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ABSTRACT 

The rollout of smart grids is beneficial for allowing the entire electricity 
infrastructure to cope with the important production fluctuations that can be 
occasioned by renewable energy sources. The extent to which smart grid 
infrastructures are able to cope with production fluctuations is largely dependent 
on the extent to which households are willing to purchase smart grid appliances 
and install them in their homes. Creating policies to support smart grid 
appliances is difficult since the reasons for adoption by households are not well 
understood and are expected to change constantly through time. In this paper, 
we show how the combined usage of agent-based modelling and the scenario-
discovery methodology allows, through a simulation model, to incorporate in a 
systematic way the uncertainties about the decision-making process of 
households in the identification process of policies, instead of rejecting them. The 
usage of agent-based modelling and scenario-discovery is mainly useful in 
building policies that are more robust to various scenarios, even in case various 
stakeholders disagree about the exact representation of households' decision-
making process in the adoption of smart grid appliances. 

Introduction 

The incapacity of traditional grids to cope with large production fluctuation of 
various renewable energy sources calls for the installation of smart grid systems. 
One essential part of smart grids is constituted of smart grid appliances that are 
installed in people’s houses (Faruqui, Sergici, & Sharif, 2010). The rollout of 
smart grids is beneficial for a large amount of stakeholders in the electricity 
sector: national governments, grids operators and electricity producers (Boisvert 
& Neenan, 2003). However the decision to adopt and use smart grid appliances 
in their ‘smart function’ lies in the hands of households. Hence, there is a large 
dependency of various electricity sector stakeholders on the actions taken by 
households. The installation of smart grid appliances in people’s houses can 
hardly be made mandatory and must be the result of households’ willingness to 
adopt these appliances. The extent to which they will be willing to do so is highly 
uncertain. This is mainly because the reasons and requirements for smart grid 



appliance adoption by households are hardly comprehended. Therefore, it is also 
difficult to find out which policies to support adoption might be effective. 
Traditional policies such as subsidies for the purchase of appliances might not be 
as successful as expected (Anda & Temmen, 2013; Balta-Ozkan, Davidson, 
Bicket, & Whitmarsh, 2013). 

The difficulty to understand how households decide to adopt smart grid 
appliances is due to large uncertainties in the adoption process of these 
appliances. Uncertainty is in this work defined as an aberration from utter 
certainty (Walker, et al., 2003). The omission of uncertainties in the design of 
policies in complex issues is often the reason why these policies fail (Walker, 
Marchau, & Swanson, 2010). One policy, for example, which was proven to be 
effective at a particular point in time, will appear to be unsuccessful at a later 
moment (Hamarat, Kwakkel, & Pruyt, 2013). Hence, the reason why these 
policies fail is because they are not made robust to any other changes of the 
environments in which they were designed. 

There are at least two sources of uncertainties that should be distinguished in 
designing policies. First, there are uncertainties about the future. In the case of 
smart grid appliances, policies to support adoption might only be successful in 
case of economic growth and increase of household salaries, but might fail in a 
moment of economic crisis. Second, there are uncertainties about the 
understanding of the decision-making process made by households. For 
example, it is unclear according to which criteria households decide whether to 
adopt smart grid appliances. A policy based on the assumption that households 
essentially search to make savings might fail because of the influence of other 
factors such as purchase or usage complexity. Also, it is unclear how and to what 
extent interactions between households play a role in the transfer of information 
about smart grid appliances and the decision to adopt. 

Instead of ignoring the occurrence of uncertainties in the adoption of smart grid 
appliances, or only partially including them in the assessment of policies, we use 
a technique that allows a systematic inclusion and exploration of uncertainties to 
evaluate the effectiveness of various policies to support smart grid appliances 
adoption. The scenario discovery technique will be explained in more detail in 
section four of this paper. The aim of this paper is to show how the inclusion of 
uncertainties about the future and about our understanding of the adoption 
process of smart grid appliances by households, allows the creation of more 
robust and effective policies to support adoption. In this paper, we exclusively 
focus on the identification of policies by using simulation models. 

The paper is structured as follows. First, an introduction is provided about the 
simulation model used to simulate the adoption of smart grid appliances by 
households. In section three, four forms of uncertainties about the modelling of 
smart grid appliances adoption are identified. This section is followed by an 
explanation of how these uncertainties were included in the simulation model and 
the modelling process of smart grid appliances adoption. In section five, the 



added-values of using the scenario discovery technique to identify policies to 
support adoption are identified. The paper ends with some limitations associated 
with the use of simulation models and scenario discovery for policy makers and 
some conclusions about the work presented in this paper. 

A model of the adoption of smart grid appliances 

To illustrate how uncertainty can be included in the identification of policies, an 
agent-based model about the adoption of smart grid appliances by households is 
used. The model was created to answer the following question: Which directions 
for policy can stimulate the adoption of smart grid appliances to increase the 
capacity for demand response in city districts? With smart grid appliances, we 
refer to products used regularly by households to support daily activities, which 
are placed within the parameter of their houses. Examples are smart washing 
machines, smart freezers and smart fridges. 

The model has been created based on the Diffusion of Innovations Theory of 
Rogers (1962). In the model, 500 households are divided among the five adopter 
categories of Rogers, and distributed among the proportions suggested by this 
same author. The five adopter categories are the following: innovators, early 
adopters, early majority, late majority and laggards. The reason why households 
are divided among various categories in this model is that it is not expected that 
each household has the same expectations and requirements in the purchase of 
new products. Various consumer segmentations can be found in the literature, 
whether based on theoretical (Rogers, 1962; Foxall, 1994), or empirical division 
(Curtius, Künzel, & Loock, 2012; SGCC, 2011) specifically made for the case of 
smart grid appliances. The fact that individuals have different expectations and 
requirements in the purchase of innovation leads to the appearances of chasms 
in the adoption curve of a product (Moore, 1999). These chasms, mainly the one 
between early adopters and early majority, majorly explain the difficulty to make 
sure that an innovation is adopted on large scale. In the model, households 
belonging to each category differ in the extent to which they are interested in the 
financial or social added-value of adopting smart grid appliances. Households of 
each category also differ in the degree to which they accept investment risks. 
Finally, households vary in the amount of householders they have, and hence in 
the amount of electricity they consume each month. 

To perform decisions, households use the decision-making structure of Engel, et 
al. (1995). The five steps of the decision-making structure are the following: 
problem recognition, information search, evaluation of alternatives, purchase 
decision and post-purchase behaviour. A main advantage of using this decision-
making structure is that it underlines the distinction between being aware of the 
existence of a product and the actual action of adopting it. Also, it incorporates a 
post-purchase behaviour, that is, the feedback that individuals provide to other 
households after having adopted an innovation. 

In the model, households judge the added-value of adopting smart grid 



appliances upon the five perceived attributes of innovations as described by 
Rogers (1962): relative advantage, compatibility, complexity, triability, and 
observability. The reason why five different innovation attributes are taken into 
account is that expecting that households only decide to adopt based on financial 
profits is expected to be unreal and strongly limits the understanding of the 
adoption process. On the contrary, households may decide not to purchase an 
appliance because the purchase process is perceived as being too difficult, 
although the adoption of the appliance might improve the financial situation of the 
household. 

The model simulates the adoption of smart grid appliances on the scale of city 
districts. Therefore, no link is assumed between, on one side, the purchase (and 
utilisation) of smart grid appliances within the city district and, on the other side, 
the prices of electricity and the prices of smart grid appliances. The reason why 
no links are assumed is that the effect of the purchase of smart grid appliances 
on the scale of a city district in comparison to national of international ones is 
expected to be negligible. The prices of smart grid appliances and of electricity 
are hence modelled as exogenous parameters. The price of smart grid 
appliances decreases based on a logarithmic function. Two electricity prices are 
modelled: peak and off-peak electricity prices. The usage of smart grid 
appliances in the model allows shifting electricity consumption to moments in 
time when electricity prices are off-peak. The savings made by households are 
hence defined as the difference in electricity consumption in peak and off-peak 
periods before and after the adoption of smart grid appliances. 

The main model output is the percentage of adopters having adopted smart grid 
appliances. An important limitation of the model is that it only studies the 
adoption of smart grid appliances and not their utilisation by households. While 
households may adopt smart grid appliances, they may decide not to use them in 
their ‘smart function’, for example due to the limited amount of savings they make 
or the inconveniency of adjusting their daily life. Their electricity consumption 
would in this case not be different than if they would only own traditional 
appliances. To study the extent to which households will shift their electricity 
consumption, the utilisation of the smart grid appliances should hence be added 
in the model. 

A more detailed overview of the model is presented in the appendix. The model 
description has been created according to the ODD + D protocol. This protocol, 
developed by Müller, et al. (2013), allows a standardised and more transparent 
description of agent-based models in order to facilitate communication and usage 
of the model by other authors. 

Uncertainties in the modelling of household decision-making 
process 

In the first section of this paper, the relevancy of including uncertainty about the 
households represented in simulation models to identify effective policies is 



introduced. In the modelling of decision-making by individuals, Briggs, et al, 
(2012) identify four forms of uncertainties: stochastic uncertainty, parameter 
uncertainty, structural uncertainty and heterogeneity. Of these four forms of 
uncertainties, one comes from the usage of a discrete simulation tool. Stochastic 
uncertainty arises from the fact that, for example in agent-based models, the 
order of the execution of actions by the individuals modelled is sequential and 
randomised. Hence, by running a model two times with the exact same input 
parameters, the models outcomes might not be similar. The three other forms of 
uncertainty arise from the representation of the system modelled, which is in this 
case the decision-making process of households in the adoption of smart grids 
appliances.  

Parameter uncertainty is defined by the incertitude of parameters describing the 
decision-making process performed by individuals. One example is the amount 
of interactions that innovators each month have with others households in which 
smart grid appliances are discussed. Parameter uncertainty can also be seen as 
the incertitude about the exact value and future development of exogenous 
variables such as electricity prices. 

Structural uncertainty is the incertitude about how to represent a certain system, 
in this case the decision-making process of households, in a simulation model. 
This structural uncertainty can be about which theory to use to represent certain 
elements of the decision-making process of households. In the model introduced 
in section two, the decision-making steps of Engel, et al. (1995) were chosen. 
Rogers (1962), however, also proposed five decision-making steps which are not 
exactly the same as the ones of Engel, et al. If the use of the decision-making 
steps of Rogers also appears to be arguable to model the adoption process of 
smart grid appliances by households, it might be necessary to include both 
decision-making structures in the simulation model. Including both decision-
making processes in one single simulation model is hence a way to deal with one 
form of structural uncertainty. Another form of structural uncertainty has to do 
with which variables actually do or do not play a role in the adoption of smart grid 
appliances. For example, as demonstrated in section two, Rogers (1962) 
identified five relevant innovation characteristics in the adoption of innovations. 
The five innovation characteristics were however identified for innovations in 
general. In the case of smart grid appliances, some of them could appear to be 
irrelevant or unnecessary to explore the adoption of appliances by households. 

Heterogeneity is defined by the incertitude about the degree to which individuals 
differ in characteristics and preferences. For example, households might have 
different minimal saving requirements in order to be willing to adopt smart grid 
appliances. Households also might have differing number of interactions per 
month. This difference might also occur for households belonging to the same 
adopter category. 

The reason why these four types of uncertainties are identified and should be 
included in a simulation model is because it is expected that they will have an 



influence on the model’s adoption curve of smart grid appliances and hence on 
the policy identified based on the simulation model. In the next section, the 
combination of agent-based models and the scenario discovery technique is 
presented in order to show how these four types of uncertainties can be 
incorporated in the analysis of a simulation model. 

Including uncertainty: agent-based modelling and the scenario 
discovery technique 

In the previous section, four forms of uncertainties in the modelling of the 
adoption of smart grid appliances by households are identified. In this section, we 
show how these uncertainties are included in the modelling process, both 
through the usage of agent-based models and with the scenario discovery 
technique.  

Agent-based modelling 

In the field of innovation diffusion modelling, two different types of simulation 
methods are majorly chosen: system dynamics and agent-based modelling 
(Rahmandad & Sterman, 2008; Kiesling, Günther, Stummer, & Wakolbinger, 
2012). There are no absolute rules to decide whether to choose system 
dynamics or agent-based modelling. According to Rahmandad & Sterman 
(2008), agent-based modelling, however, is more convenient when a large 
amount of heterogeneity has to be included in the characteristics of individuals, 
and when different types of interaction networks between individuals have to be 
tested. System dynamics is more convenient when computational costs need to 
be reduced. In the model introduced in section two, agent-based modelling was 
chosen in order to easily test the effects of heterogeneity between households on 
the adoption of smart grid appliances (e.g. adopter categories, number of 
inhabitants per households). 

Agent-based modelling is a simulation tool that focusses on the actions and 
interactions of numerous individuals (agents) to study their impact on the 
development of the entire system regrouping the individuals (Epstein & Axtell, 
1996; Miller & Page, 2007). In the case of smart grid appliances, one studies how 
the actions and interactions of each household (the individuals) influence the 
adoption rate of the city district (the system regrouping the individuals). An agent 
is characterised by two elements: a state, which stands for the set of 
characteristics that describes the agent, and rules, that describe the entire set of 
actions that the agent may perform (Dam, Nikolic, & Lukszo, 2013). Agent-based 
modelling is a discrete simulation tool. This means that agents can only perform 
actions at a specific moment in time. Concretely, when the model is at time 0, an 
order of action determined randomly is provided to each agent in the model. 
Based on the order of action, each agent sequentially executes the actions it is 
asked to perform. When the last agent in line has performed its actions, the time 
is advanced to time 1, a new order of action is randomly determined and all 
agents execute their actions once again. This discrete process is continued until 



the modeller decides to stop the simulation run. 

In relation to the uncertainties identified in section three, agent-based modelling 
mainly allows to easily include different forms of heterogeneity, as explained 
earlier in this section. Heterogeneity can be introduced by applying different 
types of probabilistic distributions to the characteristics of each household. 

Scenario discovery 

Scenario discovery is a technique that is essentially useful to model problems 
that are characterised by a large number of uncertain factors (Kwakkel, Auping, 
& Pruyt, 2013). Making decisions in relation to these kinds of problems is 
described as decision-making under deep or severe uncertainty (Lempert, 
Popper, & Bankes, 2003; Ben-Haim, 2006). The essence of the scenario 
discovery technique is the recognition that one might have a limited knowledge 
and understanding of the system that has to be analysed. Instead of ignoring this 
lack of knowledge and understanding of the system, one could include them in 
the analysis of the system and the identification of policies.  

The scenario discovery technique is performed by combining the usage of 
Exploratory Modelling and Analysis (EMA) and the Patient Rule Induction Method 
(PRIM). 

The EMA methodology uses computational experiments to analyse complex and 
uncertain system (Bankes, 1993). As indicated in its name, the methodology 
takes distance from the predictive ambition of using simulation models and 
focuses on an exploratory approach. Instead of trying to create a best-estimate 
model to try to predict the future, one sees the model as one of the multiple 
plausible hypotheses about the structure of a real system (Hodges, 1991; 
Hodges & Dewar, 1992). As explained by Kwakkel & Pruyt (2012), EMA allows to 
include parameter and structural uncertainty in the model, which are two of the 
uncertainties mentioned in section three. Including parameter uncertainty with 
EMA is done by setting ranges as input parameters in the model instead of fixed 
numbers. The number of interactions of households per month is for example set 
to a range of integers between 3 and 7, instead of considering it to be fixed at 5 
interactions per month. The creation of ranges is done for any input parameters 
of which the value can be considered as uncertain.  

The simulation model is then run successively for a large amount of times. For 
each run, one value within the range of each input parameter is chosen. The 
result of the EMA experiment is a dataset with the simulation output of a large 
amount of simulation runs. The inclusion of parameter uncertainty can also be 
combined with the inclusion of structural uncertainty. For that, some structures 
will be switched on for some runs while others will be switched off. For example, 
the complexity criteria of smart grid appliances, which is one of the five 
innovation characteristics identified by Rogers (1962) (see section two), might be 
switched on for some model runs while being switched off for others. The 



addition of various structural uncertainties, however, strongly increases the 
number of runs in the EMA experiments. Carrying out EMA experiments could 
then turn out to be too time consuming considering the time available for the 
simulation project. Therefore, different structural uncertainties should only be 
included in the model if they could not be rejected in the model validation 
process. 

The last type of uncertainty identified in section three is stochastic uncertainty, 
which results from the use of a discrete simulation tool such as agent-based 
models. To take this stochastic uncertainty into account, several model runs are 
made with an exact same combination of input parameters and model structures. 
The mean of model outputs based on the various model runs with the exact 
same combination of input parameters and model structures is used for model 
analysis. 

The dataset created through the EMA experiment, which was based on various 
parameters and structural uncertainties can be seen as an ensemble of plausible 
scenarios of the representation of a certain system, in this case the decision-
making process of households to adopt smart grid appliances, and its 
development in the future. Each model run is thus equal to one plausible 
scenario. The challenge then is to find out, from the multiple ensemble of 
scenario, which of them is relevant for a particular preferred or dis-preferred 
value of a model outcome. Concretely, this means that in the case of the model 
about the adoption of smart grid appliances, one wants to know which range of 
input parameters or which model structure leads to a high or a low adoption 
percentage of smart grid appliances. Examples could be that mainly a low 
number of interactions of early adopters per month leads to an adoption 
percentage lower than 20 percent in 2050. To find out which sets of scenarios 
are relevant for a certain outcome, one uses the second method of which the 
scenario discovery technique is composed. PRIM was first introduced by 
Friedman and Fisher (1999). As explained before, PRIM allows finding out which 
combination of ranges of input parameters and model structures leads to a 
certain outcome, as specified by the author. This is done by repeating the two 
stages of peeling and pasting. To find which subset of input parameters and 
model structure leads to a certain outcome range (above or under a given 
threshold), subsets of the input parameters are progressively removed (peeling) 
and added (pasting). 

Concluding, in this section, it is shown that the four types of uncertainties 
identified in section three can be included in the analysis of a model through 
some adjustments to the agent-based model created and through the use of the 
scenario discovery technique. In the next chapter, an analysis is provided of how 
the inclusion of uncertainty into the process of modelling changes allows the 
creation of more robust policies. 



Added-value of using the scenario discovery technique to deal 
with uncertainties 

Three main advantages of using the scenario discovery methodology with the 
combination of agent-based modelling to identify policies can be identified. The 
first is to find out the extent to which policies are robust to different scenarios and 
hence to various modelling uncertainties. The second is to build a set of policies 
that are robust to the occurrence of various scenarios. The third is the possibility 
to include different world views within a single model. 

 

 

To illustrate the first advantage, experiments are carried out with the model 
presented in section two. In the first experiment, the simulation model is run 
without any policies to support smart grid appliance adoption by households. The 
model is run for a duration of 150 time steps. This will be the case for each 
experiment presented in this section. The results of the experiment are presented 
in figure 1. The figure shows the evolution of the percentage of households 
adopting a smart grid appliance. In this figure, we can see that, at the end of the 
simulation run, the percentage of households having adopted lies around 6-7%. 
Therefore, we can conclude that smart grid appliances are not adopted on large 
scale, and that policies may be needed to support adoption. 

EMA graphs 

To present the outcomes of experiments, EMA graphs are used. An example is provided 
hereunder. 

 
EMA graphs combine three elements. First, the large blue area shows the run envelop: the 
highest and lowest value of all runs combined at each point in time. Second, each line in the 
graph stands for the output of one model run. In the graph in this section, lines represent limited 
amounts of randomly chosen runs. The line colour has no signification. Third, the element on 
the right is a Gaussian kernel density estimation (KDE). This shows the distribution of runs at 
the final run time of the model. 
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  single	
  simulation	
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  policies	
  

A second experiment is carried out with the inclusion of a purchase subsidy of 
200€ per smart grid appliance during the entire duration of the simulation run. 
The experiment results are presented in figure 2. In this figure, one can see that 
the percentage of households having adopted smart grid appliances is close to 
100% at the end of the simulation run. Therefore, based on the two experiments 
just carried out, one could conclude that in the model created in this work, the 
only policy needed to strongly increase the adoption of smart grid appliances is a 
purchase subsidy. 

 
 
Figure	
  2:	
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  single	
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subsidy	
  

In this paper, we point out that this policy is not robust. To illustrate that, a third 
experiment is carried out. This experiment will be done with the EMA 
methodology. Hence, 200 simulation runs will be made instead of one. Instead of 
using fixed numbers as model inputs, ranges will be included. Hence parameter 
uncertainty will be included in the model. In this experiment, the purchase 
subsidy as a policy to support smart grid appliance adoption is applied. The 
experiment outcomes are presented in figure 3. 



 
 
Figure	
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The third experiment shows that, indeed, a purchase subsidy may lead to a large 
adoption of smart grid appliances. This can be seen by looking in the distribution 
of outcomes in the KDE graph. The KDE graph, however, also shows that in a 
large amount of cases, smart grid appliances are not adopted on large scale. In 
many cases, the adoption percentage at time 150 ends at 18% or even around 
5%. Therefore, one can conclude that in the simulation model created to simulate 
the adoption of smart grid appliances by households, a purchase subsidy is not 
robust to various scenarios to support adoption. It is at this point important to 
underline that we cannot yet conclude that a purchase subsidy as a policy to 
support adoption is not robust in real-world. The outcomes presented in the 
figures in this section only say something about the model created. A translation 
of conclusions from model to real-world is in any case essential. 

As explained in the first part of this section, the second advantage of using the 
scenario discovery methodology is to build policies that are robust to various 
scenarios. This is done by using PRIM. PRIM also allows to find out why to which 
scenarios a certain policy is not robust. By performing a PRIM analysis on the 
third experiment performed in this section, seven different scenarios are found to 
lead to a low adoption percentage of smart grid appliances, even though a 
purchase subsidy is applied. The scenarios are listed in table 1. Concretely, this 
means that in the model, if at least one of the input parameter corresponds to a 
scenario described in table 1, the percentage of households owning a smart grid 
appliance will remain low. For example, a growth duration value superior to the 
average of the range introduced in the model will lead to a low adoption of smart 
grid appliances by households. 

Table	
  1:	
  list	
  of	
  scenarios	
  leading	
  to	
  a	
  low	
  adoption	
  percentage	
  of	
  smart	
  grid	
  appliances	
  

 
1. Low	
  social	
  value	
  experienced	
  by	
  early	
  adopters	
  in	
  smart	
  grid	
  appliance	
  adoption	
  
2. High	
   degree	
   of	
   suspiciousness	
   experienced	
   by	
   early	
   adopters	
   towards	
   the	
   reliability	
   of	
   information	
  

transferred	
  between	
  households	
  
3. High	
   degree	
   of	
   suspiciousness	
   experienced	
   by	
   early	
   majority	
   population	
   towards	
   the	
   reliability	
   of	
  

information	
  transferred	
  between	
  households	
  



4. Slow	
  decrease	
  of	
  smart	
  grid	
  appliance	
  prices	
  
5. Long	
   growth	
   phase	
   (duration	
   before	
   the	
   complexity	
   of	
   purchasing	
   and	
   using	
   smart	
   grid	
   appliances	
   is	
  

acceptable	
  for	
  all	
  type	
  of	
  households)	
  
6. Low	
  amount	
  of	
  interactions	
  between	
  early	
  majority	
  population	
  and	
  early	
  adopters	
  
7. Low	
  amount	
  of	
  interactions	
  between	
  late	
  majority	
  population	
  and	
  early	
  adopters	
  
 

A last experiment is carried out to show the effect of policies that assess 
precisely the scenarios identified in table 1. These policies are called directions 
for policy in this case, since they come directly from the model and only show 
what real policies should target to support smart grid appliance adoption. The 
directions for policy are listed in table 2. 

Table	
  2:	
  directions	
  for	
  policy	
  to	
  support	
  smart	
  grid	
  appliance	
  adoption	
  

 
Directions for policy Policy examples 
Encourage communication between innovators and early 
adopters 

Nomination of product ambassadors, creation of 
consumer groups 

Promotion of smart grid appliances to early adopters Nomination of product ambassadors, creation of 
consumer groups 

Decrease adoption costs Purchase subsidy 
When smart grid appliances may become interesting for 
early majority population and later adopters, reinvent the 
product 

Redesign the product to underline ease of use, savings 
that can be made to change product perception 

Make product usage and the added value of owning it 
visible to others 

Redesign the product to make it visible to others 

 

The implementation of the directions for policy listed in table 2 leads to the 
experiment outcomes presented in figure 4. In this figure, one can see that in 
major cases, smart grid appliances are adopted on large scale. In some cases, 
smart grid appliance adoption is low but still increases progressively towards a 
high adoption percentage. 

 
 
Figure	
  4:	
  percentage	
  of	
  households	
  owning	
  a	
  smart	
  grid	
  appliance;	
  use	
  of	
  EMA	
  with	
  200	
  simulation	
  runs	
  
and	
  all	
  directions	
  for	
  policy	
  applied	
  

The third advantage of using scenario discovery is the possibility to include 



various world views in one single simulation model (Kwakkel & Pruyt, 2012). As 
various stakeholders have different world views about how a system works – in 
this case about how households decide to adopt smart grid appliances, the 
possibility of including structural uncertainty in a simulation model with EMA is 
interesting. As explained by Kwakkel & Pruyt, the need of making various 
models, each based on a particular world view, disappears. Hence, one can find 
out which policies are effective for all world views included in the model. 

Reflections and limitations to the usage of the identification 
process 

The previous section shows that the usage of scenario discovery and agent-
based modelling to model the decision-making process of households may 
provide some interesting benefits to create more effective policies. They are still 
some limitations to the use of scenario discovery and agent-based models for the 
identification of policies. 

First, the policies identified are based on a simulation model and not on reality. 
Therefore, a robust policy in the simulation model may not be robust in real 
world. The same is valid for non-robust policies. After having identified policies, 
an important work of reflection and translation of policies to real world has to be 
carried out. This can be done by, on one side, making a clear overview of the 
limitations of the model created, and on the other side, discussing the policies 
identified with several sector experts. 

The second limitation is related to the use of agent-based models for the 
diffusion of innovations. As explained in section four, agent-based modelling was 
chosen over system dynamics because this simulation methods is more 
convenient to test various forms of heterogeneity. Using system dynamics, 
however, strongly reduces the computational costs of modelling and therefore 
may be an interesting choice if heterogeneity in the model is limited and if one 
prefers to spend a large amount of time on model analyses. System dynamics is 
also compliable with scenario discovery and is often used to model the diffusion 
of innovations (Rahmandad & Sterman, 2008; Kiesling, Günther, Stummer, & 
Wakolbinger, 2012). 

The last limitation is the fact that a large amount of uncertainties included in the 
model strongly increases the computation costs of analysing the model. Although 
a large amount of world views may be included in one model, these should only 
be added when they are validated in the verification and validation phase of the 
model. 

Conclusions 

In this article, the added-value of using the scenario-discovery methodology and 
agent-based modelling to identify policies to support smart grid appliance 
adoption is provided. Globally, the usage of agent-based modelling allows to 



easily include uncertainties about the heterogeneity between individuals. The 
scenario-discovery technique is useful to include parameter, structural and 
stochastic uncertainties. 

In the case of the identification of policies to support smart grid appliance 
adoption, the combination of agent-based modelling and the scenario-discovery 
technique is, firstly, beneficial to test the robustness of policies to various 
scenarios, whether linked to uncertainties about the future or about the extent to 
which the decision-making process of households is correctly modelled. This 
combined usage allows for example to show why a purchase subsidy cannot be 
considered as a robust policy to increase smart grid appliance adoption. 
Secondly, this combined usage is beneficial to build new policies that are robust 
to the occurrence of these various scenarios.  Thirdly, the usage of agent-based 
modelling and scenario-discovery allows to identify effective policies, even 
though there are disagreements about the exact representation of households' 
decision-making process to adopt smart grid appliances within the simulation 
model. 

The model presented in section two is part of a thesis work on the adoption of 
smart grid appliances, written in collaboration between DNV GL and the Delft 
University of Technology. The entire thesis can be consulted by using the 
following link: http://repository.tudelft.nl/view/ir/uuid%3A07b27819-1e34-4a36-
848b-29858f5139be 
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Appendix 

ODD + D model description 

Purpose -­‐ To	
  test	
  various	
  directions	
  for	
  policy	
  to	
  increase	
  the	
  adoption	
  of	
  smart	
  grid	
  appliances	
  
(such	
  as	
  smart	
  washing	
  machines	
  or	
  smart	
  fridges)	
  on	
  the	
  scale	
  of	
  city	
  districts	
  

-­‐ The	
  model	
  is	
  designed	
  for	
  policy	
  makers	
  in	
  the	
  field	
  of	
  smart	
  grid	
  projects	
  

O
ve

rv
ie

w
 

State variables 
and scales 

-­‐ The	
  entities	
  are	
  households.	
  Their	
  attributes	
  are	
  :	
  
o Number	
  of	
  householders	
  
o Electricity	
  consumption	
  per	
  month	
  
o Amount	
  of	
  smart	
  grid	
  appliances	
  in	
  house	
  
o Memory	
  length	
  
o Adopter	
  category	
  

-­‐ Each	
  household	
  belongs	
  to	
  an	
  adopter	
  category:	
  innovators,	
  early	
  adopters,	
  early	
  
majority,	
  late	
  majority	
  or	
  laggards.	
  Households	
  of	
  each	
  category	
  differ	
  in:	
  
o Amount	
  of	
  interactions	
  per	
  month	
  
o Valuation	
  of	
  information	
  provided	
  by	
  households	
  of	
  each	
  type	
  of	
  adopter	
  

category	
  
o Minimum	
  amount	
  of	
  savings	
  required	
  to	
  be	
  willing	
  to	
  adopt	
  



o Maximum	
  difference	
  between	
  price	
  of	
  smart	
  and	
  traditional	
  grid	
  appliance	
  
tolerated	
  

o Percentage	
  of	
  similar	
  information	
  needed	
  to	
  be	
  willing	
  to	
  judge	
  the	
  
information	
  as	
  reliable	
  

o Maximum	
  degree	
  of	
  adoption	
  complexity	
  tolerated	
  
-­‐ Space:	
  each	
  household	
  is	
  placed	
  into	
  a	
  square	
  field	
  next	
  to	
  each	
  other.	
  The	
  landscape	
  

is	
  fictive.	
  Distribution	
  of	
  households	
  among	
  the	
  field	
  is	
  done	
  randomly.	
  Space	
  is	
  
relevant	
  since	
  households	
  may	
  have	
  interaction	
  with	
  neighbours	
  (if	
  switched	
  on)	
  

-­‐ Exogenous	
  factors	
  are:	
  
o Current	
  adoption	
  complexity	
  
o Electricity	
  price	
  (peak	
  and	
  off-­‐peak)	
  
o Smart	
  grid	
  appliance	
  prices	
  

 Equation	
  for	
  the	
  calculation	
  of	
  smart	
  grid	
  appliance	
  prices:	
  
 

C(Xt) Cost of the technology at time t 
C(X0) Initial cost of the technology 
t Current time 

B Learning parameter  

 

Process 
overview and 
scheduling 

-­‐ Each	
  month,	
  households	
  in	
  the	
  model	
  follow	
  the	
  consumer	
  decision-­‐making	
  structure	
  
of	
  Engel,	
  et	
  al.	
  (Consumer	
  behavior,	
  1995).	
  

-­‐ If	
  one	
  steps	
  does	
  not	
  succeed,	
  for	
  example	
  because	
  they	
  miss	
  information	
  or	
  because	
  
they	
  find	
  the	
  adoption	
  complexity	
  to	
  be	
  too	
  high,	
  they	
  drop	
  of	
  the	
  process	
  

Theoretical 
and empirical 
background 

-­‐ The	
  main	
  theory	
  is	
  the	
  Diffusion	
  of	
  Innovations	
  Theory	
  of	
  Rogers	
  (Diffusion	
  of	
  
Innovations,	
  1962).	
  From	
  this	
  theory,	
  two	
  mains	
  aspects	
  are	
  used:	
  
o Division	
  in	
  five	
  adopter	
  categories,	
  each	
  have	
  different	
  behaviour	
  properties	
  

and	
  different	
  reasons	
  to	
  adopt	
  
o Characteristics	
  of	
  innovations	
  that	
  households	
  use	
  to	
  build	
  an	
  opinion	
  about	
  a	
  

product	
  
-­‐ Households	
  may	
  use	
  neoclassical	
  rationality	
  or	
  bounded	
  rationality	
  to	
  perform	
  their	
  

decision-­‐making.	
  In	
  addition,	
  the	
  use	
  of	
  prospect	
  theory	
  can	
  be	
  included	
  
-­‐ Households	
  use	
  the	
  consumer	
  decision-­‐making	
  structure	
  of	
  Engel,	
  et	
  al.	
  (Consumer	
  

behavior,	
  1995)	
  to	
  perform	
  decision-­‐making	
  
-­‐ Adoption	
  complexity	
  vary	
  according	
  to	
  the	
  four	
  product	
  lifecycle	
  phases	
  of	
  Levitt	
  

(Exploit	
  the	
  Product	
  Life	
  Cycle,	
  1965)	
  
-­‐ Agent-­‐based	
  modelling	
  is	
  used	
  as	
  a	
  simulation	
  tool	
  
-­‐ Scenario	
  discovery	
  (Kwakkel,	
  Auping,	
  &	
  Pruyt,	
  2013)	
  is	
  used	
  as	
  a	
  method	
  to	
  identify	
  

relevant	
  scenario	
  based	
  on	
  which	
  policy	
  making	
  has	
  to	
  be	
  built	
  
-­‐ The	
  ‘evaludation	
  method	
  of	
  Augusiak	
  et	
  al.	
  (Merging	
  validation	
  and	
  evaluation	
  of	
  

ecological	
  models	
  to	
  ‘evaludation’:	
  A	
  review	
  of	
  terminology	
  and	
  a	
  practical	
  approach,	
  
2014)	
  is	
  used	
  for	
  verification	
  and	
  validation.	
  

Individual 
decision 
making 

-­‐ Households	
  may	
  adopt	
  to	
  reach	
  three	
  goals:	
  
o Make	
  savings	
  
o Increase	
  social	
  recognition	
  from	
  other	
  households	
  
o Ensure	
  they	
  do	
  not	
  undergo	
  social	
  de-­‐recognition	
  

-­‐ Which	
  of	
  the	
  goals	
  is	
  the	
  most	
  important	
  depends	
  on	
  the	
  households	
  category	
  to	
  
which	
  the	
  household	
  belong	
  

Learning -­‐ Households	
  may	
  decide	
  to	
  never	
  adopt	
  again	
  if	
  they	
  have	
  been	
  disappointed,	
  whether	
  
financially	
  or	
  socially,	
  by	
  the	
  smart	
  grid	
  appliance	
  previously	
  adopted	
  

D
es

ig
n 
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Individual 
sensing 

-­‐ Household	
  can	
  find	
  out	
  the	
  following	
  elements	
  about	
  the	
  other	
  household	
  with	
  whom	
  
they	
  interact:	
  
o Adopter	
  category	
  
o Owning	
  a	
  smart	
  grid	
  appliance	
  or	
  not	
  
o Adoption	
  complexity	
  level	
  the	
  household	
  has	
  experienced	
  
o Degree	
  of	
  satisfaction	
  about	
  savings	
  after	
  adoption	
  
o Amount	
  of	
  data	
  leak	
  cases	
  observed	
  
o Amount	
  of	
  smart	
  grid	
  appliance	
  breakdown	
  cases	
  observed	
  



Individual 
prediction 

-­‐ The	
  information	
  that	
  households	
  received	
  from	
  others	
  are	
  all	
  ‘experience’	
  
information	
  like	
  opinions	
  or	
  satisfactions	
  

-­‐ Households	
  however	
  can	
  also	
  create	
  information	
  by	
  observing	
  the	
  environment.	
  They	
  
do	
  this	
  in	
  the	
  following	
  two	
  cases:	
  
o Calculation	
  of	
  adoption	
  profitability	
  
o Calculation	
  of	
  the	
  social	
  recognition	
  that	
  can	
  be	
  gained	
  by	
  adopting	
  or	
  

rejecting	
  

Interaction -­‐ Households	
  interact	
  between	
  each	
  other	
  at	
  each	
  simulation	
  tick.	
  They	
  have	
  three	
  
types	
  of	
  interactions:	
  
o Random	
  interactions:	
  households	
  randomly	
  choose	
  a	
  limited	
  amount	
  of	
  other	
  

households	
  to	
  interact	
  with.	
  At	
  each	
  new	
  tick,	
  a	
  new	
  list	
  of	
  random	
  
interactions	
  to	
  exchange	
  information	
  with	
  is	
  made.	
  

o Neighbour	
  interactions:	
  similar	
  to	
  random	
  interactions,	
  but	
  only	
  with	
  
households	
  within	
  a	
  radius	
  of	
  four	
  

o Friend	
  interactions:	
  list	
  of	
  households	
  picked	
  up	
  randomly	
  at	
  the	
  beginning	
  of	
  
the	
  model	
  run,	
  and	
  remains	
  unchanged	
  until	
  the	
  end	
  of	
  the	
  run	
  

-­‐ Households	
  exchange:	
  
o Information	
  about	
  savings	
  made	
  through	
  adoption	
  
o Adoption	
  complexity	
  they	
  experienced	
  
o Information	
  whether	
  data	
  leak	
  cases	
  have	
  been	
  observed	
  
o Information	
  whether	
  smart	
  grid	
  appliance	
  breakdown	
  cases	
  have	
  been	
  

observed	
  
o Information	
  whether	
  they	
  possess	
  a	
  smart	
  grid	
  appliance	
  

Collectives -­‐ Any	
  household	
  belongs	
  to	
  one	
  of	
  the	
  following	
  adopter	
  groups:	
  
o Innovators	
  
o Early	
  adopters	
  
o Early	
  majority	
  
o Late	
  majority	
  
o Laggards	
  

-­‐ Households	
  cannot	
  switch	
  between	
  adopter	
  groups	
  during	
  a	
  simulation	
  run	
  

Heterogeneity -­‐ The	
  following	
  heterogeneity	
  is	
  included:	
  
o Adopter	
  categories	
  which	
  defined	
  the	
  following	
  variables:	
  

 Amount	
  of	
  interactions	
  per	
  month	
  
 Valuation	
  of	
  information	
  provided	
  by	
  households	
  of	
  each	
  type	
  of	
  

adopter	
  category	
  
 Minimum	
  amount	
  of	
  savings	
  required	
  to	
  be	
  willing	
  to	
  adopt	
  
 Maximum	
  difference	
  between	
  price	
  of	
  smart	
  and	
  traditional	
  grid	
  

appliance	
  tolerated	
  
 Percentage	
  of	
  similar	
  information	
  needed	
  to	
  be	
  willing	
  to	
  judge	
  the	
  

information	
  as	
  reliable	
  
 Maximum	
  degree	
  of	
  adoption	
  complexity	
  tolerated	
  

o Electricity	
  consumption	
  per	
  month	
  
o Number	
  of	
  householders	
  
o Valuation	
  of	
  savings,	
  within	
  adopter	
  categories	
  

Stochasticity -­‐ Agent	
  iteration	
  is	
  randomised	
  
-­‐ Households	
  find	
  others	
  households	
  to	
  interact	
  with	
  in	
  a	
  random	
  way	
  (within	
  the	
  

constrains	
  that	
  they	
  were	
  given	
  such	
  as	
  the	
  maximum	
  radius)	
  
-­‐ Households	
  are	
  placed	
  randomly	
  into	
  the	
  map	
  
-­‐ Uniform	
  distributions	
  are	
  included	
  in	
  the	
  model	
  and	
  determine	
  the	
  threshold	
  that	
  

household	
  use	
  to	
  perform	
  or	
  not	
  a	
  certain	
  action	
  

 

Observation -­‐ The	
  model	
  is	
  capable	
  of	
  providing	
  the	
  following	
  outputs:	
  
o Percentage	
  of	
  households	
  owning	
  a	
  smart	
  grid	
  appliance	
  
o Percentage	
  of	
  innovators,	
  early	
  adopters,	
  early	
  majority,	
  late	
  majority	
  or	
  

laggards	
  owning	
  a	
  smart	
  grid	
  appliance	
  
o Amount	
  of	
  households	
  having	
  adopted	
  a	
  smart	
  grid	
  appliance	
  during	
  the	
  last	
  

year	
  
o Amount	
  of	
  households	
  that	
  refuse	
  to	
  adopt	
  because	
  of	
  adoption	
  complexity,	
  



 
savings	
  or	
  information	
  lacking	
  purposes	
  

o Percentage	
  of	
  households	
  aware	
  of	
  the	
  existence	
  of	
  smart	
  grid	
  appliances	
  
D

et
ai
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Implementatio
n details 

-­‐ Model	
  is	
  implemented	
  in	
  Netlogo	
  
-­‐ Two	
  files	
  belong	
  to	
  the	
  model	
  and	
  are	
  needed	
  to	
  run	
  it:	
  

o ‘Dataset_of_households’	
  
o ‘Dataset_of_ISG_appliances’	
  

-­‐ Equations	
  used:	
  
o Calculation	
  of	
  awareness	
  received:	
  

 

t Time 
ARi Total awareness received by household i 
j Amount of households encountered at period t 

VAj, i Valuation of household j encountered by household i (depended on 
the adopter category of household i and adopter category 
household j). 

m Amount of media interaction received (depended on the adopter 
category of household i) 

VM Valuation of media interaction 
n Length of the memory of household i 

 
o Calculation	
  if	
  sufficient	
  knowledge	
  about	
  one	
  type	
  of	
  information	
  is	
  received	
  

 

t Time 
IRi Total information received by household i 
j Amount of households encountered at period t 

VAj, i Valuation of household j encountered by household i (depended on the 
adopter category of household i and adopter category household 
j) 

n Length of the memory of household i 
	
  
o Calculation	
  of	
  information	
  about	
  breakdown	
  or	
  data	
  leak	
  problems	
  observed	
  

 

t Time 
PRi Total information related to problems received by household i 
j Amount of households encountered at period t 

Pj Knowledge of break-down or data leak problems (either 0 or 1) 
n Length of the memory of household i 

	
  
o Calculation	
  of	
  expected	
  savings	
  in	
  case	
  of	
  neoclassical	
  rationality	
  

 

C Past average monthly electricity expenditure of one household 
over a period x 



m Smart grid appliance that comes to replace an existing product 
(for example that replaces a traditional grid appliance) 

n Smart grid appliance that does not replace an existing product 
and are hence is a totally new product for an household 

Q,KWh Past average electricity consumption of the smart grid appliance 
per month over a period y 

Ppeak Expected future average electricity price during peak period 
Poffpeak  Expected future electricity price during off-peak period 
ICsmart Purchase costs of the smart grid appliance 
ICnotsmart Initial costs of the appliance that the smart grid appliance 

replaces (for example a traditional grid appliance) 
Lifetime Average lifetime of the smart grid appliance 

 
o Calculation	
  of	
  expected	
  savings	
  in	
  case	
  of	
  bounded	
  rationality	
  

 

t Time 
IRi Total information received by household i 
j Amount of households encountered at period t 

VAj, i Valuation of household j encountered by household i (depended on the 
adopter category of household i and adopter category household 
j) 

Sj Current savings made by household j 
n Length of the memory of household i  

Initialisation -­‐ Five	
  households	
  already	
  own	
  a	
  smart	
  grid	
  appliance.	
  They	
  are	
  all	
  innovators.	
  The	
  rest	
  
does	
  not	
  possess	
  anything.	
  

Input data -­‐ Three	
  types	
  of	
  input	
  data	
  can	
  be	
  distinguished:	
  
o Input	
  data	
  for	
  smart	
  grid	
  appliances	
  (based	
  on	
  internet	
  research)	
  
o Input	
  data	
  for	
  households	
  characteristics	
  (based	
  on	
  internet	
  research	
  and	
  

calibrated	
  for	
  the	
  Dutch	
  population)	
  
o Input	
  data	
  for	
  adopter	
  categories:	
  generated	
  based	
  on	
  the	
  Diffusion	
  of	
  

Innovations	
  Theory	
  

Sub models -­‐ No	
  sub	
  models	
  

 


