
Modelling uncertainty of household decision-making process in 
smart grid appliances adoption 

Including household behavioural uncertainty in the identification of policies to 
support smart grid appliances adoption by using agent-based modelling and the 

scenario discovery technique 
 
 

Tristan de Wildt, DNV GL, Arnhem, the Netherlands 
Yvonne Boerakker, DNV GL, Arnhem, the Netherlands 

 

ABSTRACT 

The rollout of smart grids is beneficial for allowing the entire electricity 
infrastructure to cope with the important production fluctuations that can be 
occasioned by renewable energy sources. The extent to which smart grid 
infrastructures are able to cope with production fluctuations is largely dependent 
on the extent to which households are willing to purchase smart grid appliances 
and install them in their homes. Creating policies to support smart grid 
appliances is difficult since the reasons for adoption by households are not well 
understood and are expected to change constantly through time. In this paper, 
we show how the combined usage of agent-based modelling and the scenario-
discovery methodology allows, through a simulation model, to incorporate in a 
systematic way the uncertainties about the decision-making process of 
households in the identification process of policies, instead of rejecting them. The 
usage of agent-based modelling and scenario-discovery is mainly useful in 
building policies that are more robust to various scenarios, even in case various 
stakeholders disagree about the exact representation of households' decision-
making process in the adoption of smart grid appliances. 

Introduction 

The incapacity of traditional grids to cope with large production fluctuation of 
various renewable energy sources calls for the installation of smart grid systems. 
One essential part of smart grids is constituted of smart grid appliances that are 
installed in people’s houses (Faruqui, Sergici, & Sharif, 2010). The rollout of 
smart grids is beneficial for a large amount of stakeholders in the electricity 
sector: national governments, grids operators and electricity producers (Boisvert 
& Neenan, 2003). However the decision to adopt and use smart grid appliances 
in their ‘smart function’ lies in the hands of households. Hence, there is a large 
dependency of various electricity sector stakeholders on the actions taken by 
households. The installation of smart grid appliances in people’s houses can 
hardly be made mandatory and must be the result of households’ willingness to 
adopt these appliances. The extent to which they will be willing to do so is highly 
uncertain. This is mainly because the reasons and requirements for smart grid 



appliance adoption by households are hardly comprehended. Therefore, it is also 
difficult to find out which policies to support adoption might be effective. 
Traditional policies such as subsidies for the purchase of appliances might not be 
as successful as expected (Anda & Temmen, 2013; Balta-Ozkan, Davidson, 
Bicket, & Whitmarsh, 2013). 

The difficulty to understand how households decide to adopt smart grid 
appliances is due to large uncertainties in the adoption process of these 
appliances. Uncertainty is in this work defined as an aberration from utter 
certainty (Walker, et al., 2003). The omission of uncertainties in the design of 
policies in complex issues is often the reason why these policies fail (Walker, 
Marchau, & Swanson, 2010). One policy, for example, which was proven to be 
effective at a particular point in time, will appear to be unsuccessful at a later 
moment (Hamarat, Kwakkel, & Pruyt, 2013). Hence, the reason why these 
policies fail is because they are not made robust to any other changes of the 
environments in which they were designed. 

There are at least two sources of uncertainties that should be distinguished in 
designing policies. First, there are uncertainties about the future. In the case of 
smart grid appliances, policies to support adoption might only be successful in 
case of economic growth and increase of household salaries, but might fail in a 
moment of economic crisis. Second, there are uncertainties about the 
understanding of the decision-making process made by households. For 
example, it is unclear according to which criteria households decide whether to 
adopt smart grid appliances. A policy based on the assumption that households 
essentially search to make savings might fail because of the influence of other 
factors such as purchase or usage complexity. Also, it is unclear how and to what 
extent interactions between households play a role in the transfer of information 
about smart grid appliances and the decision to adopt. 

Instead of ignoring the occurrence of uncertainties in the adoption of smart grid 
appliances, or only partially including them in the assessment of policies, we use 
a technique that allows a systematic inclusion and exploration of uncertainties to 
evaluate the effectiveness of various policies to support smart grid appliances 
adoption. The scenario discovery technique will be explained in more detail in 
section four of this paper. The aim of this paper is to show how the inclusion of 
uncertainties about the future and about our understanding of the adoption 
process of smart grid appliances by households, allows the creation of more 
robust and effective policies to support adoption. In this paper, we exclusively 
focus on the identification of policies by using simulation models. 

The paper is structured as follows. First, an introduction is provided about the 
simulation model used to simulate the adoption of smart grid appliances by 
households. In section three, four forms of uncertainties about the modelling of 
smart grid appliances adoption are identified. This section is followed by an 
explanation of how these uncertainties were included in the simulation model and 
the modelling process of smart grid appliances adoption. In section five, the 



added-values of using the scenario discovery technique to identify policies to 
support adoption are identified. The paper ends with some limitations associated 
with the use of simulation models and scenario discovery for policy makers and 
some conclusions about the work presented in this paper. 

A model of the adoption of smart grid appliances 

To illustrate how uncertainty can be included in the identification of policies, an 
agent-based model about the adoption of smart grid appliances by households is 
used. The model was created to answer the following question: Which directions 
for policy can stimulate the adoption of smart grid appliances to increase the 
capacity for demand response in city districts? With smart grid appliances, we 
refer to products used regularly by households to support daily activities, which 
are placed within the parameter of their houses. Examples are smart washing 
machines, smart freezers and smart fridges. 

The model has been created based on the Diffusion of Innovations Theory of 
Rogers (1962). In the model, 500 households are divided among the five adopter 
categories of Rogers, and distributed among the proportions suggested by this 
same author. The five adopter categories are the following: innovators, early 
adopters, early majority, late majority and laggards. The reason why households 
are divided among various categories in this model is that it is not expected that 
each household has the same expectations and requirements in the purchase of 
new products. Various consumer segmentations can be found in the literature, 
whether based on theoretical (Rogers, 1962; Foxall, 1994), or empirical division 
(Curtius, Künzel, & Loock, 2012; SGCC, 2011) specifically made for the case of 
smart grid appliances. The fact that individuals have different expectations and 
requirements in the purchase of innovation leads to the appearances of chasms 
in the adoption curve of a product (Moore, 1999). These chasms, mainly the one 
between early adopters and early majority, majorly explain the difficulty to make 
sure that an innovation is adopted on large scale. In the model, households 
belonging to each category differ in the extent to which they are interested in the 
financial or social added-value of adopting smart grid appliances. Households of 
each category also differ in the degree to which they accept investment risks. 
Finally, households vary in the amount of householders they have, and hence in 
the amount of electricity they consume each month. 

To perform decisions, households use the decision-making structure of Engel, et 
al. (1995). The five steps of the decision-making structure are the following: 
problem recognition, information search, evaluation of alternatives, purchase 
decision and post-purchase behaviour. A main advantage of using this decision-
making structure is that it underlines the distinction between being aware of the 
existence of a product and the actual action of adopting it. Also, it incorporates a 
post-purchase behaviour, that is, the feedback that individuals provide to other 
households after having adopted an innovation. 

In the model, households judge the added-value of adopting smart grid 



appliances upon the five perceived attributes of innovations as described by 
Rogers (1962): relative advantage, compatibility, complexity, triability, and 
observability. The reason why five different innovation attributes are taken into 
account is that expecting that households only decide to adopt based on financial 
profits is expected to be unreal and strongly limits the understanding of the 
adoption process. On the contrary, households may decide not to purchase an 
appliance because the purchase process is perceived as being too difficult, 
although the adoption of the appliance might improve the financial situation of the 
household. 

The model simulates the adoption of smart grid appliances on the scale of city 
districts. Therefore, no link is assumed between, on one side, the purchase (and 
utilisation) of smart grid appliances within the city district and, on the other side, 
the prices of electricity and the prices of smart grid appliances. The reason why 
no links are assumed is that the effect of the purchase of smart grid appliances 
on the scale of a city district in comparison to national of international ones is 
expected to be negligible. The prices of smart grid appliances and of electricity 
are hence modelled as exogenous parameters. The price of smart grid 
appliances decreases based on a logarithmic function. Two electricity prices are 
modelled: peak and off-peak electricity prices. The usage of smart grid 
appliances in the model allows shifting electricity consumption to moments in 
time when electricity prices are off-peak. The savings made by households are 
hence defined as the difference in electricity consumption in peak and off-peak 
periods before and after the adoption of smart grid appliances. 

The main model output is the percentage of adopters having adopted smart grid 
appliances. An important limitation of the model is that it only studies the 
adoption of smart grid appliances and not their utilisation by households. While 
households may adopt smart grid appliances, they may decide not to use them in 
their ‘smart function’, for example due to the limited amount of savings they make 
or the inconveniency of adjusting their daily life. Their electricity consumption 
would in this case not be different than if they would only own traditional 
appliances. To study the extent to which households will shift their electricity 
consumption, the utilisation of the smart grid appliances should hence be added 
in the model. 

A more detailed overview of the model is presented in the appendix. The model 
description has been created according to the ODD + D protocol. This protocol, 
developed by Müller, et al. (2013), allows a standardised and more transparent 
description of agent-based models in order to facilitate communication and usage 
of the model by other authors. 

Uncertainties in the modelling of household decision-making 
process 

In the first section of this paper, the relevancy of including uncertainty about the 
households represented in simulation models to identify effective policies is 



introduced. In the modelling of decision-making by individuals, Briggs, et al, 
(2012) identify four forms of uncertainties: stochastic uncertainty, parameter 
uncertainty, structural uncertainty and heterogeneity. Of these four forms of 
uncertainties, one comes from the usage of a discrete simulation tool. Stochastic 
uncertainty arises from the fact that, for example in agent-based models, the 
order of the execution of actions by the individuals modelled is sequential and 
randomised. Hence, by running a model two times with the exact same input 
parameters, the models outcomes might not be similar. The three other forms of 
uncertainty arise from the representation of the system modelled, which is in this 
case the decision-making process of households in the adoption of smart grids 
appliances.  

Parameter uncertainty is defined by the incertitude of parameters describing the 
decision-making process performed by individuals. One example is the amount 
of interactions that innovators each month have with others households in which 
smart grid appliances are discussed. Parameter uncertainty can also be seen as 
the incertitude about the exact value and future development of exogenous 
variables such as electricity prices. 

Structural uncertainty is the incertitude about how to represent a certain system, 
in this case the decision-making process of households, in a simulation model. 
This structural uncertainty can be about which theory to use to represent certain 
elements of the decision-making process of households. In the model introduced 
in section two, the decision-making steps of Engel, et al. (1995) were chosen. 
Rogers (1962), however, also proposed five decision-making steps which are not 
exactly the same as the ones of Engel, et al. If the use of the decision-making 
steps of Rogers also appears to be arguable to model the adoption process of 
smart grid appliances by households, it might be necessary to include both 
decision-making structures in the simulation model. Including both decision-
making processes in one single simulation model is hence a way to deal with one 
form of structural uncertainty. Another form of structural uncertainty has to do 
with which variables actually do or do not play a role in the adoption of smart grid 
appliances. For example, as demonstrated in section two, Rogers (1962) 
identified five relevant innovation characteristics in the adoption of innovations. 
The five innovation characteristics were however identified for innovations in 
general. In the case of smart grid appliances, some of them could appear to be 
irrelevant or unnecessary to explore the adoption of appliances by households. 

Heterogeneity is defined by the incertitude about the degree to which individuals 
differ in characteristics and preferences. For example, households might have 
different minimal saving requirements in order to be willing to adopt smart grid 
appliances. Households also might have differing number of interactions per 
month. This difference might also occur for households belonging to the same 
adopter category. 

The reason why these four types of uncertainties are identified and should be 
included in a simulation model is because it is expected that they will have an 



influence on the model’s adoption curve of smart grid appliances and hence on 
the policy identified based on the simulation model. In the next section, the 
combination of agent-based models and the scenario discovery technique is 
presented in order to show how these four types of uncertainties can be 
incorporated in the analysis of a simulation model. 

Including uncertainty: agent-based modelling and the scenario 
discovery technique 

In the previous section, four forms of uncertainties in the modelling of the 
adoption of smart grid appliances by households are identified. In this section, we 
show how these uncertainties are included in the modelling process, both 
through the usage of agent-based models and with the scenario discovery 
technique.  

Agent-based modelling 

In the field of innovation diffusion modelling, two different types of simulation 
methods are majorly chosen: system dynamics and agent-based modelling 
(Rahmandad & Sterman, 2008; Kiesling, Günther, Stummer, & Wakolbinger, 
2012). There are no absolute rules to decide whether to choose system 
dynamics or agent-based modelling. According to Rahmandad & Sterman 
(2008), agent-based modelling, however, is more convenient when a large 
amount of heterogeneity has to be included in the characteristics of individuals, 
and when different types of interaction networks between individuals have to be 
tested. System dynamics is more convenient when computational costs need to 
be reduced. In the model introduced in section two, agent-based modelling was 
chosen in order to easily test the effects of heterogeneity between households on 
the adoption of smart grid appliances (e.g. adopter categories, number of 
inhabitants per households). 

Agent-based modelling is a simulation tool that focusses on the actions and 
interactions of numerous individuals (agents) to study their impact on the 
development of the entire system regrouping the individuals (Epstein & Axtell, 
1996; Miller & Page, 2007). In the case of smart grid appliances, one studies how 
the actions and interactions of each household (the individuals) influence the 
adoption rate of the city district (the system regrouping the individuals). An agent 
is characterised by two elements: a state, which stands for the set of 
characteristics that describes the agent, and rules, that describe the entire set of 
actions that the agent may perform (Dam, Nikolic, & Lukszo, 2013). Agent-based 
modelling is a discrete simulation tool. This means that agents can only perform 
actions at a specific moment in time. Concretely, when the model is at time 0, an 
order of action determined randomly is provided to each agent in the model. 
Based on the order of action, each agent sequentially executes the actions it is 
asked to perform. When the last agent in line has performed its actions, the time 
is advanced to time 1, a new order of action is randomly determined and all 
agents execute their actions once again. This discrete process is continued until 



the modeller decides to stop the simulation run. 

In relation to the uncertainties identified in section three, agent-based modelling 
mainly allows to easily include different forms of heterogeneity, as explained 
earlier in this section. Heterogeneity can be introduced by applying different 
types of probabilistic distributions to the characteristics of each household. 

Scenario discovery 

Scenario discovery is a technique that is essentially useful to model problems 
that are characterised by a large number of uncertain factors (Kwakkel, Auping, 
& Pruyt, 2013). Making decisions in relation to these kinds of problems is 
described as decision-making under deep or severe uncertainty (Lempert, 
Popper, & Bankes, 2003; Ben-Haim, 2006). The essence of the scenario 
discovery technique is the recognition that one might have a limited knowledge 
and understanding of the system that has to be analysed. Instead of ignoring this 
lack of knowledge and understanding of the system, one could include them in 
the analysis of the system and the identification of policies.  

The scenario discovery technique is performed by combining the usage of 
Exploratory Modelling and Analysis (EMA) and the Patient Rule Induction Method 
(PRIM). 

The EMA methodology uses computational experiments to analyse complex and 
uncertain system (Bankes, 1993). As indicated in its name, the methodology 
takes distance from the predictive ambition of using simulation models and 
focuses on an exploratory approach. Instead of trying to create a best-estimate 
model to try to predict the future, one sees the model as one of the multiple 
plausible hypotheses about the structure of a real system (Hodges, 1991; 
Hodges & Dewar, 1992). As explained by Kwakkel & Pruyt (2012), EMA allows to 
include parameter and structural uncertainty in the model, which are two of the 
uncertainties mentioned in section three. Including parameter uncertainty with 
EMA is done by setting ranges as input parameters in the model instead of fixed 
numbers. The number of interactions of households per month is for example set 
to a range of integers between 3 and 7, instead of considering it to be fixed at 5 
interactions per month. The creation of ranges is done for any input parameters 
of which the value can be considered as uncertain.  

The simulation model is then run successively for a large amount of times. For 
each run, one value within the range of each input parameter is chosen. The 
result of the EMA experiment is a dataset with the simulation output of a large 
amount of simulation runs. The inclusion of parameter uncertainty can also be 
combined with the inclusion of structural uncertainty. For that, some structures 
will be switched on for some runs while others will be switched off. For example, 
the complexity criteria of smart grid appliances, which is one of the five 
innovation characteristics identified by Rogers (1962) (see section two), might be 
switched on for some model runs while being switched off for others. The 



addition of various structural uncertainties, however, strongly increases the 
number of runs in the EMA experiments. Carrying out EMA experiments could 
then turn out to be too time consuming considering the time available for the 
simulation project. Therefore, different structural uncertainties should only be 
included in the model if they could not be rejected in the model validation 
process. 

The last type of uncertainty identified in section three is stochastic uncertainty, 
which results from the use of a discrete simulation tool such as agent-based 
models. To take this stochastic uncertainty into account, several model runs are 
made with an exact same combination of input parameters and model structures. 
The mean of model outputs based on the various model runs with the exact 
same combination of input parameters and model structures is used for model 
analysis. 

The dataset created through the EMA experiment, which was based on various 
parameters and structural uncertainties can be seen as an ensemble of plausible 
scenarios of the representation of a certain system, in this case the decision-
making process of households to adopt smart grid appliances, and its 
development in the future. Each model run is thus equal to one plausible 
scenario. The challenge then is to find out, from the multiple ensemble of 
scenario, which of them is relevant for a particular preferred or dis-preferred 
value of a model outcome. Concretely, this means that in the case of the model 
about the adoption of smart grid appliances, one wants to know which range of 
input parameters or which model structure leads to a high or a low adoption 
percentage of smart grid appliances. Examples could be that mainly a low 
number of interactions of early adopters per month leads to an adoption 
percentage lower than 20 percent in 2050. To find out which sets of scenarios 
are relevant for a certain outcome, one uses the second method of which the 
scenario discovery technique is composed. PRIM was first introduced by 
Friedman and Fisher (1999). As explained before, PRIM allows finding out which 
combination of ranges of input parameters and model structures leads to a 
certain outcome, as specified by the author. This is done by repeating the two 
stages of peeling and pasting. To find which subset of input parameters and 
model structure leads to a certain outcome range (above or under a given 
threshold), subsets of the input parameters are progressively removed (peeling) 
and added (pasting). 

Concluding, in this section, it is shown that the four types of uncertainties 
identified in section three can be included in the analysis of a model through 
some adjustments to the agent-based model created and through the use of the 
scenario discovery technique. In the next chapter, an analysis is provided of how 
the inclusion of uncertainty into the process of modelling changes allows the 
creation of more robust policies. 



Added-value of using the scenario discovery technique to deal 
with uncertainties 

Three main advantages of using the scenario discovery methodology with the 
combination of agent-based modelling to identify policies can be identified. The 
first is to find out the extent to which policies are robust to different scenarios and 
hence to various modelling uncertainties. The second is to build a set of policies 
that are robust to the occurrence of various scenarios. The third is the possibility 
to include different world views within a single model. 

 

 

To illustrate the first advantage, experiments are carried out with the model 
presented in section two. In the first experiment, the simulation model is run 
without any policies to support smart grid appliance adoption by households. The 
model is run for a duration of 150 time steps. This will be the case for each 
experiment presented in this section. The results of the experiment are presented 
in figure 1. The figure shows the evolution of the percentage of households 
adopting a smart grid appliance. In this figure, we can see that, at the end of the 
simulation run, the percentage of households having adopted lies around 6-7%. 
Therefore, we can conclude that smart grid appliances are not adopted on large 
scale, and that policies may be needed to support adoption. 

EMA graphs 

To present the outcomes of experiments, EMA graphs are used. An example is provided 
hereunder. 

 
EMA graphs combine three elements. First, the large blue area shows the run envelop: the 
highest and lowest value of all runs combined at each point in time. Second, each line in the 
graph stands for the output of one model run. In the graph in this section, lines represent limited 
amounts of randomly chosen runs. The line colour has no signification. Third, the element on 
the right is a Gaussian kernel density estimation (KDE). This shows the distribution of runs at 
the final run time of the model. 



 
 
Figure	  1:	  percentage	  of	  households	  owning	  a	  smart	  grid	  appliance;	  single	  simulation	  run	  and	  no	  policies	  

A second experiment is carried out with the inclusion of a purchase subsidy of 
200€ per smart grid appliance during the entire duration of the simulation run. 
The experiment results are presented in figure 2. In this figure, one can see that 
the percentage of households having adopted smart grid appliances is close to 
100% at the end of the simulation run. Therefore, based on the two experiments 
just carried out, one could conclude that in the model created in this work, the 
only policy needed to strongly increase the adoption of smart grid appliances is a 
purchase subsidy. 

 
 
Figure	  2:	  percentage	  of	  households	  owning	  a	  smart	  grid	  appliance;	  single	  simulation	  run	  and	  purchase	  
subsidy	  

In this paper, we point out that this policy is not robust. To illustrate that, a third 
experiment is carried out. This experiment will be done with the EMA 
methodology. Hence, 200 simulation runs will be made instead of one. Instead of 
using fixed numbers as model inputs, ranges will be included. Hence parameter 
uncertainty will be included in the model. In this experiment, the purchase 
subsidy as a policy to support smart grid appliance adoption is applied. The 
experiment outcomes are presented in figure 3. 



 
 
Figure	  3:	  percentage	  of	  households	  owning	  a	  smart	  grid	  appliance;	  use	  of	  EMA	  with	  200	  simulation	  runs	  
and	  purchase	  subsidy	  

The third experiment shows that, indeed, a purchase subsidy may lead to a large 
adoption of smart grid appliances. This can be seen by looking in the distribution 
of outcomes in the KDE graph. The KDE graph, however, also shows that in a 
large amount of cases, smart grid appliances are not adopted on large scale. In 
many cases, the adoption percentage at time 150 ends at 18% or even around 
5%. Therefore, one can conclude that in the simulation model created to simulate 
the adoption of smart grid appliances by households, a purchase subsidy is not 
robust to various scenarios to support adoption. It is at this point important to 
underline that we cannot yet conclude that a purchase subsidy as a policy to 
support adoption is not robust in real-world. The outcomes presented in the 
figures in this section only say something about the model created. A translation 
of conclusions from model to real-world is in any case essential. 

As explained in the first part of this section, the second advantage of using the 
scenario discovery methodology is to build policies that are robust to various 
scenarios. This is done by using PRIM. PRIM also allows to find out why to which 
scenarios a certain policy is not robust. By performing a PRIM analysis on the 
third experiment performed in this section, seven different scenarios are found to 
lead to a low adoption percentage of smart grid appliances, even though a 
purchase subsidy is applied. The scenarios are listed in table 1. Concretely, this 
means that in the model, if at least one of the input parameter corresponds to a 
scenario described in table 1, the percentage of households owning a smart grid 
appliance will remain low. For example, a growth duration value superior to the 
average of the range introduced in the model will lead to a low adoption of smart 
grid appliances by households. 

Table	  1:	  list	  of	  scenarios	  leading	  to	  a	  low	  adoption	  percentage	  of	  smart	  grid	  appliances	  

 
1. Low	  social	  value	  experienced	  by	  early	  adopters	  in	  smart	  grid	  appliance	  adoption	  
2. High	   degree	   of	   suspiciousness	   experienced	   by	   early	   adopters	   towards	   the	   reliability	   of	   information	  

transferred	  between	  households	  
3. High	   degree	   of	   suspiciousness	   experienced	   by	   early	   majority	   population	   towards	   the	   reliability	   of	  

information	  transferred	  between	  households	  



4. Slow	  decrease	  of	  smart	  grid	  appliance	  prices	  
5. Long	   growth	   phase	   (duration	   before	   the	   complexity	   of	   purchasing	   and	   using	   smart	   grid	   appliances	   is	  

acceptable	  for	  all	  type	  of	  households)	  
6. Low	  amount	  of	  interactions	  between	  early	  majority	  population	  and	  early	  adopters	  
7. Low	  amount	  of	  interactions	  between	  late	  majority	  population	  and	  early	  adopters	  
 

A last experiment is carried out to show the effect of policies that assess 
precisely the scenarios identified in table 1. These policies are called directions 
for policy in this case, since they come directly from the model and only show 
what real policies should target to support smart grid appliance adoption. The 
directions for policy are listed in table 2. 

Table	  2:	  directions	  for	  policy	  to	  support	  smart	  grid	  appliance	  adoption	  

 
Directions for policy Policy examples 
Encourage communication between innovators and early 
adopters 

Nomination of product ambassadors, creation of 
consumer groups 

Promotion of smart grid appliances to early adopters Nomination of product ambassadors, creation of 
consumer groups 

Decrease adoption costs Purchase subsidy 
When smart grid appliances may become interesting for 
early majority population and later adopters, reinvent the 
product 

Redesign the product to underline ease of use, savings 
that can be made to change product perception 

Make product usage and the added value of owning it 
visible to others 

Redesign the product to make it visible to others 

 

The implementation of the directions for policy listed in table 2 leads to the 
experiment outcomes presented in figure 4. In this figure, one can see that in 
major cases, smart grid appliances are adopted on large scale. In some cases, 
smart grid appliance adoption is low but still increases progressively towards a 
high adoption percentage. 

 
 
Figure	  4:	  percentage	  of	  households	  owning	  a	  smart	  grid	  appliance;	  use	  of	  EMA	  with	  200	  simulation	  runs	  
and	  all	  directions	  for	  policy	  applied	  

The third advantage of using scenario discovery is the possibility to include 



various world views in one single simulation model (Kwakkel & Pruyt, 2012). As 
various stakeholders have different world views about how a system works – in 
this case about how households decide to adopt smart grid appliances, the 
possibility of including structural uncertainty in a simulation model with EMA is 
interesting. As explained by Kwakkel & Pruyt, the need of making various 
models, each based on a particular world view, disappears. Hence, one can find 
out which policies are effective for all world views included in the model. 

Reflections and limitations to the usage of the identification 
process 

The previous section shows that the usage of scenario discovery and agent-
based modelling to model the decision-making process of households may 
provide some interesting benefits to create more effective policies. They are still 
some limitations to the use of scenario discovery and agent-based models for the 
identification of policies. 

First, the policies identified are based on a simulation model and not on reality. 
Therefore, a robust policy in the simulation model may not be robust in real 
world. The same is valid for non-robust policies. After having identified policies, 
an important work of reflection and translation of policies to real world has to be 
carried out. This can be done by, on one side, making a clear overview of the 
limitations of the model created, and on the other side, discussing the policies 
identified with several sector experts. 

The second limitation is related to the use of agent-based models for the 
diffusion of innovations. As explained in section four, agent-based modelling was 
chosen over system dynamics because this simulation methods is more 
convenient to test various forms of heterogeneity. Using system dynamics, 
however, strongly reduces the computational costs of modelling and therefore 
may be an interesting choice if heterogeneity in the model is limited and if one 
prefers to spend a large amount of time on model analyses. System dynamics is 
also compliable with scenario discovery and is often used to model the diffusion 
of innovations (Rahmandad & Sterman, 2008; Kiesling, Günther, Stummer, & 
Wakolbinger, 2012). 

The last limitation is the fact that a large amount of uncertainties included in the 
model strongly increases the computation costs of analysing the model. Although 
a large amount of world views may be included in one model, these should only 
be added when they are validated in the verification and validation phase of the 
model. 

Conclusions 

In this article, the added-value of using the scenario-discovery methodology and 
agent-based modelling to identify policies to support smart grid appliance 
adoption is provided. Globally, the usage of agent-based modelling allows to 



easily include uncertainties about the heterogeneity between individuals. The 
scenario-discovery technique is useful to include parameter, structural and 
stochastic uncertainties. 

In the case of the identification of policies to support smart grid appliance 
adoption, the combination of agent-based modelling and the scenario-discovery 
technique is, firstly, beneficial to test the robustness of policies to various 
scenarios, whether linked to uncertainties about the future or about the extent to 
which the decision-making process of households is correctly modelled. This 
combined usage allows for example to show why a purchase subsidy cannot be 
considered as a robust policy to increase smart grid appliance adoption. 
Secondly, this combined usage is beneficial to build new policies that are robust 
to the occurrence of these various scenarios.  Thirdly, the usage of agent-based 
modelling and scenario-discovery allows to identify effective policies, even 
though there are disagreements about the exact representation of households' 
decision-making process to adopt smart grid appliances within the simulation 
model. 

The model presented in section two is part of a thesis work on the adoption of 
smart grid appliances, written in collaboration between DNV GL and the Delft 
University of Technology. The entire thesis can be consulted by using the 
following link: http://repository.tudelft.nl/view/ir/uuid%3A07b27819-1e34-4a36-
848b-29858f5139be 

References 

Anda, M., & Temmen, J. (2013). Smart metering for residential energy efficiency: 
The use of community based social marketing for behavioural change and smart 
grid introduction. Renewable Energy , 67, 119-127. 

Augusiak, J., Brink, P. v., & Grimm, V. (2014). Merging validation and evaluation 
of ecological models to ‘evaludation’: A review of terminology and a practical 
approach. Ecological Modelling , 280, 117-128. 

Balta-Ozkan, N., Davidson, R., Bicket, M., & Whitmarsh, L. (2013). Social 
barriers to the adoption of smart homes. Energy Policy , 63, 363–374. 

Bankes, S. (1993). Exploratory modeling for policy analysis. Operations 
Research , 4, 435-449. 

Ben-Haim, Y. (2006). Information-Gap Decision Theory: Decisions under Severe 
Uncertainty (2nd ed.). New York: Wiley. 

Boisvert, R., & Neenan, B. (2003). Social Welfare Implications of Demand 
Response Programs in Competitive Electricity Markets. Washington: Ernest 
Orlando Lawrence Berkeley National Laboratory. 



Briggs, A., Weinstein, M., & Fenwick, E. (2012). Model Parameter Estimation and 
Uncertainty: A Report of the ISPOR-SMDM Modeling Good Research Practices 
Task Force-6. Value in Health , 15, 835-842. 

Curtius, H., Künzel, K., & Loock, M. (2012). Generic customer segments and 
business models for smart grids. der markt , 51, 63-74. 

Dam, K. v., Nikolic, I., & Lukszo, Z. (2013). Agent-Based Modelling of Socio-
Technical Systems (1 ed.). Springer. 

Engel, J., Blackwell, R., & Miniard, P. (1995). Consumer behavior (8th ed.). Fort 
Worth: Dryden Press. 

Epstein, J., & Axtell, R. (1996). Growing Artificial Societies - Social Science from 
the Bottom Up (1st ed.). Washington D.C.: The Brookings Institution. 

Faruqui, A., Sergici, S., & Sharif, A. (2010). The impact of informational feedback 
on energy consumption - A survey of the experimental evidence. Energy , 35 (4), 
1598-1608. 

Foxall, G. (1994). Consumer Choice As an Evolutionary Process: an Operant 
Interpretation of Adopter Behavior. Advances in Consumer Research , 21, 312-
317. 

Friedman, J., & Fisher, N. (1999). Bump hunting in high-dimensional data (with 
discussion). Statistics and Computing , 9, 123-162. 

Hamarat, C., Kwakkel, J., & Pruyt, E. (2013). Adaptive Robust Design under 
deep uncertainty. Technological Forecasting & Social Change , 80, 408-418. 

Hodges, J. (1991). Six (or So) Things You Can Do with a Bad Model. Operations 
Research , 39 (3), 355-365. 

Hodges, J., & Dewar, J. (1992). Is it you or your model talking? Santa Monica, 
California: RAND Corporation. 

Kiesling, E., Günther, M., Stummer, C., & Wakolbinger, L. (2012). Agent-based 
simulation of innovation diffusion: a review. Central European Journal of 
Operations Research , 20, 183-230. 

Kwakkel, J., & Pruyt, E. (2012). Exploratory Modeling and Analysis, an approach 
for model-based foresight under deep uncertainty. Technological Forecasting & 
Social Change , 80 (3), 419-431. 

Kwakkel, J., Auping, W., & Pruyt, E. (2013). Dynamic scenario discovery under 
deep uncertainty: The future of copper. Technological Forecasting & Social 
Change , 80, 789-800. 

Lempert, R., Popper, S., & Bankes, S. (2003). Shaping the next one hundred 
years: new methods for quantitative, Long-Term Policy Analysis. Santa Monica, 
California: RAND. 



Levitt, T. (1965). Exploit the Product Life Cycle. Harvard Business Review , 43, 
81-94. 

Müller, B., Bohn, F., Dressler, G., & Groeneveld, J. (2013). Describing human 
decisions in agent-based models - ODD + D, an extension of the ODD protocol. 
Environmental Modelling & Software , 48, 37-48. 

Miller, J., & Page, S. (2007). Complex Adaptive Systems. Princeton: Princeton 
University Press. 

Moore, G. (1999). Crossing the Chasm: Marketing and Selling HighTech 
Products to Mainstream Customers. New York: HarperBusiness. 

Rahmandad, H., & Sterman, J. (2008). Heterogeneity and Network Structure in 
the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation 
Models. Management Science , 54 (5), 998-1014. 

Rogers, E. (1962). Diffusion of Innovations (1st ed.). New York: The Free Press. 

SGCC. (2011). Summary of Findings - Smart Grid Consumer Collaborative 
Consumer Pulse Research Program–Wave 1. Roswell: Smart Grid Consumer 
Collaborative. 

Walker, W., Harremoës, P., Rotmans, J., Van der Sluijs, J., Van Asselt, M., 
Janssen, P., et al. (2003). Defining uncertainty: a conceptual basis for uncertainty 
management in model-based decision support. Integrated Assessment , 4, 5-17. 

Walker, W., Marchau, V., & Swanson, D. (2010). Addressing deep uncertainty 
using adaptive policies: introduction to section 2. Technological Forecasting & 
Social Change , 77, 917-923. 

 

Appendix 

ODD + D model description 

Purpose -‐ To	  test	  various	  directions	  for	  policy	  to	  increase	  the	  adoption	  of	  smart	  grid	  appliances	  
(such	  as	  smart	  washing	  machines	  or	  smart	  fridges)	  on	  the	  scale	  of	  city	  districts	  

-‐ The	  model	  is	  designed	  for	  policy	  makers	  in	  the	  field	  of	  smart	  grid	  projects	  

O
ve

rv
ie

w
 

State variables 
and scales 

-‐ The	  entities	  are	  households.	  Their	  attributes	  are	  :	  
o Number	  of	  householders	  
o Electricity	  consumption	  per	  month	  
o Amount	  of	  smart	  grid	  appliances	  in	  house	  
o Memory	  length	  
o Adopter	  category	  

-‐ Each	  household	  belongs	  to	  an	  adopter	  category:	  innovators,	  early	  adopters,	  early	  
majority,	  late	  majority	  or	  laggards.	  Households	  of	  each	  category	  differ	  in:	  
o Amount	  of	  interactions	  per	  month	  
o Valuation	  of	  information	  provided	  by	  households	  of	  each	  type	  of	  adopter	  

category	  
o Minimum	  amount	  of	  savings	  required	  to	  be	  willing	  to	  adopt	  



o Maximum	  difference	  between	  price	  of	  smart	  and	  traditional	  grid	  appliance	  
tolerated	  

o Percentage	  of	  similar	  information	  needed	  to	  be	  willing	  to	  judge	  the	  
information	  as	  reliable	  

o Maximum	  degree	  of	  adoption	  complexity	  tolerated	  
-‐ Space:	  each	  household	  is	  placed	  into	  a	  square	  field	  next	  to	  each	  other.	  The	  landscape	  

is	  fictive.	  Distribution	  of	  households	  among	  the	  field	  is	  done	  randomly.	  Space	  is	  
relevant	  since	  households	  may	  have	  interaction	  with	  neighbours	  (if	  switched	  on)	  

-‐ Exogenous	  factors	  are:	  
o Current	  adoption	  complexity	  
o Electricity	  price	  (peak	  and	  off-‐peak)	  
o Smart	  grid	  appliance	  prices	  

 Equation	  for	  the	  calculation	  of	  smart	  grid	  appliance	  prices:	  
 

C(Xt) Cost of the technology at time t 
C(X0) Initial cost of the technology 
t Current time 

B Learning parameter  

 

Process 
overview and 
scheduling 

-‐ Each	  month,	  households	  in	  the	  model	  follow	  the	  consumer	  decision-‐making	  structure	  
of	  Engel,	  et	  al.	  (Consumer	  behavior,	  1995).	  

-‐ If	  one	  steps	  does	  not	  succeed,	  for	  example	  because	  they	  miss	  information	  or	  because	  
they	  find	  the	  adoption	  complexity	  to	  be	  too	  high,	  they	  drop	  of	  the	  process	  

Theoretical 
and empirical 
background 

-‐ The	  main	  theory	  is	  the	  Diffusion	  of	  Innovations	  Theory	  of	  Rogers	  (Diffusion	  of	  
Innovations,	  1962).	  From	  this	  theory,	  two	  mains	  aspects	  are	  used:	  
o Division	  in	  five	  adopter	  categories,	  each	  have	  different	  behaviour	  properties	  

and	  different	  reasons	  to	  adopt	  
o Characteristics	  of	  innovations	  that	  households	  use	  to	  build	  an	  opinion	  about	  a	  

product	  
-‐ Households	  may	  use	  neoclassical	  rationality	  or	  bounded	  rationality	  to	  perform	  their	  

decision-‐making.	  In	  addition,	  the	  use	  of	  prospect	  theory	  can	  be	  included	  
-‐ Households	  use	  the	  consumer	  decision-‐making	  structure	  of	  Engel,	  et	  al.	  (Consumer	  

behavior,	  1995)	  to	  perform	  decision-‐making	  
-‐ Adoption	  complexity	  vary	  according	  to	  the	  four	  product	  lifecycle	  phases	  of	  Levitt	  

(Exploit	  the	  Product	  Life	  Cycle,	  1965)	  
-‐ Agent-‐based	  modelling	  is	  used	  as	  a	  simulation	  tool	  
-‐ Scenario	  discovery	  (Kwakkel,	  Auping,	  &	  Pruyt,	  2013)	  is	  used	  as	  a	  method	  to	  identify	  

relevant	  scenario	  based	  on	  which	  policy	  making	  has	  to	  be	  built	  
-‐ The	  ‘evaludation	  method	  of	  Augusiak	  et	  al.	  (Merging	  validation	  and	  evaluation	  of	  

ecological	  models	  to	  ‘evaludation’:	  A	  review	  of	  terminology	  and	  a	  practical	  approach,	  
2014)	  is	  used	  for	  verification	  and	  validation.	  

Individual 
decision 
making 

-‐ Households	  may	  adopt	  to	  reach	  three	  goals:	  
o Make	  savings	  
o Increase	  social	  recognition	  from	  other	  households	  
o Ensure	  they	  do	  not	  undergo	  social	  de-‐recognition	  

-‐ Which	  of	  the	  goals	  is	  the	  most	  important	  depends	  on	  the	  households	  category	  to	  
which	  the	  household	  belong	  

Learning -‐ Households	  may	  decide	  to	  never	  adopt	  again	  if	  they	  have	  been	  disappointed,	  whether	  
financially	  or	  socially,	  by	  the	  smart	  grid	  appliance	  previously	  adopted	  
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Individual 
sensing 

-‐ Household	  can	  find	  out	  the	  following	  elements	  about	  the	  other	  household	  with	  whom	  
they	  interact:	  
o Adopter	  category	  
o Owning	  a	  smart	  grid	  appliance	  or	  not	  
o Adoption	  complexity	  level	  the	  household	  has	  experienced	  
o Degree	  of	  satisfaction	  about	  savings	  after	  adoption	  
o Amount	  of	  data	  leak	  cases	  observed	  
o Amount	  of	  smart	  grid	  appliance	  breakdown	  cases	  observed	  



Individual 
prediction 

-‐ The	  information	  that	  households	  received	  from	  others	  are	  all	  ‘experience’	  
information	  like	  opinions	  or	  satisfactions	  

-‐ Households	  however	  can	  also	  create	  information	  by	  observing	  the	  environment.	  They	  
do	  this	  in	  the	  following	  two	  cases:	  
o Calculation	  of	  adoption	  profitability	  
o Calculation	  of	  the	  social	  recognition	  that	  can	  be	  gained	  by	  adopting	  or	  

rejecting	  

Interaction -‐ Households	  interact	  between	  each	  other	  at	  each	  simulation	  tick.	  They	  have	  three	  
types	  of	  interactions:	  
o Random	  interactions:	  households	  randomly	  choose	  a	  limited	  amount	  of	  other	  

households	  to	  interact	  with.	  At	  each	  new	  tick,	  a	  new	  list	  of	  random	  
interactions	  to	  exchange	  information	  with	  is	  made.	  

o Neighbour	  interactions:	  similar	  to	  random	  interactions,	  but	  only	  with	  
households	  within	  a	  radius	  of	  four	  

o Friend	  interactions:	  list	  of	  households	  picked	  up	  randomly	  at	  the	  beginning	  of	  
the	  model	  run,	  and	  remains	  unchanged	  until	  the	  end	  of	  the	  run	  

-‐ Households	  exchange:	  
o Information	  about	  savings	  made	  through	  adoption	  
o Adoption	  complexity	  they	  experienced	  
o Information	  whether	  data	  leak	  cases	  have	  been	  observed	  
o Information	  whether	  smart	  grid	  appliance	  breakdown	  cases	  have	  been	  

observed	  
o Information	  whether	  they	  possess	  a	  smart	  grid	  appliance	  

Collectives -‐ Any	  household	  belongs	  to	  one	  of	  the	  following	  adopter	  groups:	  
o Innovators	  
o Early	  adopters	  
o Early	  majority	  
o Late	  majority	  
o Laggards	  

-‐ Households	  cannot	  switch	  between	  adopter	  groups	  during	  a	  simulation	  run	  

Heterogeneity -‐ The	  following	  heterogeneity	  is	  included:	  
o Adopter	  categories	  which	  defined	  the	  following	  variables:	  

 Amount	  of	  interactions	  per	  month	  
 Valuation	  of	  information	  provided	  by	  households	  of	  each	  type	  of	  

adopter	  category	  
 Minimum	  amount	  of	  savings	  required	  to	  be	  willing	  to	  adopt	  
 Maximum	  difference	  between	  price	  of	  smart	  and	  traditional	  grid	  

appliance	  tolerated	  
 Percentage	  of	  similar	  information	  needed	  to	  be	  willing	  to	  judge	  the	  

information	  as	  reliable	  
 Maximum	  degree	  of	  adoption	  complexity	  tolerated	  

o Electricity	  consumption	  per	  month	  
o Number	  of	  householders	  
o Valuation	  of	  savings,	  within	  adopter	  categories	  

Stochasticity -‐ Agent	  iteration	  is	  randomised	  
-‐ Households	  find	  others	  households	  to	  interact	  with	  in	  a	  random	  way	  (within	  the	  

constrains	  that	  they	  were	  given	  such	  as	  the	  maximum	  radius)	  
-‐ Households	  are	  placed	  randomly	  into	  the	  map	  
-‐ Uniform	  distributions	  are	  included	  in	  the	  model	  and	  determine	  the	  threshold	  that	  

household	  use	  to	  perform	  or	  not	  a	  certain	  action	  

 

Observation -‐ The	  model	  is	  capable	  of	  providing	  the	  following	  outputs:	  
o Percentage	  of	  households	  owning	  a	  smart	  grid	  appliance	  
o Percentage	  of	  innovators,	  early	  adopters,	  early	  majority,	  late	  majority	  or	  

laggards	  owning	  a	  smart	  grid	  appliance	  
o Amount	  of	  households	  having	  adopted	  a	  smart	  grid	  appliance	  during	  the	  last	  

year	  
o Amount	  of	  households	  that	  refuse	  to	  adopt	  because	  of	  adoption	  complexity,	  



 
savings	  or	  information	  lacking	  purposes	  

o Percentage	  of	  households	  aware	  of	  the	  existence	  of	  smart	  grid	  appliances	  
D
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Implementatio
n details 

-‐ Model	  is	  implemented	  in	  Netlogo	  
-‐ Two	  files	  belong	  to	  the	  model	  and	  are	  needed	  to	  run	  it:	  

o ‘Dataset_of_households’	  
o ‘Dataset_of_ISG_appliances’	  

-‐ Equations	  used:	  
o Calculation	  of	  awareness	  received:	  

 

t Time 
ARi Total awareness received by household i 
j Amount of households encountered at period t 

VAj, i Valuation of household j encountered by household i (depended on 
the adopter category of household i and adopter category 
household j). 

m Amount of media interaction received (depended on the adopter 
category of household i) 

VM Valuation of media interaction 
n Length of the memory of household i 

 
o Calculation	  if	  sufficient	  knowledge	  about	  one	  type	  of	  information	  is	  received	  

 

t Time 
IRi Total information received by household i 
j Amount of households encountered at period t 

VAj, i Valuation of household j encountered by household i (depended on the 
adopter category of household i and adopter category household 
j) 

n Length of the memory of household i 
	  
o Calculation	  of	  information	  about	  breakdown	  or	  data	  leak	  problems	  observed	  

 

t Time 
PRi Total information related to problems received by household i 
j Amount of households encountered at period t 

Pj Knowledge of break-down or data leak problems (either 0 or 1) 
n Length of the memory of household i 

	  
o Calculation	  of	  expected	  savings	  in	  case	  of	  neoclassical	  rationality	  

 

C Past average monthly electricity expenditure of one household 
over a period x 



m Smart grid appliance that comes to replace an existing product 
(for example that replaces a traditional grid appliance) 

n Smart grid appliance that does not replace an existing product 
and are hence is a totally new product for an household 

Q,KWh Past average electricity consumption of the smart grid appliance 
per month over a period y 

Ppeak Expected future average electricity price during peak period 
Poffpeak  Expected future electricity price during off-peak period 
ICsmart Purchase costs of the smart grid appliance 
ICnotsmart Initial costs of the appliance that the smart grid appliance 

replaces (for example a traditional grid appliance) 
Lifetime Average lifetime of the smart grid appliance 

 
o Calculation	  of	  expected	  savings	  in	  case	  of	  bounded	  rationality	  

 

t Time 
IRi Total information received by household i 
j Amount of households encountered at period t 

VAj, i Valuation of household j encountered by household i (depended on the 
adopter category of household i and adopter category household 
j) 

Sj Current savings made by household j 
n Length of the memory of household i  

Initialisation -‐ Five	  households	  already	  own	  a	  smart	  grid	  appliance.	  They	  are	  all	  innovators.	  The	  rest	  
does	  not	  possess	  anything.	  

Input data -‐ Three	  types	  of	  input	  data	  can	  be	  distinguished:	  
o Input	  data	  for	  smart	  grid	  appliances	  (based	  on	  internet	  research)	  
o Input	  data	  for	  households	  characteristics	  (based	  on	  internet	  research	  and	  

calibrated	  for	  the	  Dutch	  population)	  
o Input	  data	  for	  adopter	  categories:	  generated	  based	  on	  the	  Diffusion	  of	  

Innovations	  Theory	  

Sub models -‐ No	  sub	  models	  

 


