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Abstract
Purpose Diagnosis and characterization of brain neoplasms
appears of utmost importance for therapeutic management.
The emerging of imaging techniques, such as Magnetic Res-
onance (MR) imaging, gives insight into pathology, while
the combination of several sequences from conventional and
advanced protocols (such as perfusion imaging) increases the
diagnostic information. To optimally combine the multiple
sources and summarize the information into a distinctive set
of variables however remains difficult. The purpose of this
study is to investigate machine learning algorithms that auto-
matically identify the relevant attributes and are optimal for
brain tumor differentiation.
Methods Different machine learning techniques are studied
for brain tumor classification based on attributes extracted
from conventional and perfusion MRI. The attributes, cal-
culated from neoplastic, necrotic, and edematous regions of
interest, include shape and intensity characteristics. Attri-
butes subset selection is performed aiming to remove
redundant attributes using two filtering methods and a wrap-
per approach, in combination with three different search
algorithms (Best First, Greedy Stepwise and Scatter). The
classification frameworks are implemented using the WEKA
software.
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Results The highest average classification accuracy assessed
by leave-one-out (LOO) cross-validation on 101 brain
neoplasms was achieved using the wrapper evaluator in com-
bination with the Best First search algorithm and the KNN
classifier and reached 96.9% when discriminating metasta-
ses from gliomas and 94.5% when discriminating high-grade
from low-grade neoplasms.
Conclusions A computer-assisted classification framework
is developed and used for differential diagnosis of brain neo-
plasms based on MRI. The framework can achieve higher
accuracy than most reported studies using MRI.
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Introduction

Brain cancer is a serious and usually life-threatening medical
condition. Brain tumors can be either benign (non-cancerous)
or malignant which are characterized by uncontrolled prolif-
eration. The malignancy of brain neoplasms is measured by
the tumor grade which is determined by visually examining
tissue sections (biopsies), based on guidelines determined by
the World Health Organization (WHO). The classification of
brain neoplasms is of critical clinical importance in mak-
ing decisions regarding initial and evolving treatment strate-
gies, for example high-grade gliomas are usually treated with
adjuvant radio—or chemotherapy after resection, whereas
low-grade gliomas are not. The objective of this study is
to provide an automated tool that integrates advanced MR
with conventional MR imaging findings in order to assist in
the radiological diagnosis of brain neoplasms by determin-
ing the glioma grade and differentiating between types, such
as primary neoplasms (gliomas) from secondary neoplasms
(metastases). Automated tools, if proven accurate, can ulti-
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mately be applied to (1) provide more reliable differentiation,
especially when the neoplasm is heterogeneous and therefore
cannot be adequately sampled by localized needle biopsy, (2)
circumvent invasive procedures such as biopsy, especially in
cases where the risks outweigh the benefits, (3) expedite or
anticipate the diagnosis (histological examination is usually
time consuming), and (4) avoid the inter and intra observer
variability observed when pathologists give different relative
importance to each of the grading criteria [1]. Moreover, in
contrast to the standard procedure of radiological diagnosis
based on visual inspection of cross-sectional medical images,
a computer-based approach can optimally combine the multi-
parametric diagnostic data. The focus of this study is to
investigate machine learning techniques, including attribute
selection and classification. Attribute selection aims at retain-
ing only the most relevant attributes and thus improve the
generalization ability and the performance of the classifier.

Related works

Significant efforts on differentiating brain neoplasms have
been made by incorporating MR (or CT) imaging features
into pattern classification frameworks. These efforts include
the application of Linear discriminant analysis (LDA) [2,3]
and Independent component analysis (ICA) [4] on spectral
intensities. In another study, variable selection and classifi-
cation using Bayesian least squares Support vector machines
(SVMs) and Relevance vector machines were applied on
microarray and spectroscopy data [5]. The previous studies
used a single MR sequence and did not investigate the con-
tribution of multiple imaging parameters. Multi-parametric
features were explored by non-linear classification tech-
niques in [6,7]. Li et al. [6] classified gliomas according
to their clinical grade using linear SVMs trained on a max-
imum of 15 descriptive features (such as amount of mass
effect or blood supply), which were estimated quantitatively
by domain experts. The definition of such features was based
on expert knowledge and therefore is not completely auto-
mated and reproducible. Devos et al. [7] combined standard
MR intensities with spectroscopy imaging to improve clas-
sification performance using three classification techniques
(LDA and linear and nonlinear least squares SVMs). Rajen-
dran et al. [8] proposed a method which makes use of asso-
ciation rule mining technique to classify the CT scan brain
images into three categories (normal, benign, and malign).

Contributions

In this study, we explore the heterogeneous regions of
brain tumors by combining imaging attributes from several
sequences, extract morphological characteristics, and assess
the significance of each attribute in classification. This
approach incorporates imaging data which are acquired in

a routine clinical protocol, such as multi-parametric conven-
tional MRI and perfusion. MR spectroscopy was not incor-
porated because it is not always acquired in general clinical
practice.

The method is applied for pairwise classification, but also
the multi-class classification problem is investigated for dif-
ferentiating between the most common brain tumors: metas-
tasis, meningioma (usually grade I), and gliomas (grade
II, III, and IV) histopathologically diagnosed and graded
according to the WHO system.

The extraction of attributes is based on prior work [9]
whereas the purpose here is to focus on the attribute selection
and classification. We want to asses several feature selec-
tion methods and classifiers and compare against the SVM-
based criteria used in [9] in order to improve classification
accuracy. The machine learning schemes are implemented
in the WEKA platform [10] and assessed with LOO cross-
validation. Results showed that accuracy was not signifi-
cantly improved when textural characteristics were used, as
in [9]. Thus, the current analysis is based only on shape and
intensity characteristics.

The paper is organized as follows. First the methods are
presented including the description of the data, the defini-
tion of ROIs, and the attribute extraction. Then the imple-
mented methods of attribute selection and classification are
presented and the experiments performed in this study are
described. Specifically, we first examine each pairwise clas-
sification problem and subsequently we assess the classifi-
cation accuracy into one of 4 classes (multiclass problem).
Subsequently, the experimental results for several schemes
are presented and the optimal method for the problem under
consideration is highlighted. The final section is devoted to
some discussion and concluding remarks.

Methods

We propose a multi-parametric framework for brain tumor
classification and prediction of degree of malignancy by
integrating shape and intensity-based attributes into pattern
classification methods. The attributes are first normalized to
have zero mean and unit variance. Several attribute selection
methods are then applied to select a small set of effective attri-
butes in order to improve generalization ability and classifi-
cation performance. The data are provided by the University
of Pennsylvania and preprocessed as described with details
in [9]. The preprocessing steps and the definition of ROIs are
briefly repeated here for completeness.

Data description, definition of ROIs, and attribute
extraction

Ninety-seven patients (age 17–83 years) with a diagnosis of
brain neoplasm were examined who had not been treated at
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the time of MRI acquisition. Four patients had multiple (2),
not related to each other, tumors which were regarded as inde-
pendent masses. All patients underwent biopsy or surgical
resection of the neoplasm with histopathological diagnosis.
The total of 101 brain masses were graded based on WHO
criteria as metastasis (24), meningiomas grade I (4), gliomas
grade II (22) including ependymomas (2) and gliomatosis
cerebri (2), gliomas grade III (17), and glioblastomas grade
IV (34).

The MR sequences used in this study were the follow-
ing: axial 3D T1-weighted (T1), sagittal 3D T2-weighted
(T2), Fluid-Attenuated Inversion Recovery (FLAIR), axial
3D contrast-enhanced T1-weighted (T1ce) images, and rel-
ative cerebral blood volume (rCBV) maps generated off-
line based on T2*-weighted dynamic susceptibility perfusion
MRI.

The images were preprocessed following a number of
steps including noise reduction, bias-field correction,
co-registration of all sequences (T1, T2, T1ce, FLAIR,
rCBV), skull stripping, and histogram matching. Histogram
matching was not applied to the rCBV maps.

Attributes were extracted from the following ROIs, which
were manually traced by an expert neuroradiologist:

– ROI1 (neoplastic, enhancing), ROI2 (neoplastic, non-
enhancing): includes all non-necrotic enhancing neoplas-
tic tissue, or, if the lesion did not show enhancement,
the whole non-necrotic T1-hypointense neoplastic tissue
avoiding peritumoral edema by tracing the FLAIR image.

– ROI3 (necrotic): this ROI was delineated only in cases
including necrotic tumor tissue.

– ROI4 (edematous): FLAIR and T2 images were used to
depict the peritumoral edema (possibly including neo-
plastic infiltration), drawing the ROI surrounding the high
signal intensity seen on these sequences.

We chose a large number of features (152) for investiga-
tion which included age, tumor shape characteristics, image
intensity characteristics within several regions of interest, as
explained next.

1. Shape characteristics (evaluated in ROI1∪ROI2∪ROI3)
tumor circularity, irregularity, rectangularity, entropy of
radial length distribution of the boundary voxels, sur-
face-to-volume ratio. The shape of the tumor as well as
its intensity profile in the tumor boundary are impor-
tant characteristics. For example, menigiomas are well
defined with sharp boundaries and quite regular shape,
while the infiltrative GBMs have a more convoluted
shape and diffusive boundaries. Similarly, the edema in
the case of meningiomas is usually pure vasogenic and
lies only in the white matter, thus the edematous ROI
has a very irregular shape. On the contrary, in the case of

high grade tumors, edema is mixed with tumor infiltra-
tion making the boundaries smoother and more blurry.
The tumor case examples in Fig. 1 illustrate these con-
cepts.

2. Relative volumes of ROIs ratio of tumor volume being
enhancing, necrotic, and edematous versus total tumor
volume. The presence and amount of the different histo-
logical tissue, such as enhancing tumor and necrosis, is
an important criterion for tumor classification [27,28].

3. Image intensity characteristics The histogram of the
MR images is calculated (using 10 bins) and five main
components are used as attributes. Moreover, the mean,
variance, skewness, and kurtosis of image intensities of
different sequences are calculated in the central area of
several ROIs. Also, the mean and variance of the gradient
image in the margin of the ROIs are included. All inten-
sity related attributes sum up to 143 in total. The marginal
area is extracted from the ROIs in order to capture pos-
sible differences in imaging profiles in the boundaries,
which might be related to either tumor infiltration or mass
effect. These two factors are usually being explored dur-
ing radiological diagnosis. The histogram and the other
statistical characteristics are included in order to inves-
tigate whether there are informative differences in the
intensities across different tumor types.

Attribute selection

The attribute selection is a widely known process, during
which a subset of the most informative attributes is chosen, so
that the highest accuracy is achieved using the least number of
variables. Attribute selection involves searching through all
possible combinations of attributes in the data to find which
subset of them works best for prediction. To this end, the
attribute selection algorithms are characterized by two com-
ponents: (i) the method used to define the predictive value of
each subset of attributes, denoted as feature evaluator, and
(ii) the method determining the search over the attributes,
denoted as search method.

In our study, three evaluators are used: a correlation-based
feature selection (CFS) method [12], a method evaluating
consistency in the class values [13], and an approach based
on wrappers [14], as explained next. The CFS [12] algo-
rithm evaluates the worth or merit of a subset of attributes
by considering the individual predictive ability of each attri-
bute along with the degree of redundancy between them. The
equation below [15] formalizes the heuristic:

Merits = kr̄cf√
k + k(k − 1)r̄ff

where Merits is the heuristic “merit” of a feature subset S
containing k features, r̄cf the average feature class correla-
tion, and r̄ff the average feature-to-feature intercorrelation.
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This equation is, in fact, Pearson’s correlation, where all vari-
ables have been standardized. The consistency measure [13]
evaluates the predictive value of a subset of attributes by
the level of consistency in the class values when the training
instances are projected onto the subset of attributes. The con-
sistency of any subset can never be lower than that of the full
set of attributes. In the case of the wrapper approach [14],
an induction learning algorithm is applied repeatedly on a
distinct portion of the dataset using various feature subsets.
A classifier is built on each feature subset using a set aside
distinct portion of the dataset, and the feature subset with the
highest performance (measured by some criterion) is used as
the final set.

Also, in this study three search methods are examined,
the Best First [16], Greedy Stepwise [17], and Scatter Search
[18]. The Best First method [16] searches the space of attri-
bute subsets by greedy hill climbing augmented with a back-
tracking facility. It starts with the empty set of attributes and
searches forward. The Greedy Stepwise [17] method per-
forms a greedy forward or backward search through the space
of attribute subsets. It starts with a population of many sig-
nificant and diverse subsets and stops when the accuracy is
higher than a given threshold or there is no more improve-
ment. Scatter Search [18] is an evolutionary method that
combines solution vectors by linear combinations to produce
new ones through successive generations.

Classification

In this study, several classifiers are examined: J48 tree [19],
K-nearest neighbor (KNN) [20], VFI [21], SVMs [22], and
Naïve Bayes [23]. J48 [19] is an implementation of C4.5
algorithm that produces decision trees from a set of labeled
training data using the concept of information entropy. It
examines the normalized information gain (difference in
entropy) that results from choosing an attribute for splitting
the data into smaller subsets. To make the decision, the attri-
bute with the highest normalized information gain is used.
The KNN algorithm [20] compares the test sample with the
available training samples and finds the ones that are more
similar (“nearest”) to it. When the k-nearest training sam-
ples are found, the class label in majority is assigned to the
new sample. Learning in the VFI algorithm [21] is achieved
by constructing feature intervals around each class for each
attribute (basically discretization) on each feature dimen-
sion. Class counts are recorded for each interval on each
attribute and classification is performed by a voting scheme.
The Naïve Bayesian Classifier [23] assumes that features
are independent. Given the observed feature values for an
instance and the prior probabilities of classes, the a posteri-
ori probability that an instance belongs to a class is estimated.
The class prediction is the class with the highest estimated
probability. The SVMs [22] first map the attribute vectors into

a feature space (possibly with higher dimensions), either line-
arly or nonlinearly, according to the selected kernel function.
Then, within this feature space, an optimized linear division
is sought; i.e., a hyperplane is constructed which separates
two classes (this can be extended to multiple classes).

Experiments

First, we examined all 10 pairwise problems between menin-
gioma, glioma grade II, grade III, grade IV, and metastasis,
using all the combinations of the above-mentioned methods.
Examples of these tumor types are shown in Fig. 1. The pur-
pose of this step is to choose the evaluators and the search
methods, which provide high average accuracy, e.g., more
than 90%. The multiclass problem is studied using the meth-
ods for attribute selection and classification that performed
best in the pairwise classification problems.

Classification is performed by following a LOO strategy
on the training samples.

Results

Pairwise classification

Table 1 shows the average accuracy (percentage of correctly
classified samples) over all pairwise problems and the aver-
age area under the receiver operating characteristic curve
(AUC), respectively, for the combinations that achieved accu-
racy greater than 90%. The results are sorted from the highest
to lowest accuracy. It can be seen that the wrapper evaluator
in combination with Best First and Greedy Stepwise search
algorithms has the highest accuracy.

Among the pairwise problems the lowest accuracy
(89.7%) is observed for the classification of gliomas grade
II versus grade III and the highest accuracy (100%) for the
classification of metastases versus meningiomas, metasta-
sis versus gliomas grade II, meningiomas versus grade II or
grade III or grade IV gliomas, and gliomas grade II versus
gliomas grade IV.

Moreover, two additional pairwise problems were exam-
ined: primary neoplasms (gliomas) versus secondary neo-
plasms (metastases) and low versus high-grade gliomas.
Meningiomas were not included in these combined classi-
fication problems because they differ from the glial tumors
and metastases in both origin and behavior. The average LOO
accuracy of the applied methods for these pairwise problems
is displayed in Figs. 2 and 3, respectively. The wrapper eval-
uator in combination with the Best First search algorithm
exhibits again the highest accuracy.

When the presented attribute selection methods were used
in combination with an SVM classifier, the results were sim-
ilar or worse than those in previous work [9] using weighted
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Fig. 1 Examples of preprocessed axial T1 contrast-enhanced images (1st row) and FLAIR images (2nd row) with brain neoplasms. From le f t to
right : meningioma, glioma grade II, III, IV, and metastasis

Table 1 Average accuracy
(ACC), AUC and number of
retained attributes (N ) over all
pairwise classification problems

Evalutor Search algorithm Classifier N ACC (%) AUC (%)

Wrapper Greedy stepwise VFI 5.1 96.6 95.1

Wrapper Best first VFI 5.1 96.6 95.1

Wrapper Greedy stepwise KNN (k=3) 2.7 96.3 94.6

Wrapper Best first KNN (k=3) 2.4 96.1 93.5

Wrapper Best first naive bayes 2.9 95.6 93.0

Wrapper Best first J48 2.4 94.4 91.8

Wrapper Best first KNN (k=5) 2.2 94.3 90.8

Wrapper Greedy stepwise J48 1.8 92.7 85.3

Wrapper Greedy stepwise KNN (k=5) 1.7 92.3 88.5

CFS Best first KNN (k=5) 12 91.7 92.1

CFS Greedy stepwise KNN (k=5) 11.7 91.0 92.1

CFS Best first KNN (k=7) 12 90.8 91.2

CFS Greedy stepwise KNN (k=7) 11.7 90.3 91.1

CFS Scatter KNN (k=7) 11.4 90.2 92.8

CFS Best first KNN (k=3) 12 90.1 91.1

CFS Scatter KNN (k=5) 11.4 90.1 91.8

SVMs [25]; however, the accuracy increased when a VFI or
KNN (k = 3) classifier was applied instead of the SVMs.
The good performance of the KNN classifier here might be
attributed to the significantly small number of retained attri-
butes, N = 2.4 and N = 2.7 on the average for all pairwise
classification problems when the Best First and the Greedy
Stepwise search algorithms were used, respectively.

Finally, the proposed attribute selection method was com-
pared against a popular dimensionality reduction method,

the Principal Component Analysis (PCA) [26]. PCA, also
named Karhunen–Loève transform, applies an orthogonal
linear transformation that transforms the data to a new coor-
dinate system of uncorrelated variables called principal com-
ponents. The principal components are sorted such that the
first components describe the direction of maximum vari-
ance of the data. We have applied PCA to reduce the number
of variables and plotted the classification accuracy versus
the number of retained components. As shown in Fig. 4, the
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Fig. 2 Average classification accuracy of primary neoplasms
(gliomas) versus metastases

Fig. 3 Average classification accuracy of low versus high-grade
gliomas

Table 2 Confusion matrix for the multiclass problem

Metastasis Grade2 Grade3 Grade4 ← classified as

23 0 0 1 Metastasis

1 18 1 2 Grade2

3 6 5 3 Grade3

5 1 0 28 Grade4

classification accuracy is smaller than the accuracy of the
proposed scheme for both classification problems, low ver-
sus high-grade gliomas and primary versus secondary neo-
plasms.

Multiclass classification

The accuracy of LOO cross-validation of the multiclass prob-
lem is shown in Fig. 5. The highest accuracy (76.29%) is
achieved when using the wrapper approach as evaluator, the
Best First search algorithm and the VFI as classifier. The
results in Fig. 5 illustrate that the wrapper approach out-
performs the CFS evaluation method for the same classifier.
The application of the Greedy Stepwise search method did
not increase the accuracy.

Fig. 4 Attribute selection via PCA. The accuracy of a KNN
(k = 3) classifier is shown versus the number of retained components
for the classification of low versus high-grade gliomas and gliomas
versus metastasis

Fig. 5 Accuracy for the multiclass problem

Table 3 The most frequently selected attributes over all pairwise prob-
lems and the corresponding frequency ( f )

Most frequently selected
attributes characteristic

MRI ROI∗ f

Percentage enh. tumor T1ce 1 55

Mean T1ce 1 (margin) 20

Mean T1ce 2 (central) 20

Variance FLAIR 4 (margin) 13

Mean FLAIR 4 (central) 13

Skewness FLAIR 1 ∪ 2 ∪ 3 13

Circularity – 1 ∪ 2 ∪ 3 13

Variance FLAIR 4 (central) 12

Percentage necrosis T1ce 3 12

Variance rCBV 2 (central) 11

Irregularity – 1 ∪ 2 ∪ 3 11

Percentage edema FLAIR 4 10

Variance T1ce 2 (central) 9

Mean rCBV 1 (margin) 9

Variance rCBV 4 (margin) 7

Attributes are extracted from ROIs (1 neoplastic enhancing, 2 neoplastic
non-enhancing, 3 necrotic, 4 edematous)
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The confusion matrix for the best method is displayed
in Table 2. Metastases get classified with very high sensi-
tivity (95.8%) and glioblastomas and grade II gliomas with
relatively high sensitivity (82.4 and 81.8% correspondingly).
Grade III gliomas get classified with very low sensitivity; the
largest portion is classified as grade II and the rest is assigned
equally to GBMs and to metastases. The prediction of glioma
grade is inherently difficult since brain neoplasms are often
heterogeneous, meaning that different histopathologic fea-
tures can be present throughout an individual neoplasm. The
failure of the method to classify grade III gliomas possibly
indicates that the extracted attributes do not form a separate
cluster, but are rather similar to the attributes of the nearby
classes (grade II and grade IV). The highest specificity is
observed for grade III gliomas.

For both pairwise and multiclass problems, the genetic
algorithms and the neural networks were also investigated.
However, the performance of the classification system did
not improve.

Evaluation of attributes

The attributes of the final set are different for each classi-
fication pair and each attribute selection method. Table 3
shows the most frequently selected attributes over all pair-
wise problems. The 1st column shows the quantity being cal-
culated, the 2nd column the MRI sequence exploited (when
imaging characteristics are extracted), and the 3rd column
shows the involved ROI. The most important attribute was
the enhancing portion in T1 contrast-enhanced images; it
was selected almost 3 times more often compared with the
next most important attribute. This result is in accordance
with other studies [9,27,28] and is justified by the fact that
the presence of enhancing tumor is a decisive criterion in
determining tumor malignancy during radiological diagno-
sis. Overall the attribute selection and ranking showed that
parameters extracted from T1 contrast enhanced, FLAIR, and
rCBV images were more informative than parameters from
T1 and T2 images.

Conclusions

In this study, several machine learning techniques for
attribute selection and classification were examined with
the purpose of brain tumor classification. The potential of
attributes extracted from conventional and perfusion MRI
was exploited and the diagnostic value of each attribute was
investigated.

The highest accuracy was achieved by the wrapper eval-
uator in combination with the Best First search method for
both the pairwise and the multiclass problems. The classi-
fier achieving the highest accuracy was the KNN (k = 3)

or the VFI depending on the classification problem, but the
KNN is preferred due to its simplicity and overall more stable
performance.

Concluding, the proposed classification scheme (consist-
ing of the wrapper evaluator, Best First search method and
KNN classifier) achieved overall high accuracy consider-
ing the fact that MR spectroscopy was not incorporated in
the analysis. More extensive training using larger datasets
is expected to further improve generalization ability of the
scheme and also increase the performance of the whole clas-
sification system.
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