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Spontaneous tumour regression in
keratoacanthomas is driven by Wnt/retinoic
acid signalling cross-talk
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A fundamental goal in cancer biology is to identify the cells and signalling pathways that are

keys to induce tumour regression. Here we use a spontaneously self-regressing tumour,

cutaneous keratoacanthoma (KAs), to identify physiological mechanisms that drive tumour

regression. By using a mouse model system that recapitulates the behaviour of human KAs,

we show that self-regressing tumours shift their balance to a differentiation programme

during regression. Furthermore, we demonstrate that developmental programs utilized for

skin hair follicle regeneration, such as Wnt, are hijacked to sustain tumour growth and that

the retinoic acid (RA) signalling pathway promotes tumour regression by inhibiting Wnt

signalling. Finally, we find that RA signalling can induce regression of malignant tumours that

do not normally spontaneously regress, such as squamous cell carcinomas. These findings

provide new insights into the physiological mechanisms of tumour regression and suggest

therapeutic strategies to induce tumour regression.
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Cancer does not generally spontaneously regress without
treatment, although a clear rate of tumour regression is
unknown given that internal organs cannot be closely

monitored. However, solid tumours, such as melanoma, renal cell
carcinoma and neuroblastoma, as well as non-solid tumours,
such as lymphomas, occasionally do regress1–3. These regressing
tumours represent an important model for identifying
physiological mechanisms that drive tumour regression,
providing potential insight for the development of targeted
therapies for tumours that do not regress spontaneously.
However, melanoma, renal cell carcinoma, neuroblastoma and
lymphoma regress spontaneously rarely and unpredictably.
In contrast, cutaneous KA, considered by many to be a
behaviourally benign variant of squamous cell carcinoma
(SCC), is defined as a self-regressing tumour. KA is
characterized by rapid growth over a few weeks, followed by
spontaneous resolution within the following few months4–7.
While different hypotheses have been proposed to explain the
mechanism of KA tumour regression8–10, to date we still lack a
clear understanding of the signalling and cellular mechanisms
that drive its spontaneous regression.

The ability of KA to grow and regress is reminiscent of hair
follicle cycling during physiological regeneration11. Hair follicles
transition between growth phases, when the hair follicles expand
in size, and regression phases, when most of the epithelial cells are
eliminated leading to hair follicle shrinkage12,13. Hair follicle
regeneration is driven by the orchestration of several well-
characterized signalling pathways, including the Wnt pathway,
which is a central signalling mechanism for the regeneration of
several tissues. In the skin, Wnt signalling is activated at the onset
of hair follicle growth through the action of Wnt ligands within
the epithelium12,14–16. The binding of Wnt ligands to their
receptors leads to stabilization and nuclear translocation of their
effector b-catenin, which in turn activates the transcription of
Wnt target genes such as Axin2, Cyclin D1 and Lef-1 (refs 17–20).
Functionally, Wnt signalling is sufficient to induce hair follicle
growth as shown by b-catenin gain of function studies21,22. Like
Wnt, retinoic acid (RA) is another signalling pathway that plays
an important role in tissue regeneration. In the skin, RA has
been shown to repress proliferation and induce epidermal
differentiation in mice23 as well as regulate hair follicle
regression in humans24.

Developmental programs are often hijacked during cancer.
Wnt signalling for instance has been implicated in several
cancers, including colon and breast cancer25,26 in addition to skin
tumours such as SCC27,28. Malanchi et al.29 have reported that
Wnt signalling ablation impairs SCC tumour formation. Overall,
these studies show how the Wnt signalling pathway is a dual key
player that fuels both physiological tissue regeneration as well as
tumour formation in several tissues.

In the current study, we utilized a mouse model of self-
regressing KA tumours. By using genetic lineage tracing
experiments, we first show that hair follicle stem cell (HFSC)
descendants contribute to tumour development and that these
HFSC-derived cells actively contribute to different lineages within
self-regressing tumours. We demonstrate that tumour regression
is characterized by decreased proliferation, loss of HFSC
descendants and increased differentiation. Strikingly, we demon-
strate via an unbiased transcriptional approach that RA
upregulation is an early event during the regression phase and
that RA acts upstream of Wnt downregulation by inducing
stromal Wnt inhibitors, which ultimately leads to tumour
regression. Finally, we show that RA/Wnt signalling cross-talk
is able to induce the regression of non -regressing tumours such
as malignant SCC through Wnt inhibition and activation of
differentiation programs. This suggests that differentiation and

reduced proliferation are mechanisms utilized during sponta-
neous tumour regression and therefore provide the basis for
therapy to eradicate tumours that do not regress spontaneously.

Results
HFSC-descendants contribute to self-regressing tumours. In
order to dissect the cellular mechanisms that sustain self-regres-
sing KA tumour formation, we used a DMBA (7,12-dimethyl-
benz(a)anthracene) based chemical carcinogenetic protocol
on mice11. Repeated applications of DMBA on the mouse
back skin twice a week for up to 20 weeks led to a variety
of skin epithelial tumours of which 40% were self-regressing
KAs (Supplementary Fig. 1a,b). These epithelial self-regressing
tumours mimicked the human variant (Fig. 1a,b; Supplementary
Fig. 1c)4. Reproducibly, DMBA withdrawal led to KA tumour
regression within 6–8 weeks post-DMBA treatment therefore
providing a robust model for studying the mechanisms that drive
tumour regression.

The ability of KA tumours to grow and regress is reminiscent
of the ability of hair follicles to cycle through growth and
regression phases. Thus, we hypothesized that HFSCs/HFSC
descendants could fuel self-regressing tumours (Fig. 1c). To test
this hypothesis, we permanently labelled HFSCs by utilizing mice
carrying the tamoxifen-inducible Keratin 19CreER -along with a
green fluorescent protein (GFP) Cre-reporter (GFPr)30 (Fig. 1c
and Supplementary Fig. 1d). Upon subsequent DMBA treatment,
induced tumours were collected, sectioned and stained for
anti-GFP. Immunofluorescence analysis showed that GFPþ

HFSC-derived cells were found within several regions of self-
regressing tumours (Fig. 1d), despite the initial low labelling
efficiency of HFSCs. Strikingly, the number of stem cell-derived
GFPþ cells was dramatically reduced in 6-week regressing
tumours by fluorescence-activated cell sorting (FACS) (Fig. 1j and
Supplementary Fig. 2a,b).

Given our observation that HFSCs/HFSC descendants are
present within regressing tumours, we asked whether HFSC
markers were also retained within the tumours. Immunofluores-
cence for a variety of stem cell markers showed that several, such
as CD34, Krt15 and Lgr5, were not expressed. In contrast, we
found that Sox9—a Wnt target gene and a key regulator of HFSCs
during hair follicle regeneration—was still expressed, along with
other undifferentiated adhesion molecules, such as P-cadherin, a6
and b4 integrin (Figs 1e and 2c). This pattern of expression was
also present within the HFSC-derived cells as shown by co-
localization of Sox9 with GFP in the Krt19CreER; GFPr mice
(Fig. 1f). However, and similarly to the lineage tracing
experiments, Sox9 levels were dramatically reduced during the
tumour regression phase (Fig. 1h). Consistent with these findings,
self-regressing tumours were highly proliferative during the
growth phase, but displayed a dramatic decrease of proliferative
cells during the regression phase (Ki67 proliferative marker and
hair follicle epithelial marker P-cadherin—Fig. 1g,i). All together,
these findings demonstrate that HFSC/HFSC-descendant cells
contribute to the development of self-regressing skin tumours and
suggest that the regression phase is characterized by the shrinkage
of the undifferentiated/proliferative pool.

KA tumours activate differentiation during regression. We
wanted to investigate whether the loss of undifferentiated cells
observed during the regression phase was driven by cell death or
differentiation mechanisms in addition to decreased proliferation.
To address whether apoptosis takes place during regression, we
stained for activated cleaved Caspase 3 antibody. Immuno-
fluorescence analyses showed very few activated cleaved Caspase
3þ cells during regression and it showed no difference when
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compared with the tumour growth phase (Supplementary
Fig. 3a,b). Next, we assayed for a variety of skin differentiation
markers. While hair follicle differentiation markers failed to be
detected, markers of epidermal differentiation were expressed in
the self-regressing tumour cells, specifically Krt10 and TUNEL31

(Fig. 2a,f and Supplementary Fig. 4a,b). Surprisingly, we found
that GFPþ HFSC descendants within the tumours were positive
for such epidermal differentiation markers (Fig. 2b;
Supplementary Fig. 4c). These results suggest that HFSC-

derived GFPþ cells have the ability to change their molecular
signature to adapt and be functionally active within the tumour.

Finally, we addressed whether and how the above-
characterized expression pattern would change during the
tumour regression phase. We found that the expression of
differentiation markers was increased in the regression phase
versus growth phase by immunofluorescence and quantitative
real time polymerase chain reaction (qRT–PCR) (Fig. 2d,e).
All together, these findings demonstrate that HFSC-descendant

Epithelium

Stroma

Epithelium

Regressing keratoacanthomaGrowing keratoacanthoma

Epithelium
Stroma

80%

60%

40%

20%

0%

****

GFP

Epithelium

St
ro

m
a

DAPI GFPr
Pcad

Hair follicle
stem cells 

DMBA

Keratin

Keratin

Keratin

P
-c

ad
/K

i6
7+  c

el
ls

 (
%

)

Hair follicles

Keratoacanthoma

K19CreER; GFPr K19CreER; GFPr
DMBA treated 12 weeks

Epithelium

Epithelium

Sox9
Pcad
DAPI Sox9

Sox9
Pcad
DAPI

Sox9
Pcad
DAPI

DAPI GFPr

S
te

m
 c

el
ls

DAPI Pcad Ki67

DAPI Pcad Ki67
0

GFP

0
102

102 103 104 105 0
GFP

102 103 104 105

103

104

105

A
lp

ha
6 

in
te

gr
in

0
102

103

104

105

A
lp

ha
6 

in
te

gr
in

Basal layer
7.1%

Suprabasal
layer 4.3%

Proliferation

Gro
wth

Reg
re

ss
ion

Basal layer
0.1%

Suprabasal
layer 0.03%

GFPr

R
eg

re
ss

in
g 

K
A

G
ro

w
in

g 
K

A

KA growth KA regressing

0
102

103

104

105

G
F

P

0
50

 K
10

0 K
15

0 K
20

0 K
25

0 K

FSC

Cre-recombined 
α6/CD34 HF stem cells

8%

Figure 1 | Mouse KA tumours recapitulate human KAs and they originate from HFSC descendants. (a,b) Hematoxylin and eosin staining shows mouse
KA in the growth phase and the regression phase (scale bar, 100mm for pictures on the left, and 50mm for pictures on the right). (c) Schematic
representation of the genetic lineage tracing approach utilized for labelling the HFSCs. Representative image of a hair follicle from tamoxifen-treated
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of the stem cells within the hair follicle (scale bar, 20mm). Flow cytometry analysis of GFPþ cells in the HFSC compartment prior to DMBA treatment
(n¼ 3). (d) DMBA was applied to tamoxifen-treated K19CreER; Rosa26mTmGFP mice. Twelve weeks post-DMBA treatment, GFPþ hair follicle descendant
cells were found in the epithelium of KA tumours, as shown by GFP (green) co-localization with P-cadherin (red) (n¼ 18, scale bar, 50mm).
(e,h) Sox9 staining in KA tumours sections during growth and regression phases (n¼ 3, scale bar, 50mm). (f) Immunofluorescence staining for Sox9
showing co-localization with the HFSCs-derived cells (HFSCs, green) after Cre recombination tamoxifen mediated. Continuous green lines identify the
HFSC descendants (scale bar, 50mm). (g,i) Immunofluorescence staining for the proliferation marker Ki67 in KAs tumours during growth and regression
phase shows reduction in the number of Ki67þ (red) and P-cadherinþ (green) cells during regression (scale bar, 50mm). Cell proliferation has been
quantified in KA during growth or regression (n¼4). Data are represented as mean±s.d., ****o0.001 obtained by unpaired t-test analysis.
(j) Representative flow cytometry analysis of HFSC-derived GFPþ cells during KA growth and regression (n¼ 7 and n¼ 8, respectively). In all the
pictures, dotted lines indicate the tumour/stroma interface. In all the immunofluorescence experiments performed, nuclei are marked in blue with DAPI.
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cells recruited in self-regressing tumours change their signature
to adapt to the tumour environment and that spontaneous
tumour regression is driven by an increase of the differentiation
programme.

Wnt signalling is differentially regulated in KA tumours. In
order to identify the molecular mechanisms that are responsible
for KA self-regression, we evaluated stem cell signalling pathways
that have been shown to play a crucial role in tissue regeneration.
Among the several signalling pathways that we screened by
qRT–PCR, Wnt components stood out as the most differentially
expressed between the regression and growth phase of KA
tumours (data not shown). We found that during the growth
phase more than 80% of tumour epithelial cells displayed nuclear
b-catenin, a hallmark of activated Wnt pathway. In contrast, only
17% of nuclear b-cateninþ cells were found during the regression
phase (Fig. 3a,b). Similarly, self-regressing tumours generated in
Wnt reporter mice32 show that the large majority of epithelial
cells activated the Wnt reporter (Supplementary Fig. 5a,b). These
combined evidences suggest that Wnt pathway is active during
the growth phase compared with the regressing phase.

To test whether Wnt dynamic regulation occurs in human
self-regressing tumours, we performed b-catenin immuno-

histochemistry on sections of human KA tumours both in
growth and regression phases. Similarly to the mouse self-
regressing tumour behaviour, nuclear b-catenin was observed in
the majority of the epithelium of growing human KAs, while b-
catenin primarily stained the cell membrane in regressing human
KAs (Fig. 3c). Thus, the observation that Wnt downregulation
was conserved in the human tumour regression phase consider-
ably raised the relevance of these results and encouraged us to
pursue the significance of these findings in our mouse model for
self-regressing tumours.

If Wnt pathway is downregulated during the regression phase,
Wnt target genes ought to be downregulated. Wnt target genes,
such as Axin2, Sox9, Cyclin D1 and Lef1, were downregulated in
the regression phase versus the growth phase by qRT–PCR
(Fig. 3d). We hypothesized that Wnt downregulation might be
triggered by Wnt inhibitor upregulation. Wnt inhibitors are a
small group of soluble proteins that antagonize Wnt activation by
preventing ligand-receptor activation or inhibiting Wnt receptor
maturation33. When we analysed Wnt inhibitor expression by
qRT–PCR, we found that regressing KAs displayed high levels of
several Wnt inhibitors, with Sfrp2 and Sfrp4 being the most
predominantly expressed (Fig. 3d). All together, these data
demonstrate that the Wnt signalling pathway is downregulated in
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KAs during regression presumably via upregulation of Wnt
inhibitors.

To begin to shed light on the mechanisms of tumour
regression, we sought to identify the source of both Wnt ligands
and inhibitors during the growth and regression phases. During
hair follicle development and regeneration, Wnt ligands are
mostly produced by the epithelium and Wnt inhibitors by the
stroma34. Thus, we have used mice carrying Keratin 14Cre;
Tomato-GFPr alleles to FACS purify epithelial (GFPþ /

Tomato# ) and stromal (GFP# /Tomatoþ ) populations from
the self-regressing tumours (cartoon in Fig. 3e; Supplementary
Fig. 5c). qRT–PCR analysis of the FACS-purified populations
showed that most of the Wnt ligands, such as Wnt3, Wnt3a,
Wnt4 and Wnt10b, along with Wntless (Wls), a gene required for
Wnt ligand secretion16, were highly upregulated in the epithelial
cells during the growth phase (Fig. 3e,f and Supplementary
Fig. 5d,e). Conversely, Wnt inhibitor transcripts, predominantly
Sfrp2 and Sfrp4, were upregulated in the stromal cells when
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compared with epithelial cells during the regression phase (Fig. 3e
and Supplementary Fig. 5d). All together, these data show that
Wnt is differentially regulated in the two different KA tumour
stages and that communication between the epithelium and the
stromal component of KA tumours may play an important role in
regulating Wnt signalling similarly to what is observed during
development.

Wnt inhibition is sufficient to induce tumour regression. We
have thus shown that Wnt signalling is downregulated in
regressing KAs. We therefore reasoned that if Wnt down-
regulation is sufficient to induce KA regression, forced inhibition
of the Wnt pathway during the growth phase would trigger
precocious tumour regression (Fig. 4a). In order to test this
hypothesis, we injected growing KA tumours with either the Wnt
inhibitor IWP2 or vehicle while continuing DMBA treatment.
IWP2 is a compound that prevents Wnt ligand palmitoylation
by the enzyme porcupine, resulting in impaired Wnt ligand
secretion35. As early as 2 days after treatment, a dramatic

reduction of more than five fold in the number of nuclear
b-cateninþ cells was observed in the IWP2 versus vehicle-
injected tumours, which confirms the efficacy of the treatment
(Fig. 4b,c). Consistent with the lack of nuclear b-catenin, Wnt
target genes Axin2, Cyclin D1, Sox9 and Lef1 were downregulated
2 days post treatment by qRT–PCR (Fig. 4d—black bars).

To test whether Wnt inhibition is sufficient to induce tumour
regression, we continued to treat the tumours with DMBA and
analysed them after 4 weeks from the last IWP2 injection.
Strikingly, tumours injected with IWP2 entered precocious
regression whereas vehicle-treated tumours were still in growth
as shown by histological, immunofluorescence and qRT analysis
(Fig. 4e,g). All together, these findings identify Wnt inhibition as
a key molecular mechanism sufficient to induce precocious KA
tumour regression.

To address whether Wnt inhibition is required for tumour
self-regression, we employed an inducible genetic mouse model to
stabilize b-catenin and constitutively activate the Wnt pathway
within the epithelial cells (Fig. 5a). Mice carrying triple
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alleles Keratin14CreER;GFPr;b-catnflox(Ex3)/þ (refs 36,37) or
Keratin14CreER;GFPr littermates were induced with tamoxifen
to activated the Cre at 16 weeks of DMBA treatment. In the case
of the mutant mice, Cre activation resulted in b-catenin exon 3
removal, which in turn leads to b-catenin stabilization. After
tamoxifen induction, mutants and control mouse littermates were
then kept for six weeks in the absence of DMBA. Strikingly,
our results showed that b-catenin stabilization maintained KA
tumours in the growth phase while control littermate KAs had
entered the regression phase (Fig. 5b–d). To verify that the
mutant tumour behaviour was due to b-catenin activation,
we performed b-catenin immunohistochemistry. As expected,
a large number of nuclear b-cateninþ cells were detected in
the Keratin14CreER;GFPr;b-catnflox(Ex3)/þ mice whereas mostly
membrane-bound b-catenin was observed in the control
Keratin14CreER;GFPr littermates by immunohistochemistry
(Fig. 5c,d). Taken together, these findings demonstrate that
Wnt inhibition is sufficient and necessary to induce spontaneous
tumour regression.

RA activation and Wnt downregulation induce tumour
regression. Wnt downregulation was observed in advanced stages
of tumour regression at 6 weeks post-DMBA treatment. Thus, we
asked which signalling pathways could act initially and be
responsible for Wnt downregulation. In order to address this
question, we used an unbiased approach and performed RNA
sequencing to compare the transcriptional profile of epithelial
cells of KA tumours at 0 and 1 week post-DMBA treatment. We
found that a total number of 107 genes were differentially regu-
lated between the time points analysed (Supplementary Table 1).
Among others, we found that the RA signalling pathway stood
out as RA-related transcripts Crabp1, Fam5C (Brinp3) and
Cyp26b1 were upregulated at 1 week post DMBA (Fig. 6a in red).
During mouse development and hair follicle regeneration, the RA

pathway has been shown to inhibit Wnt pathway17,38. qRT–PCR
of RA-related transcripts both in the epithelial population only as
well as in whole tumour (Supplementary Fig. 6a) shows that RA
activation is an early event during KA tumour regression. If RA
acts during the regression phase by downregulating Wnt, then
RA upregulation ought to occur prior to Wnt downregulation
during KA regression. To test this hypothesis, we first treated
wild-type keratinocytes with RA in vitro. Consistent with our
model, we found that RA-treated keratinocytes induced not
only upregulation of Wnt inhibitors Sfrp2 and Sfrp4 but also
promoted downregulation of Wnt target genes by qRT–PCR
(Supplementary Fig. 6b). This finding establishes a link between
RA upregulation and Wnt downregulation in skin epithelial cells.

Next, we tested whether RA signalling activation is associated
with Wnt inhibition during advanced tumour regression.
Thus, we performed a time course experiment during tumour
regression and looked at the RA and Wnt components at 0, 1, 3
and 6 weeks post-DMBA treatment by qRT–PCR.

We confirmed that the RA signalling machinery was activated
as early as 1 week post-DMBA treatment, although the highest
upregulation occurred later at 3 and 6 weeks (Fig. 6a,b). In
contrast, most of the Wnt target genes, such as Axin2 and Lef-1,
were still upregulated at the 3-week time point but became
downregulated at 6 weeks post-DMBA treatment when Wnt
inhibitors started to be upregulated. Overall, these data indicate
that the RA signalling pathway activation occurs prior to Wnt
inhibition during early stages of KA regression and that a certain
threshold of RA upregulation may be necessary to trigger Wnt
inhibition.

In order to test whether RA is able to induce Wnt
downregulation in vivo, we injected KA tumours with RA
(Fig. 6c). As early as 2 days after the last RA injection, KAs
displayed a dramatic reduction in the number of nuclear
b-cateninþ cells in comparison with vehicle-injected tumours
(Fig. 6d). In addition, upregulation of Wnt inhibitor Sfrp2 and
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downregulation of several Wnt target genes, including Axin2 and
Sox9, was observed by qRT–PCR (Fig. 6e—black bars). To test if
RA treatment induced KA precocious regression, we waited for 4
weeks post RA injection while DMBA treatment was continued.
Strikingly, we found that RA-treated tumours had entered the
regression phase by activating differentiation programs, while
the vehicle-injected tumours were still growing (Fig. 6f,g). If
b-catenin acts downstream of RA activation, we reasoned that
constitutive activation of Wnt signalling would impair RA
efficacy. To test this hypothesis, we treated KA tumours derived
from Keratin14CreER;GFPr;b-catnflox(Ex3)/þ mice with RA.
We found that Wnt-stabilized KA tumours were not affected
by RA treatment, as shown by tumour histology and nuclear
b-catenin staining of both RA-treated and vehicle-treated KAs
(Supplementary Fig. 7). All together, these findings demonstrate
that the RA signalling pathway is sufficient to induce Wnt
downregulation in KA tumours as well as precocious regression
of KAs via inhibition of Wnt pathway.

RA activation leads to Wnt inhibition and SCC regression.
If RA/Wnt signalling is able to induce physiological tumour
regression, we reasoned that the same cross-talk could induce the
regression of skin tumours that do not spontaneously regress. To
address this question, we used skin SCC as a model system. SCC
tumours start to develop on the mouse back skin after 20 weeks of
DMBA treatment. We first compared the levels of RA machinery
in growing KAs, regressing KAs and SCCs. We found that RA
signalling levels were lower in SCC tumours in comparison with
regressing KA, as shown by qRT–PCR analysis for RA machinery
(Fig. 7a). Consistent with these findings, Wnt ligands and
inhibitors level in SCCs were comparable with KA in growth
(Supplementary Fig. 8a). To test if RA dynamic regulation occurs
in human skin tumour, we stained SCC tumours, as well as
growing and regressing KAs for the RA-associated protein
Crabp2. Crabp2 translocates from the cytoplasm to the nucleus to
activate RA pathway. Strikingly, we found that Crabp2 was
nuclear in regressing human KAs while it was predominantly
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cytoplasmic in growing KA and SCC human tumours (Fig. 7b).
These findings prompted us to ask whether forced expression of
RA signalling could result in regression of SCC tumours
(Supplementary Fig. 8b). To address this question, we have
injected RA or mock to SCCs for 7 consecutive days and waited

for 4 weeks. RA activation was confirmed by qRT–PCR analysis
post RA treatment and by nuclear staining for Crabp2
(Supplementary Fig. 8b,c). At 4-week post treatment, we found
that RA injection led to regression of both KAs/papillomas
(black) and SCCs (red) as quantified over time by macroscopic
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measurements (Fig. 7c). qRT–PCR analysis of RA and mock-
injected SCC tumours showed that tumour regression was driven
by loss of proliferation and increased differentiation programs
(Fig. 7d). In addition, qRT–PCR analysis of Wnt target genes, as
well as immunohistochemistry for Sox9 and b-catenin, showed
that RA treatment induced Wnt inhibition in regressing SCCs
(Fig. 7e,f and Supplementary Fig. 8d).

All together, these data show that forced activation of
RA signalling is capable of inducing malignant SCC regression
through Wnt inhibition and activation of differentiation
programmes.

Discussion
A major challenge in cancer biology is to identify key
mechanisms that can be targeted to eradicate the disease. In
order to identify such mechanisms, we took advantage of
studying self-regressing tumours since they can teach us the
physiological mechanisms of tumour regression5. Importantly,
our self-regressing skin tumour model, keratoacanthoma (KA),
provides key advantages over other tumours. Given the skin’s
unique accessibility, KA tumours can be easily tracked over time
and manipulated, unlike most of the other tumours that affect
internal organs. In addition, KAs share cellular origin and
signalling mechanisms with more aggressive tumours, such as
SCC39,40, thereby making our discoveries on the self-regressing
KA tumours highly relevant towards more aggressive malignant
cancers.

Here we show that the cellular mechanisms involved in the
spontaneous tumour regression include loss of undifferentiated
cells and increased differentiation. Thus, HFSC descendants
contribute to KA development similarly to what has been found
in SCC studies39. Remarkably, HFSC-derived cells within the
tumours can give rise to both undifferentiated P-cadherinþ /
Sox9þ cells, consistent with their normal stem cell signature41,
and differentiated lineages to which they do not normally

contribute, such as epidermal differentiated Krt10þ cells42. This
finding clearly indicates that HFSC descendants are not only
capable of adapting to a new environment and modifying their
molecular signature, but they are also able to sustain these
changes over a long period of time (several months). This is in
contrast to other contexts such as epidermal wound for instance,
where HFSC descendants are recruited to repair the epidermal
wound but get eliminated within few weeks43. Notably, stem cell
descendant cells and markers of stemness/proliferation (Ki67/
Sox9) are dramatically decreased during the regression phase,
while instead activation of the differentiation programme takes
over. This is quite novel as most current cancer therapeutics are
designed to target cancer cell viability44. However, in most cases,
these approaches have failed to promote long-lasting response
suggesting that other cell biological mechanisms in addition to
cell proliferation and death may underlie tumour regression45.
The fact that we clearly demonstrate that regression is driven by
differentiation is a key finding and has important therapeutic
implication, because it shows that differentiation therapy is
possible in solid tumours. Consistent with this rationale, more
aggressive tumours have recently been reported to respond well to
differentiation therapy, including breast cancer tumours46.

Developmental programs are often hijacked during cancer.
Here we show that developmental and regenerative pathways
such as Wnt and RA47–50 pathways are re-utilized by KA
tumours to drive their spontaneous regression. Wnt is a central
mechanism for cancer in several tissues. Wnt activation has been
implicated in the initiation, progression and metastasis of
different forms of solid tumours, including skin, colon and
breast cancer25,26,51,52. In skin tumours, Wnt activation drives
tumour growth in malignant SCC and melanoma29,53. In our
self-regressing tumour model, Wnt/b-catenin signalling is
functionally active during the growth phase but gets
downregulated during the regression phase, as we show by
several independent lines of evidence in vivo such as nuclear
b-catenin, Wnt reporter and Wnt target genes. Strikingly, we
demonstrate that Wnt inhibition is sufficient and required for
tumour regression both by inhibitor topical delivery and genetic
approaches in vivo.

While cancer development was predominantly viewed as
driven by a cell autonomous mechanism at first, recent evidences
have elucidated the role of the tumour microenvironment
towards tumour growth28,54–56. Epithelial/stroma interaction
has been shown to play a crucial role in development as well
as tissue regeneration12,34,57. In our KA mouse model, we
demonstrate that epithelium/stroma signalling cross-talk is
important for Wnt regulation. We found that the tumoural
epithelium is the source of Wnt ligands, as shown by Wntless and
Wnt ligand expression, thus activating Wnt programme and
fueling KA growth. Consistent with this, inhibition of Wnt
secretion induces reduced proliferation and loss of epithelial cells
in our KA model. In contrast, during regression, Wnt inhibitors
such as Sfrps are secreted by the stroma and can dampen
epithelial Wnt activation thus leading to tumour regression.
Overall, these data show the role for Wnt signalling in self-
regressing KA tumours, as its temporal activation/inhibition
regulation in the epithelium dictates tumour diagnosis.

In clinical practice, several retinoid-based drugs have been used
for preventing skin tumours. Low levels of RA have been shown
to have a tumour-promoting activity58. However, the mechanism
by which RA acts is unknown59,60. Our finding of RA acting
upstream of Wnt downregulation to trigger tumour regression
elucidates the mechanism of action of such drugs. RA
upregulation is the key to tumour regression, as shown by our
data, because it (1) represents an early event during regression,
(2) downregulates the Wnt pathway, (3) decreases proliferation
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and (4) induces increased differentiation, ultimately leading to
tumour regression, in contrast with previous in vitro data
showing that RA represses keratinocytes differentiation61.
Our findings are consistent with examples documented in
developmental contexts where RA signalling can inhibit Wnt by
inducing the transcription of mesenchymal Wnt inhibitors38,56,62.
While initial RA signalling upregulation is observed early during
tumour regression, we think that a certain threshold of RA
activation is required in order to trigger Wnt downregulation.
Here we find that RA activation is followed by upregulation of
stromal Wnt inhibitors Sfrp2 and Sfpr4, which can act on the
epithelium to promote cell differentiation and KA tumour
regression. Interestingly, our data support that failure of RA
activation could result in SCC, as its low expression is comparable
with KA tumours during the growth phase. Moreover, we show
that RA can induce regression of SCC with a similar signalling
cascade observed during KA regression. Thus, this study puts
forward a novel molecular mechanism that explains the effect of
retinoids on Wnt in a tumoural context in vivo, as shown in
Fig. 8.

In conclusion, by exploiting in-depth knowledge of the
mechanisms that sustain skin regeneration, we have identified
key cellular and signalling mechanisms that drive tumour
regression by utilizing a self-regressing skin tumour model.
Undifferentiated proliferative epithelial cell loss and differentia-
tion are primary drivers for the regression of these tumours along
with the novel axis of RA/Wnt-b-catenin regulation that, when
targeted, can trigger tumour regression. Importantly, these
findings are highly relevant in the cancer field, because they
provide potential therapeutic strategies for other Wnt-dependent
skin malignant tumours that do not self-regress spontaneously,
such as SCCs.

Methods
Generation of experimental mice. K19CreER knock in mice, K14Cre, K14CreER,
TcfLef-H2BGFP and Rosa26mTmGFP (GFPr) transgenic mice have been used
to label respectively, the HFSCs, the epithelial cells and the Wnt-responsive
cells within KA tumours30,32,36,63. K19CreER; Rosa26mTmGFP, K14Cre;
Rosa26mTmGFP and K14CreER; Rosa26mTmGFP; b-catnflox(Ex3)/þ have been
generated and mouse genotyping has been performed by PCR. Eight-week-old
male and female mice have been used for the induction of skin tumours, DMBA
based. All the experiments have been conducted on littermate mice obtained from
the same breeding. K19CreER; Rosa26mTmGFP were induced with 1 mg of
tamoxifen (Sigma) every day for 10 consecutive days starting at postnatal day 44
(second hair follicle rest phase) to label HFSCs. K14CreER; Rosa26mTmGFP;
b-catnflox(Ex3)/þ and control littermates K14CreER; Rosa26mTmGFP were induced
with 1 mg of tamoxifen (Sigma) every day for 5 consecutive days starting at
16 weeks post-DMBA treatment.

Chemical carcinogenesis protocol and tumour pathology. Carcinogenesis
protocol has been performed as previously shown11,64,65. Briefly, 7-week-old mice
have been treated with 25mg of DMBA (D32-54-1G, Sigma) twice a week for up to
20 weeks. To obtain SCCs, DMBA treatment was continued up to 24 weeks. To
assess KA self-regression, DMBA has been stopped at 16th week and mice were
maintained up to 8 weeks post DMBA. Mice were monitored weekly for assessing
tumour number, appearance and size. Tumour histology was analysed by the
dermatopathologist Dr Christine Ko (Yale, Department of Dermatology). All the
studies are approved by the IACUC committee and followed NIH guidelines.

Tissue harvesting. DMBA-induced mouse tumours were harvested and processed
for RNA extraction, paraffin and optimum cutting temperature (OCT) compound
embedding. Briefly, for RNA extraction, the tumour specimen has been flash frozen
in liquid nitrogen and then stored at # 80 !C for next use. For paraffin embedding,
each tumour has been fixed overnight in 10% formalin and then processed by the
Dermatopathology laboratory at Yale University. For OCT embedding, tumour
samples were incubated in OCT for 1 h at 4 !C before embedding.

In vivo and in vitro Wnt inhibitor and RA treatments. Wnt inhibitor IWP2 has
been obtained from Stemgent. IWP2 was reconstituted in dimethylsulphoxide and
diluted in phosphate-buffered saline (PBS) to obtain a 50 mM working solution in
20ml of injected volume. Mice tumours have been injected with IWP2 for 7 days

consecutively starting at 16 weeks of DMBA treatment. The same experimental
protocol has been used for RA treatment of both KAs and SCCs (R2625-500 mg,
Sigma) (100 mM working solution in 20 ml of injected volume). Tumours have been
harvested at 2 days and 4 weeks post IWP2 and RA treatment. For in vitro
experiments, wild-type keratinocytes were treated with 10 mM RA for 1 and 4 days.
At the end of each experimental time point, the cells were collected for RNA
extraction with the RNeasy Plus Mini Kit (74134, Qiagen).

RNA analyses. RNA from whole tumour tissue has been isolated with RNeasy
Fibrous Tissue Mini Kit (74704, Qiagen), according to the manufacturer’s
instruction. Similarly, for FACS-isolated tumour cells, RNA was extracted by using
RNeasy Plus Mini Kit (Qiagen). RNA was retrotranscribed into cDNA by using
Superscript III First-Strand Synthesis System (18080-051, Life Technologies).
qRT–PCR reactions have been performed by using ViiA7 Real-Time Machine
System (Applied Biosystem). A total of 5 ng of cDNA was used for each reaction
with Fast Start SYBR Green Master Mix (Roche). The list of all primers used is
reported in Supplementary Table 2. Gene expression analysis has been conducted
using the DDCT method and utilizing glyceraldehyde-3-phosphate dehydrogenase
as housekeeping gene.

Flow cytometry and FACS. Growing and regressing KAs and SCC tumours were
dissected out and rinsed with PBS. A portion was devoted to histology and the rest
digested for single-cell suspension. For the latter, each tumour was minced in
2.5 mg ml# 1 collagenase (Sigma) with a razor blade and incubated at 37 !C for
50 min. After mechanical dissociation, 0.25% Trypsin (Life Technologies) was
added and the cell suspension was incubated at 37 !C for 5 min. Wash solution
(4% fetal bovine serum in PBS) was added to stop the reaction, followed by
pipetting up and down to make single-cell suspension. Single cells were filtered
through 40 micron strainer and then readied for staining with surface antibodies.
To isolate HFSCs, subcutaneous fat was removed from the skin and placed on
Hank’s balanced salt solution containing 0.2% collagenase (Sigma) for 30 min at
37 !C. The remaining tissue after digestion was then treated with Trypsin (Gibco)
at 37 !C for additional 30 min. Skin cell suspension was eventually collected and
filtered through strainers (70 mm, the 40-mm pores, BD Biosciences). For FACS
analysis, single-cell suspension in 2% fetal bovine serum in PBS was exposed to the
appropriate conjugated antibody for 15 min at 4 !C. The list of the antibodies used
for the isolation of HFSCs is shown in Supplementary Table 3. FACS profiles have
been analysed through the FlowJo software.

Immunostaining on paraffin and frozen sections. After rehydration, paraffin-
embedded tumour sections have been subjected to antigen retrieval with 10 mM
citrate buffer pH 6.0 and then incubated overnight at 4 !C with primary antibodies
at concentrations listed in Supplementary Table 3. For mouse antibodies, the
M.O.M. kit was used (Vector Laboratories). b-Catenin immunohistochemistry has
been conducted as previously described16. Secondary antibodies conjugated with
FITC, RRX and Cy5 (Jackson Immunoresearch Laboratories) were used at a
concentration of 1:100 for 1 h at room temperature. Slides were mounted with
Vectashield Mounting Media with 40 ,6-diamidino-2-phenylindole (H-1200, Vector
Laboratories). For cryosection immunostaining, 10-mm sections from skin tumour
samples were fixed in paraformaldehyde for 10 min at room temperature and the
dilutions used for the immunostainings are indicated in the Supplementary
Table 3. Secondary antibodies have been used as described above.

In situ hybridization on frozen tissue sections. In situ hybridization was
performed according to standard protocols using DIG-labelled antisense
riboprobes66. Wnt3 riboprobe was made by PCR from RNA extracted from
mouse back skin (forward primer: 50-gctcctttggtaccagggac-30 ; reverse primer:
50-tcgccatggtcttgtccttc-30). A total of 10mm skin sections were fixed in 4% PFA
and counterstained with DAPI.

RNA sequencing. RNA samples from KAs at 0 and 1 week post-DMBA treatment
were sequenced on a HiSeq 2000 (Illumina, San Diego, CA, USA). The original
75 bp pair-ended reads were preprocessed with Trimmomatic67 (version 0.30) to
trim off the adaptor sequence and poorly scored base pairs. The processed reads
were then aligned to the mouse transcriptome (mm9) with Tophat68 (version 2.0.8)
and the numbers of reads uniquely and unanimously mapped to each annotated
gene (mm9) were counted with HTSeq-count (version 0.5.4, http://www-huber.
embl.de/users/anders/HTSeq). The differentially expressed genes were detected
using EdgeR69 (version 3.3.3), cutting off a P-value less than 0.001 based on the
negative binomial distribution of the count data. The data have been deposited in
NCBI’s Gene expression Omnibus, and are accessible through GEO Series
accession number GSE54098 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE54098).

Statistical analysis. Data are expressed as mean±s.d. An unpaired Student’s
t-test was used to analyse data sets with two groups. For all analyses, Po0.05
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was accepted as indicating a significant difference. Statistical calculations were
performed using the Prism software package (GraphPad, USA).
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