A Management Perspective on the Failure of IS&T Projects

Udechukwu Ojiako, University of Southampton, UK
Stuart Maguire, University of Sheffield, UK
Melanie Ashleigh, University of Southampton, UK

ABSTRACT

The objective of the paper is to present a clear management perspective on how IS&T project failure may be conceptualised within this management dispensation. Current knowledge on a generalised process for management control (expectations perspective), is used in the re-affirmation of the concept of Information Systems and Technology (IS&T) project failure.

Keywords: Failure, Information Systems and Technology (IS&T) Projects, IS&T Project Failure, Management, Management Perspectives

INTRODUCTION

Ensuring that Information Systems and Technology (IS&T) delivers products and supports services that is in line with the expectations of customers remains a substantial challenge. The impact is that IS&T projects are characterised by high rates of abandonment (Glass, 2006; Iacovou & Dexter, 2005; Oz & Sosik, 2000; Sauer, Gemino, & Reich, 2007). Often, the factors leading to project abandonment fall within five major streams including: (i) ambiguity in failure definition (Chan, Scott, & Lam, 2002), (ii) difficulties in the ‘measurement’ of failure (Ika, 2009; Westerveld, 2003), (iii) difficulties with the articulation of IS/IT project implementation processes (Kaddah, 1990), (iv) difficulties dealing with the impact of the complexities associated with technology (Sauser, Reilly, & Shenhar, 2009), which has meant that some project management professionals appear to continue to focus on the technical, rather than the social imperatives in projects. The focus of this research however is on first of these four factors; ambiguity in failure definition. To help address these challenges, the authors maintain a position which views project management as a social system. Consequently, in this paper, the authors use a mixed research methodology rooted in social constructivism to re-affirm our understanding of the project failure concept.

This paper is divided into six major sections. The paper commences (in this section) with an introduction. First, we review the factors which define IS&T projects are reviewed, then, we state our philosophical stance (social constructivism). Afterwards, the research ap-
proach and methodology are presented and the next section presents the details of the study covering the participation action observations and the interviews. Finally, we present the results and our conclusions.

INDUSTRY PECULIARITIES

Traditional IS&T projects are facing unprecedented challenges. This is a major reason why customers now expect that as a routine, IS&T projects should deliver measurable efficiencies. The emergence of the twenty first century stakeholder and client (Petersen & Murphree, 2004), has also impacted such projects. This client type is highly intelligent (Aritua, Smith, & Bower, 2009), empowered and informed. These customer types are also less loyal to individual suppliers (Erridge & McIlroy, 2002) and will unashamedly demand high accountability and value in terms of project delivery.

A discerning review of quality journals between 1980 and 2009 on the topic appears to indicate that IS&T project failure has attracted detailed research interest, especially as these projects are often associated with a high failure rate (Auditor General of Canada, 2006; Ewusi-Mensah, 2007) driven by time and cost overruns. For example, estimates put forward by the Office of the Auditor General of Canada (2006) suggest (based on data from a review of large IS&T projects funded publicly between 2004 and 2006), that only about 28 per cent of such projects may be termed ‘successful.’ In terms of classification of ‘failure’ and ‘success’, studies (Lesca & Caron-Fasan, 2008; Oz & Sosik, 2000) examining how decisions on whether to abandon or terminate IS&T projects were made suggest that not only is failure and abandonment determined by combinations of factors, but that its paradoxical nature (for example the decision to abandon when costs outweighs attributed benefits), creates a crisis of choice for project management practitioners and scholars. On the other hand, others (Aritua, Smith, & Bower, 2009) have emphasised the question of interpretation regarding success and failure, with the debate focusing on projects which are successful, not a project which has been abandoned without being regarded as a failure (such as projects which are deferred). At present, studies on IS&T project failure had been substantially developed along three main fronts: (i) the first dealt with how the decision to abandon a project was made (Ewusi-Mensah & Przasnyski, 1991), (ii) the second focused on critical success factors (Birks, Nasirin, & Zailani, 2003; Oz & Sosik, 2000; Yeo, 2002) while the third (iii) focused on softer factors that influenced situations where it was determined that failure had occurred (Gauld, 2007; Jani, 2008; Pan & Pan, 2006).

THEORETICAL DRIVERS

Project ‘failure’ is fundamentally an abstract, ambiguous and multi-dimensional construct (Agarwal & Rathod, 2006; Shenhar, Dvir, Levy, & Maltz, 2001). The associated ambiguity, especially as it relates to the fact that ‘failure’ and ‘success’ are not notions of contradiction (Baccarini, 1999; Fincham, 2002), makes its definition particularly problematic. The definition of project failure and its associated criteria are heavily dependent on the perceptions of stakeholders (Pereira et al., 2008; Procaccino & Verner, 2002); creating what Verner, Beecham, and Cerpa (2010) refer to as stakeholder dissonance. Traditionally, measures of project failure have been based on generic (Shokri-Ghasabeh & Kavoousi-Chabok, 2009), and quantifiable factors such as time, quality, and cost (Icmeli-Tukel & Rom, 1997), which are time dependent both within and across projects (Pinto & Prescott, 1988; Pinto & Slevin, 1988). In conducting this study, a philosophical stance based on social constructionism is adopted. This stance, which is derived from earlier work of Burr (1995), involves the construction (rather than discovery) of the realities of the phenomenon under observation or study. As a philosophical stance, social constructivism will encourage the construction of social realities of IS&T project failure. The adoption of this
philosophical position is considered suitable due to its emphasis on practical and realistic challenges experienced by individuals and organisations within a specific social reality, (in this case project failure). Furthermore, project management is considered a social process (Nordqvist, Hovmark, & Zika-Viktorsson, 2004). In essence, this philosophical stance is expected to augment interpretive lines of scholarly exploration which in recent years have increased in importance within information systems because of its ability to facilitate an understanding of human thoughts within the context of organisations. It must be emphasised that the application of social constructionism to understanding IS&T project failure is not particularly new. This approach, for example, was adopted by Mitev (2000) and was seen as a means of providing rich descriptions of the social elements of project failure. This was achieved as social constructionism consciously makes an effort to shape knowledge and truth that fits our intensions. The adoption of social constructionism on the other hand will ensure a sense of reality in that it seeks to incorporate the complexities of IS&T project failure by insisting on the need to include much wider social factors in its contextualisation. It is therefore posited that the adoption of a research philosophy which is rationalist may not be a viable research approach to adopt.

RESEARCH METHODOLOGY

Exploration of the theoretical drivers involved the employment of a mixed two-stage qualitative approach. The first stage of our study was based on Participation Action Research (PAR) of major IS&T implementations across four different organisations. Lessons from the PAR exercises are highlighted. When considered against other interpretivist research approaches, PAR enabled three objectives to be achieved. These included (i) the grounding of the research in real world scenarios (Cicmil, Williams, Thomas, & Hodgson, 2006), (ii) the creation of an opportunity for theoretical understanding of anticipated emergent empirical outcomes (the follow-up questionnaires) and (iii) lessons to be learned from real projects, thus ensuring relevancy in respect to project management practice.

Participation Action Research (PAR) as a research process is both relevant to project management research (Ottosson, 2003; Whitehead, 2005) as well as being applied (Jepsen & Eskerod, 2009). Fundamentally, PAR has its foundations within the proposition that inferences are more likely to be authentic when those who conduct the investigations are part of its development and testing.

The second stage involved interviewing ten IS&T project managers. Each interview lasted for approximately thirty minutes. The interview sample was identified from the researchers’ professional contacts and included project managers at different seniority levels. In the next section, the findings obtained from the PAR exercises and semi-structured interviews are reported.

THE STUDY

The study was set within two major and complex organisations; The UK’s National Health Service (NHS) and British Telecom (BT). The first study which involved participation action observation of four major projects was conducted within the UK’s National Health Service (NHS). The NHS is the one of the largest organisations in Europe, with an annual budget of over £96 billion (HM Treasury, 2006), employing over one million staff (Papworth & Crosland, 2004). The second study was conducted within British Telecom (BT); ten IS&T project managers were interviewed. British Telecom (BT) is the dominant company in the UK telecommunications industry (Reynolds, 2005), with a share of over 37% of the UK telecommunications industry (OFCOM, 2007).

The first stage of the study (i.e., PAR) conducted within the NHS was supported by existing literature on project failure (Shenhar, Dvir, & Levy, 1997). This allowed for the grounding of the research to be embedded
within real world scenarios (a major reason for adopting social constructivism as a philosophical approach). This phase of the study also ensured that questions of validity (as relevant to practitioners) were addressed. The adoption of PAR as the first phase of the study also ensured that any potential for misunderstandings of any emergent empirical outcomes from the second phase of the study would be managed more effectively. A justification for the second phase of the study was that the authors would be able to profile the disposition of project managers towards project failure.

Participation Action Research within the NHS

In the initial study, the authors focused on the development and implementation of IS&T within the National Health Service. It aimed to contribute towards a better understanding of IS&T introduction from inception through to system evaluation and review. Four long-term interventions had been undertaken within NHS sites. Interventions in this context referred to action research whereby the researcher actively promoted learning within the client systems; and at the same time contributed to the development of general knowledge (Argyris, Putnam, & McLain-Smith, 1985). In other words, an interventionist approach implied that the researcher did not take a passive role during Participation Action Research (PAR). The guiding principle of PAR is based on Lewinian (Lewin, 1947a, 1947b) propositions that suggest the validity of causal inferences from human behaviour being enactable when researchers actively participate in building and testing such behaviour.

The major problem with NHS IS&T projects was that they were generally perceived as a technical challenge (Guah, 2008). An emphasis on technology meant that the NHS had a rather narrow view of IS&T introduction, implementation and deployment. PAR was undertaken across four sites. The learning experiences as they related to the generation of knowledge on project failure are described as follows:

The learning experience from the first project revolved around differences in perception of project success and failure, and the impact this had on systems usage. The project was commissioned by a medical services unit of the NHS serving about 240 health care patients. The project served as a typical case where different project stakeholders expressed different perceptions on whether the project was a ‘failure’ or a ‘success’. Our involvement in the project lasted about 15 months. As part of our involvement in the project, one of the authors attended approximately 19 post-implementation meetings with patient groups, systems users and the project staff. We focused on the perception of the system users. Generally, it was observed that the users felt that the project was not a success, although the leadership of the medical unit thought otherwise. Three major reasons were provided. First, the users expressed concerns about information on the objectives of the project not being made available to them. Based on this, questions such as ‘how will the introduction of the new system affect me’ remained unanswered throughout the introduction of the new system. This made commitment to the project difficult. Overall, from our observations, the project was certainly not seen as a success, as users felt that they did not ‘own’ the new system that was in the process of being deployed. For the second project, our involvement commenced at post-systems introduction review. There were again observed differences in perception of project success and failure, and the impact this had on systems usage. The major difference with the first project was that systems implementation was being undertaken in a new hospital development; there was therefore limited prior experience with IS&T delivery by staff. Management it appeared, had actually indicated a preference to outsource its IS&T functions. Most surprisingly, no evidence that stakeholders had any prior knowledge of the new systems was found. Non-involvement of the eventual systems’ users meant that none of the user groups were represented on the Information Steering Group of the hospital. The implication was that in most cases, users continued to attempt to justify the continued
use of the legacy system. This outcome came as no particular surprise and is a point that has been discussed in earlier research (O’Brien & Toms, 2008). Overall, from our observations, our assessment was that the system introduction failed because there was a serious lack of user engagement.

The third project related to the introduction of IS&T systems that would enhance the operation of a hospital’s first point of contact unit. About 1500 staff supports this unit. Our major observation was that the project failed because different stakeholders appeared to focus solely on their individual departmental needs and priorities. In fact, the project managers were unable to ensure that a shared or mutual vision of the project was created. A complete lack of team spirit with members of the implementation ‘team’ was observed. In most cases, the members of the implementation ‘team’ were more focused on safe-guarding their departmental interests rather than pursuing a single ‘NHS’ agenda. Perhaps the most crucial problem that was observed was the inability of the project sponsor to effectively articulate how the project fitted into the overall vision of the NHS. A typical example of this occurrence was the decision of the project sponsor to change the overriding focus of the project from that of an investment, to a project regarded simply as an associated cost. This led to a degrading of the projects priorities. The final project observed appeared to suffer from similar misconceptions relating to investment and costs. Again, the authors noted difficulties of the sponsors of the project in being able to effectively justify the project purely on cost-benefit grounds. The implication of this is that the project sponsors (counter to arguments put forward by Applegate et al., 1996) appeared not to recognise that as any other major financial investment, the project was expected to incur cost. Not regarding the project as an investment meant that benefits from long term returns that were to be delivered by the project were not considered.

The Interviews

Having identified in the PAR exercise a series of factors that lead to the failure of IS&T projects, the next stage of the study involved semi-structured interviews with ten project managers. The sample size is reflective of literature on information redundancy and saturation. Research (Holsti, 1969; Lincoln & Guba, 1985) emphasises that for an appropriately designed interview framework may include “a dozen properly selected interviews” (Lincoln & Guba, 1985). We were restricted to ten interviewees based on limited access to project managers working for BT. All the project managers had worked for BT for over five years (two for more than twenty years). The objective was to gain a more detailed understanding of these factors. Using semi-structured interviews enabled more interaction with project management actors. The interviews were conducted within the telecommunications provider, British Telecom (BT). The interview questions were developed from the earlier success and failure four-staged grouping identified by Shenhar, Dvir, and Levy (1997), which comprised:

1. Meeting design goals
2. Customer benefit
3. Commercial success
4. Future potential, leads to the question of how projects are measured
 *Leads to the question on factors that influence project success and failure

The study interview framework was designed to consist of two questions. For the first question ‘Factors that determine failure’; our objective was to determine what factors determined the outcome of a project delivery. For the second question, ‘What happens at project completion,’ focused on the question of how success or failure of projects may therefore be best measured. Based on earlier recommendations by Miles & Huberman (1994), coding was

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
undertaken utilising the following three staged approach which included (i) the two researchers working independently from each other, (ii) themes and associated codes developed independently as the transcripts were read. At completion, (iii) themes and associated codes were compared, leading to a base agreement on a set of core codes (codes seen as irrelevant were eliminated).

Findings from the PAR Exercise

The first study was a PAR interventionist exercise conducted within four UK NHS hospitals. Evidence from the first and third projects which supported the existence of varying perceptions of project failure among stakeholders was found. For example, while in the first project differences of opinion between the users and senior management were identified. For example in the third project, it was observed that stakeholders and indeed the external consultants appeared to focus on individual priorities without taking into consideration what may be beneficial for the overall priorities of the hospital. It was also found that various factors such as information quality, organisational culture, project management methodology and effective training had a particularly high impact on how the failure of IS&T projects were perceived by users (stakeholders). The authors also found from the second and fourth PAR exercises that the lack of engagement of all stakeholders (users) was a contributing factor to the generation of a perception of project failure. User involvement was also identified as a key contributory factor for countering the development of negative perceptions of projects.

In Table 1, we present a summary of our findings on the four interventions we conducted. The table consists of six columns. The first column lists each project. In the second column, we identify the driver for each project and present an overview of the prevailing operational environment within which each project was being deployed. In the third column, information on the overall objectives of each project is presented, while the fourth column describes the actual approach adopted to facilitate the intervention. The fifth column presents the learning and findings from the interventions while the final column presents information on the duration of each intervention.

Findings from the Interviews

The objective of the interviews was to obtain more in-depth understanding of the critical factors identified from the PAR exercise in relation to their impact on Information Systems and Technology (IS&T) project failure. As earlier mentioned, to achieve this objective, an interview framework that was developed from earlier work by Shenhar, Dvir, and Levy (1997), was adopted.

The findings of the study suggest that as ‘it is [sometimes] difficult to get customers to understand [my] role,’ articulating what most IS&T projects actually involve was quite difficult. The responses suggested that the majority of the interviewees held a view that some elements of their work were unrecognised by other stakeholders, especially project sponsors. Another factor which was discussed by the interviewees related to the role of standard project management methodologies in IS&T projects. Scholars (Turner, 2000; Kerzner, 2001), have appeared to remain resolute that project planning techniques and methodologies served as barriers against failure because they encouraged a systematic and instrumental approach to reasoning and problem solving. Such attributes were regarded as highly desirable, especially for a profession that dealt with requirements that were predominantly of a conceptual nature. Based on this, the authors sought as part of the overriding question; ‘Factors that determine failure’; to determine what views interviewee’s held relating to possible roles of ‘standardised’ methodologies. It was found that in the majority of cases, the interviewees appeared to strongly favour the application of formal project management methodologies. Perhaps not surprisingly, based on earlier research by (Shenhar, Dvir, & Levy, 1997; Shenhar, Dvir, Levy, & Maltz, 2001), we found that the majority of the interviewees did
seem to agree on the non-existence of a single factor that lead to the failure of a project. The interviewees however appeared to agree that project failure may occur if “By the time the project is completed, the overriding strategy could have changed thus making the requirement obsolete and not needed.” Although as earlier stated, project ‘failure’ and ‘success’ are not necessarily contradictory (Baccarini, 1999; Fincham, 2002), it is noted from the interviews that by a suggestion that “The question that has to be answered is which of these two measures is more important,” the interviewees appeared to acknowledge the existence of differences between the two notions. The problem however that could exist is “the customer who has a view of both progress and success never really makes it explicit what his measures are, until things begin to go wrong.” It is interesting to note that although this particular interview question had attempted to focus on difficulties in order to consolidate the assessment of success and progress criteria, interviewee INT6 suggested that “Often what happens in my organisation

<table>
<thead>
<tr>
<th>Project</th>
<th>Project Environment</th>
<th>Project Definition and objectives</th>
<th>Project Activity</th>
<th>Learning</th>
<th>Duration (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Requirement to collect data on customer episodes across the management chain. Increased monitoring of users to try and increase efficiency. Pressure within organisation to use hardware and software that has not been sufficiently evaluated for its effectiveness. Minimal staffing level. Lack of understanding of key implementation issues.</td>
<td>To assess the effect on users of system implementation.</td>
<td>A project steering group was established. Workshops were held with the users and senior managers to find out what they would like from a beneficial change.</td>
<td>Information quality, organisational culture, project management methodology, effective training.</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>Pressure to make IS&T a cornerstone for change. Under pressure to attain 70% utilisation of the site to break even. Over-use of external consultants. Pressure to sidestep conventional tendering process - implementation of hardware becomes the main goal of the site.</td>
<td>To identify the information requirements of users.</td>
<td>The IS&T Steering Group agreed that a project should be set-up to produce an information requirements analysis for the entire organisation.</td>
<td>Fostering cultural change and vision through user involvement.</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>Project received funding for implementation of new system directly from central headquarters. Non-existence of skilled IS&T staff within the site enabled the supplier and consultants to set the agenda. Only a select group of users were involved in the selection and procurement process.</td>
<td>To evaluate and identify the importance of effective project management.</td>
<td>The project activity mainly involved the creation of a Sub-project with the Project Manager to identify what the key elements of the role of the Project Manager in a project of this scope.</td>
<td>Identification of benefits prior to project commencement. Also need to effectively manage project relationships.</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>This particular project involved the deployment of a new data mining software project. There was a plethora of different software suppliers to various service outlets. There was no standard project management methodology being used.</td>
<td>To undertake a post-implementation review of a national pilot.</td>
<td>A workshop with users from over 30 service outlets was conducted.</td>
<td>Factors such as resourcing, user involvement and project communication.</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 1. Summary of PAR observations
is that the project manager concentrates on measurable success criteria at the expense of the business requirements. This is the reason why most of our products are late arriving to market.” This answer creates an impression that the decision of project managers to adopt specific success criteria is related to career prioritisation. Overall, the most interesting finding of our study is the confirmation of existing research (Shenhar, Dvir, Levy, & Maltz, 2001); that no single project factor will drive the success or failure of an IS&T project. On the second question (focusing on ‘What happens at project completion’), we found a general view existing among the interviewees that the term project ‘completion’ remained fluid and unresolved. In effect, the question of when and where a project could be termed to be completed was highly dependent on the position taken by individual stakeholders, and could differ considerably.

DISCUSSION

The topic of failure of IS&T projects remains of interest to management scholars especially as research not only highlights projects as a proven approach to organising operations (Ruuska & Teigland, 2009), but that their failure does have a major impact on the operational viability of organisations (Poon & Wagner, 2001), especially when lessons are not learnt. To gain global perspectives of IS&T project failure, reference is made to earlier work by Soderlund (2004), which highlights additional empirical study opportunities in a range of project management areas including studies on success or failure of projects. For this reason, because of the exploratory nature of this research exercise, no hypothesis was formulated in this study. Instead in order to gain a perspective on IS&T project failure, reference is made to the theories of management control which focuses primarily on procedures, methodologies, and tools that organizations utilize to influence the way its staff behave in order to ensure their continuous contribution to the organizations objectives. Theories of management control do have a long history, tracing their origins to accounting scholarship (Emerson, 1912). By 1928, its first principles were proposed (Urwick, 1928), however it was not until 1989 (Yaseen & El-Marashly, 1989), that the management control paradigm was firmly placed within the sphere of project management. One critical work that exists within the field of management control is that of Machin (1979), who explores management control theory from an expectations perspective. By adopting this approach, Machin (1979) in a unique manner posits that a critical element of staff control is an ability of an organization to ensure that organizational survival is dependent on its ability to meet both existing and changing expectations of a wide range of organizations, groups and individuals. Crucially, these expectations are not only highly dependent on the situation at hand, but also on a range of factors which include systems dynamics and the application of formal theories of project management. The advantage of therefore exploring the concept of IS&T project failure from the point of view of a contingent management control perspective is that this approach supports the need for organizations to be flexible in terms of their assessment of project objectives within the wider strategic alignment debate. If it then appears that a project is no longer aligned with overall business strategy, then justification for downplaying expectations, failure, can thus be made more readily.

Historically, measures of project success and failure had been based on factors such as time, quality, and cost (Rubin & Seeling, 1967), which are easily measurable. However, over time, questions of the applicability of these measures have arisen (Agarwal & Rathod, 2006). For example, we have not only seen studies which focus on difficulties associated with the simplicity of time, quality, and cost measure criteria (Agarwal & Rathod, 2006), but other studies that emphasise the fact that failure criteria varies not only within projects, but across its different stages (Pinto & Prescott, 1988). In addition to this, more recently, additional research has emerged to suggest that success and failure is highly subjective, depend-
ing on measures which are heavily influenced by the perceptions of stakeholders (Pereira et al., 2008). All these studies point to the fact that not only is project failure a non-linear and multi-dimensional abstract, but that there is a need to develop a contemporary understanding of the concept. Generally, although these studies have existed, the failure of IS&T project remains a challenging issue to discuss because of industry and national cultural differences in management practices, which in some instances does lead to variations in the way projects are evaluated and managed.

The concept of Information Systems and Technology (IS&T) project failure is important particularly because of the high cost of project failure on organisations. It is therefore of no surprise that ability of organisations to ensure the success of IS&T projects is associated with challenges. These challenges have been identified in earlier research to be of three major streams (ambiguity in the definition of failure, difficulties in addressing the human dimension of IS&T, and the complexities of the technology). Research (Cicmil, Williams, Thomas, & Hodgson, 2006; Winter, Smith, Cooke-Davies, & Cicmil, 2006), has identified numerous approaches including re-examination of concepts of projects (and by extension project management) as a possible means of addressing these challenges. In light of existing literature on IS&T project failure, the objectives of this paper have been to re-affirm how we conceptualise ‘project failure.’ To achieve these objectives, a mixed research methodology (participation action research and interviews), was employed. Overall; findings of the study appear to support earlier studies. For example, in line with research conducted by Jiang, Klein, and Discenza (2002) and Keil, Tiwana, and Bush (2002), findings from the PAR exercises suggest the existence of varying perceptions of project success and failure among the different stakeholders. We also found (again from the PAR exercise) that the lack of engagement of all stakeholders, particularly the user community, had a major impact on the perception of project failure. From the Interviews that were conducted as part of the second stage of the study, perceptions of project failure and success are found not be driven by a sole project.

CONCLUSION

In the light of the limitations associated with the study which include the deductive nature of the study, it is possible that interpretation of data might have been influenced by personal bias. It is also a reality that the number of interviews conducted during the second stage of the study may invite criticism. The authors highlight the fact that the study resides at the interface of three areas of research (perceptions, project failure and success and IS&T). The challenge which the authors had to constantly face lay in the need to ensure that the bringing together of theory from these three disciplines was not only successful, but enhanced learning in the wider field of project management. In conclusion, it is posited that despite the effort of practitioners (Procaccino & Verner, 2006) and scholars in the field of project management, the issue of ‘failure’ in projects still remains a challenging topic to discuss (Ika, 2009). In many ways, the challenge has been not only because of its dependence on perceptions, but also because the evaluation of failure (and success), is primarily time dependent. Furthermore, due to career considerations, project managers appeared to determine failure (or more appropriately, success) from criteria that were favourable to their career prospects and progression. In addition, there is much variation in terms of how different organisations (and industries), that employ project management conceptualise ‘projects.’ In our opinion, it is felt that a generalised process for management control leads to calls for future studies to explore an alternative perspective of project failure and success conceptualisation which emphasises non-simplistic, but time dependent measures. In conclusion, the authors posit that projects may eventually deliver more than one standard product or service to customers. For this reason, it is perhaps more appropriate for the
determination of ‘failure’ to be made based on the extent to which project objectives are not achieved. However, these project objectives need not be narrowly defined. Project objectives may simply need to be defined within a limit of failure that is ‘acceptable’ and can be tolerated. As the difficulty with the determination of ‘failure’ in reality is in its subjective nature, future research may need to focus on not only the weighting of failure factors, but also on how these factors may be mapped to specific organisational types.

REFERENCES

Udechukwu (Udi) Ojiako is Lecturer in Project Management at the University of Southampton. He obtained his PhD in project management from the University of Northumbria, Newcastle as a BT Sponsored Research Student.

Stuart Maguire is the course director for the MSc in Management at Sheffield University. He obtained his PhD in Systems from Lancaster University. He is a member of the British Academy of Management and the United Kingdom Systems Society.

Melanie Ashleigh is a senior lecturer in management at the University of Southampton. She is a member of the Information Systems Research Group management at the University of Southampton. Her primary interest is in the area of error reduction in socio-technical systems.