the selection of M storage points among the N brokers (M < N) based a) on the locality of the interest for each topic, b) the targeted replication degree of each topic (as replication degree we name the number of replicas k ≤ M of the topic among the storages) and c) the storage capacity SC of each storage.
• Evaluate through simulations our design of the storing technique and the new placement and replication algorithm.

The objective function of our scheme is to minimize client’s response latency subject to installing the minimum number of storages in the network.

The rest of the paper is organized as follows. In section II, a brief introduction of storing in pub/sub architectures is given, followed by a brief description of the storage placement problem. In section III, we shortly describe the pub/sub architecture and present the proposed advertisement and request/response mechanism. The new algorithm for the selection of the storage location and the replication of the content is presented in section IV while section V is devoted to performance evaluation via simulations. Finally, we conclude the paper and give insights for future work in section VI.

II. RELATED WORK

Despite the fact that there are several research efforts concerned with the development of an event notification service, like IBM’s Gryphon [1], Siena [2] and REDS [3], storing data through replication has not received attention in the literature. Only in [4], the authors propose a historic data retrieval pub/sub system where databases are connected to various brokers, each associated with a topic to store. In [4] every message is stored only once and no placement strategies have been examined while there is no description of the mechanism for the retrieval of the stored data. Moreover in [5] we introduced a new opportunistic caching scheme for pub/sub networks where each broker of the network is a potential caching point.

On the other hand the placement problem, especially in the context of Content Delivery Networks and Web Proxies, is
a thoroughly investigated problem. Particularly in [6] authors approached the placement problem with the assumption that the underlying network topologies are trees. The placement problem is in fact an NP-hard problem when striving for optimality, but there is a number of studies [7]-[10] where an approximate solution is pursued. Their work is also known as the k-median problem.

Finally, in [11] authors introduce a framework for evaluating placement algorithms. Firstly, they classify and qualitatively compare placement algorithms using a generic set of primitives that capture several objective functions and near optimal solutions, while secondly provide estimates for their decision time using an analytic model. The model takes into account not only computational complexity and message numbers but also memory constraints (disk accesses and message sizes) to produce good estimates.

III. ENABLING StORING IN PUB/SUB NETWORKS

We consider a pub/sub network which uses the subscription forwarding routing strategy [2]. The routing paths for the published messages are set by the subscriptions, which are propagated throughout the network so as to form a tree that connects the subscribers to all the brokers in the network. Publishers join the network when they have something to publish, therefore in our approach the entity of the server does not exist.

In a pub/sub network when a client issues a subscription, a message containing the subscription filter is sent to the broker the client is attached to. The filter is inserted in a Subscription Table (ST), together with the identifier of the subscriber. Then, the subscription is propagated by the broker, which now behaves as a subscriber with respect to the rest of the dispatching network, to all of its neighboring brokers on the network. In turn, the neighbors record the subscription and re-propagate it towards all further neighboring brokers, except for the one that sent it. Finally, each broker in the network has a ST, in which for every neighboring broker there is an associated set of filters containing the subscriptions sent by them.

A. Advertisement and Request/Response mechanism

By installing storages and introducing an advertisement and a request/response mechanism, we aim to provide a pub/sub system with the ability to store and retrieve information published in the past and make it available for future clients. We will present through the example of figures 1 and 2 the new mechanism.

In order to retrieve old information, we add to the system three additional types of messages, Advertise(), Request() and Response(). When a new storage “str1” is attached to broker 5 (fig. 1) issues a Subscribe() message with the topics (class of events) that is willing to store (top_a and top_b). In that way, it acts as a client to future publications matching the subscribed topics and each time a publication occurs (publisher attached to broker 1 publishes message msg_a matching top_a) stores the message (the message is also stored to str2). The “str1” also issues an Advertise() message which contains the topics that stores and the distance in hops from the storage. Advertisements are treated similarly to subscription messages so as to form a tree that connects the “str1” to all the brokers in the network. Advertisements are inserted in the Advertisement Table (AT) a new feature similar to ST that we also added to our approach. Coverage also occurs with advertisements, like subscriptions, but in a slightly different way. Particularly, when a broker receives an advertisement checks in the distance field and if the distance is equal to another entry (for the same topics) adds the advertisement to the AT and stops forwarding the advertisement (broker 3 in fig. 1). Keeping more than one entries for the same topic in an AT, enables load balancing capabilities to requests passing from that particular broker. On the other hand, when a broker receives an advertisement for a storage which is closer compared to the other storages
already in the AT, adds the advertisement to the AT, removes
the previous entries and forwards it further (brokers 5 and 6 in
fig. 1). Finally, when a broker receives an advertisement for a
storage which is further compared to the other storages already
in the AT simply stops the forwarding of the advertisement
without changing the AT.

When a client node (client A in fig. 2), interested in old
(and probably new) content, appears in the network, apart
from subscribing (for future publications) also makes a request
by sending a Request() message containing the interested
filter (fltr_a). The filter contains the topic that the client is
interested in. Filters are identical to topics but they can contain
more attributes to enable more sophisticated match than simply
using the topic. We use source routing for the forwarding of the
Request() (the path is being built hop by hop and is
included in the Request() header). Broker 6 upon receiving
the Request() message checks in its Advertisement Table
(AT) for entries matching the requested topic (top_a in this
case). The broker forwards the Request() message to the
broker who had advertised the matching topic and is closer to
the client (in this example broker 5). Finally, “str1” receives
the Request() message, matches its stored content with the
whole filter (not just the topic) and initiates a Response() message for each match (messages msg_a in fig. 2).

A Response() message carries a stored message as
well as the sequence of nodes carried by the initiating
Request() message (source routing). When a broker re-
ceives a Response() message, pops off its identifier from
that sequence and forwards it to the first broker of the
remaining sequence. In the end, client A will receive every
stored message matching its filter.

IV. PLACEMENT/REPLICATION STRATEGY

Since storage placement and replication in pub/sub networks
has not received attention in literature we will use as the base
of our placement and replication scheme algorithms presented
in the context of CDN networks. Particularly in [7], authors
developed several placement algorithms that use workload
information, such as latency (distance from the storage points)
and request rates, to make the placement decision. Their main
conclusion is that the so called “greedy” algorithm that places
storages based upon both a distance metric and request load,
performs the best and very close to the optimal solution.

A. Greedy algorithm

In this section, we briefly describe the greedy algorithm
assuming that there exists only one class of content in our
system, or equivalently there is no distinction in the content.
We let r_i be the traffic (in reqs/sec) from clients attached to
node i. We also let T_{ij} be the percentage of the overall traffic
accessing the target server j (traditional placement algorithms
replicate a specific server) that passes through node i. Also
we let the propagation delay (hops) from node i to the target
server j as D_{ij}. If a storage is placed at node i we define the
Gain to be $G_{ij} = P_{ij} \times D_{ij}$. This means that the P_{ij} percentage
of the traffic would not need to traverse the distance from node
i to server j.

The greedy algorithm chooses one storage at a time (we
need k storages out of N nodes). In the first round evaluates
each of the N nodes to determine its suitability to become a
storage (replication point of server j). It computes the Gain
associated with each node and selects the one that maximizes
the Gain. In the second round, searches for a second storage
which, in conjunction with the storage already picked, yields
the highest Gain. Each request uses a single storage, we
assume in other words full replication of the content among
the selected storages. The greedy algorithm iterates until k
storages have been chosen for the specific server j.

B. Modified greedy algorithm

In our work, we have no knowledge of the location of the
server, or differently there is no such a server. Publishers
join the network publish their content and disappear. So in
order to obtain the storages we modify the greedy algorithm.
Particularly we repeat the above procedure N times assuming
each time that the targeted server j is a different node (broker)
of the network. We get in that way N vectors of k possible
storages. Precisely each vector has N elements with k ones
in the index of the selected storages and $N−k$ zeros in every
other place (for example vector $[0\ 0\ 1\ 0\ 1]$ means that of the 5
nodes of the network the selected $k = 2$ possible storages are
nodes 3 and 5). In two different vectors there might be subsets
of possible storages present in both vectors. Finally, we select
as our storages those k nodes that appeared more times in the
per element summation of the N vectors and install at each
one a storage following the mechanism described in III-A.

C. Placement algorithm for pub/sub networks

In this section, we use the modified greedy algorithm
described above for the case where in our network exist T
different classes of content (topics). If we assume that each
storage has storage capacity equal to SC different topics and
each topic should be replicated k times, then our algorithm
should select M storages and assigns each topic at exactly
k different storages. The storage capacity usually refers to
TBytes but for simplicity we assume here that messages are
published with the same rate for each topic and messages
are of the same size. In other words at every time instance
in the network exist the same number of messages for each
topic. The SC parameter is a limitation introduced by the
storage providers and refers to the maximum storing capability
of each storage in the network. On the other hand the k
parameter (replication degree of each topic) is a limitation
introduced by the content providers of the network and refers
to the maximum number of replicas that the content provider
is willing to pay for. Finally, the M parameter refers to the
minimum number of storages that a storage provider should
install in the network to serve the storage demands. Our
algorithm is composed by the following steps:

1) For each topic t we execute the modified greedy algo-

rithm presented in IV-B and we get T vector of possible
For each topic, in step 4 we select as our storages those storages produced by the first step of the placement algorithm ("grd_opt") described in IV-C disregarding the storage capacity and the total number \(M \) of used storages, and secondly to the case where there is no differentiation among topics during the selection of the \(M \) storages and the final assignment of the topics to \(k \) storages is random ("rand"). The metric we are interested in is the mean hop distance which corresponds to the mean number

Table I: Parameters used by the placement/replication algorithm

<table>
<thead>
<tr>
<th>(r^t_i)</th>
<th>request rate for topic (t) in broker (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>number of nodes (brokers) in the network</td>
</tr>
<tr>
<td>(M)</td>
<td>((M < N)) number of storages in the network</td>
</tr>
<tr>
<td>(k)</td>
<td>((k \leq M)) replication of each topic in the network</td>
</tr>
<tr>
<td>(SC)</td>
<td>storage capacity of each storage point in the network</td>
</tr>
<tr>
<td>(T)</td>
<td>number of classes of content (topics)</td>
</tr>
<tr>
<td>(w_t)</td>
<td>weight of each topic in the network</td>
</tr>
<tr>
<td>(SBV)</td>
<td>storage brokers vector</td>
</tr>
<tr>
<td>(PS_t)</td>
<td>possible stores vector for each topic (t)</td>
</tr>
</tbody>
</table>

2) Each vector \((PS_t) \) is weighted by \(w_t = \frac{\sum_{i=1}^{N} r^t_i}{\sum_{i=1}^{N} \sum_{k=1}^{M} r^t_i} \). \(w_t \) shows the significance regarding the traffic of each topic in the network.

3) We select as our storages \(M \) nodes that appeared more times in the per element weighted summation of the \(T \) vectors. We call that vector as storage brokers vector \(SBV \).

4) For each topic \(t \) starting from the most significant (based on the weight) assign \(k \) storages following the procedure below:

- For each entry in the \(PS_t \) of topic \(t \) calculated in step 1 assign a storage if that entry also appears in the \(SBV \) calculated in step 3 and only if in that storage has been assigned less than \(SC \) topics until we get \(k \) storages (replication of topic \(t \)).

Below is an example of the placement algorithm for the pub/sub network of figure 3 assuming \(k = 2 \), \(SC = 2 \) and \(T = 3 \), meaning that we should select \(M = 3 \) storage points out of the \(N = 6 \) brokers of the network.

- **Step 1** produces vectors:

 \[
 PS_a = [0 \ 3 \ 5 \ 0 \ 2 \ 2] \\
 PS_b = [0 \ 2 \ 5 \ 0 \ 5 \ 0] \\
 PS_c = [0 \ 2 \ 5 \ 0 \ 5 \ 0]
 \]

 for the three topics accordingly (the \([0 \ 3 \ 5 \ 0 \ 2 \ 2]\) means that out of the \(N = 6 \) executions of the modified greedy algorithm node 2 appeared 3 times, node 3 appeared 5 times and so on).

- The weights regarding **step 2** are:

 \[
 w_a = 17/50 = 0.34, \ w_b = 27/50 = 0.54, \ w_c = 6/50 = 0.12
 \]

So the vectors from step 1 are transformed to

\[
PS_a = [0 \ 1.02 \ 1.7 \ 0.68 \ 0.68] \\
PS_b = [0 \ 1.08 \ 2.7 \ 0.27 \ 0] \\
PS_c = [0 \ 0.24 \ 0.6 \ 0 \ 0.6]
\]

- The per element summation of those three vectors into a single vector for **step 3** gives \([0 \ 2.34 \ 5 \ 0 \ 3.98 \ 0.68]\) meaning that the final \(M = 3 \) storages in \(SBV \) are nodes 3, 5 and 2.

- For each topic, in **step 4**, starting from topic \(b \) then topic \(a \) and finally topic \(c \) (based on their weights) we assign them to \(k = 2 \) storages. Topic \(b \) is assigned to nodes 3 and 5 which were the nodes for topic \(b \) appeared more times by step 1. Topic \(a \) is also assigned to nodes that were produced by step 1, nodes 2 and 3, while topic \(c \) is assigned to nodes 2 and 5. Node 5 was among the most popular selections produced by step 1 while node 2 was the only storage in \(SBV \) with less than \(SC = 2 \) assignments.

Step 4 of our algorithm is also known as the Generalized Assignment Problem which even in its simplest form is reduced to the NP-complete multiple knapsack problem. In this paper for the solution of the assignment problem we used the heuristic approach described above, while more approaches could be found in literature [12].

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed storing mechanism using a discrete event simulator. \(N \) brokers are organized in a tree topology (common topology in overlay pub/sub networks) and clients dynamically request on each broker \(i \) for stored content with rate \(r^t_i \) different for each topic \(t \). We assume that in our network exist \(T \) topics that should be replicated exactly \(k \) times and each storage has a storage capacity of \(SC \) different topics. For the purpose of this paper, we assume that there are no limits in the workload (in requests/second) that each storage can serve. New publications occur to the network with rate \(\lambda_{msg} \) equal for every class of content, while stored messages are removed from the storages with rate \(\mu_{msg} \). The removal of a message corresponds to the expiration of the life time of that message which is typical in every data storage scheme.

Having selected the \(M \) storages and assigned to them the \(T \) topics using our placement algorithm for pub/sub networks ("pub/sub") we let the system operate under the dynamic client environment. We compare it firstly to the case where each topic is assigned to the \(k \) storages produced by the first step of the placement algorithm ("grd_opt") described in IV-C disregarding the storage capacity and the total number \(M \) of used storages, and secondly to the case where there is no differentiation among topics during the selection of the \(M \) storages and the final assignment of the topics to \(k \) storages is random ("rand"). The metric we are interested in is the mean hop distance which corresponds to the mean number
of hops between a responding storage and the client making the request. This metric is indicative of the response latency as a function of hops in the network.

We set three experiments, one varying the number of brokers in the network, one varying the storage capacity of each storage and one varying the replication degree of the content in the network. We also assume that in our network exist $T = 10$ different topics, clients request rate per topic vary between 0-1 requests/second for each broker, new messages are published in the network with rate 1 message/second per topic, while finally the lifetime of each message is set to $1/\mu_{msg} = 1000$ seconds.

Frame 4 shows the mean hop distance for each one of the three different experiments. The proposed “pub/sub” algorithm behaves better than the “rnd” algorithm and close to the “grd_opt”, which does not have any constraints regarding the storage capacity and the total number of installed storages (also shown in figure 5). The mean hop distance increases slower to the increase of the size of the network (left figure of frame 4) while increasing the SC of every storage the “pub/sub” and the “rnd” algorithms install more topics in “privileged” brokers leading to smaller response delays (mean hop distance) for every request (central figure of frame 4). Moreover, the mean hop distance is decreasing as the number of replicas (k) increases since now requests reach closer storages (right figure of frame 4).

In the central figure of frame 4, we observe that when $SC = T$ our placement algorithm performs as good as the “grd_opt” but installing up to three times less storages in the network as shown in figure 5.

VI. CONCLUSION AND FUTURE WORK

In this paper, we put forward a new mechanism for storing in topic-based pub/sub networks. The proposed concept equips the pub/sub with the ability to store and retrieve stored information. Moreover, we presented a new placement and replication algorithm that differentiates classes of content. Evaluation via simulations that presents the performance of the system regarding the clients response latency show that our placement/replication algorithm is less than 1%-15% worse than the greedy approach installing 50%-80% less storages in the network. This work can be extended in many ways from optimizing different objective functions and dynamic assignment of topics among the storages to provide differentiation among the classes of content.

ACKNOWLEDGMENT

This work has been supported by the European Commission through the STREP FP7-ICT-223850 NanoDataCenters (NADA) and the NoE FP7-ICT-216366 EURO-NF programs.

REFERENCES