THE q-CALKIN–WILF TREE

TOUPIK MANSOUR AND BRUCE BATES

Abstract. We define a q-analogue of the Calkin–Wilf tree and the Calkin–Wilf sequence. We show that the nth term $f(n; q)$ of the q-analogue of the Calkin–Wilf sequence is the generating function for the number of hyperbinary expansions of n according to the number of powers that are used exactly twice. We also present formulae for branches within the q-analogue of the Calkin–Wilf tree and predecessors and successors of terms in the q-analogue of the Calkin–Wilf sequence.

1. Introduction

A plane tree T can be defined recursively as a finite set of vertices, such that one vertex r is called the root of T, and the remaining vertices form an ordered partition (T_1, T_2, \ldots, T_m) of m disjoint non-empty sets, each of which is a plane tree. We will draw plane trees with the root on the top level, the first level. The edges connecting the root of the tree to the roots of T_1, T_2, \ldots, T_m, will be drawn from left to right on the second level. For each vertex v, the vertices in the next lower level adjacent to v are called the children of v, and v is called their parent. Clearly, each vertex other than r has exactly one parent. A vertex of T is called a leaf if it has no children. The empty tree, formed by a single vertex, has no children, otherwise it is said to be an internal vertex. The outdegree of a vertex v is the number of its children, and is denoted by $\deg(v)$. A binary tree is a plane tree in which each vertex has outdegree two.

The Calkin–Wilf tree is a binary tree in which the vertices correspond one-to-one to the positive rational numbers. This tree can be defined recursively as follows: The root of the tree is 1, and each vertex $\frac{a}{b}$ has two children: $\frac{a}{a+b}$ (the left one), and $\frac{a+b}{b}$ (the right one). See Figure 1.

```
1/1
/  \
1/2  2/1
|    |
1/3  3/2  2/3  3/1
|    |    |    |
1/4  4/3  3/5  5/2  2/5  5/3  3/4  4/1
```

Figure 1. The first four levels of the Calkin–Wilf tree.

Calkin and Wilf [4] have shown that this tree contains every positive rational number once and only once, with each rational number being represented as a reduced fraction. Reading the tree line by line...
line, the Calkin–Wilf sequence of the enumeration of \(\mathbb{Q}^+ \) starts with
\[
\begin{array}{cccccccccccc}
1 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 4 & 3 & 5 & 2 & 5 & 3 & 4 & 1 & \ldots
\end{array}
\]
As pointed out by Reznick \[8\], this sequence was already investigated by Stern \[9\] in 1858. This sequence satisfies the iteration
\[
x_1 = 1, \\
x_{n+1} = \frac{1}{2 \lfloor x_n \rfloor + 1 - x_n}.
\]
This observation is due to Newman (see Knuth \[7\]).

The Calkin–Wilf sequence has many interesting properties. For example, it encodes the hyperbinary representations of all positive integers (see \[4\]); it can be used as a model for the game Euclid, first formulated by Cole and Davie \[5\] (see also Hofmann et al. \[6\]); and several statistical properties of the Calkin–Wilf tree have been considered in Alkauskas and Steuding \[2\].

In this paper we define the \(q \)-analogue of the Calkin–Wilf tree and the \(q \)-analogue of the hyperbinary expansion. We then show at Theorem 2 that this tree defines the \(q \)-Calkin–Wilf sequence of polynomials \(f(n; q) \), where \(f(n; q) \) is the generating function for the number of hyperbinary expansions according to the number of powers that are used exactly twice. We also derive results for branches in the \(q \)-analogue of the Calkin–Wilf tree and for predecessors and successors in the \(q \)-analogue of the Calkin–Wilf sequence. In what follows we designate \(\mathbb{N} \) as the set of all positive integers \(\{1, 2, 3, \ldots\} \) and \(\mathbb{N}_0 \) as the set of all non-negative integers \(\{0, 1, 2, \ldots\} \).

2. The \(q \)-Calkin–Wilf Tree and the \(q \)-Calkin–Wilf Sequence

The following definition of the \(q \)-Calkin–Wilf tree generalises the definition of the Calkin–Wilf tree found in Bates et al. \[3\].

Definition 1. *(q-Calkin–Wilf Tree).* The \(q \)-Calkin–Wilf tree is a binary tree with root \(\frac{1}{1} \). Each vertex \(\frac{a}{b} \) from level 1 onwards is a parent to two children: a left child \(\frac{aq+b}{b} \) and a right child \(\frac{aq}{b} \), where \(q \in \mathbb{N} \). Each of these children are located one level below their parent in the tree.

Figure 2 shows the first four levels of the \(q \)-Calkin–Wilf tree.

![Figure 2. The first four levels of the \(q \)-Calkin–Wilf tree.](image-url)
Clearly, by induction on \(j \), the left most and right most vertices in level \(j \) of the \(q \)-Calkin–Wilf tree are respectively,

\[
\frac{1}{1 + (j - 1)q} \quad \text{and} \quad \frac{1 + q + \cdots + q^j}{1}.
\]

The \(q \)-Calkin–Wilf tree is related to the concept of a \(q \)-hyperbinary expansion and the \(q \)-hyperbinary sequence as shown in the following two definitions.

Definition 2. (\(q \)-Hyperbinary Expansion). The hyperbinary expansion of a number \(n \) is an expansion of \(n \) as a sum of powers of 2, each power being used at most twice. We denote the set of all hyperbinary expansions of \(n \) by \(\mathbb{H}_n \), and the total number of powers that are used exactly twice in the hyperbinary expansion \(x \in \mathbb{H}_n \) by \(h_n(x) \). The \(q \)-hyperbinary expansion of \(x \) is defined as \(q^{h_n(x)} \).

Definition 3. (\(q \)-Hyperbinary Sequence and \(q \)-Calkin–Wilf Sequence). Let \(f(n; q) \) be the polynomial of the sum of \(q \)-hyperbinary expansions of \(n \) with \(f(0; q) = 1 \) and \(f(-1; q) = 0 \). Then the sequence \(\{ f(n; q) \}_{n \in \mathbb{N}_0} \) is called the \(q \)-hyperbinary sequence and the sequence \(\{ f(n + 1; q) \} \) is called the \(q \)-Calkin–Wilf sequence.

Example 1. The hyperbinary expansions of 5 are \(4 + 1 \) and \(2 + 2 + 1 \). Thus \(q \)-hyperbinary expansions of 5 are \(q^0 \) and \(q^1 \). Accordingly, \(f(5; q) = 1 + q \). Similarly, the hyperbinary expansions of 10 are \(8 + 2 \), \(8 + 1 + 1 \), \(4 + 4 + 2 \), \(4 + 4 + 1 + 1 \) and \(4 + 2 + 2 + 1 + 1 \), which implies that the \(q \)-hyperbinary expansions of 10 are \(q^1 \), \(q^1 \), \(q^1 \), \(q^2 \) and \(q^2 \), respectively. Accordingly, \(f(10; q) = 1 + 2q + 2q^2 \).

Following [3], we define the \(q \)-analogue of the branches and diagonals of the \(q \)-Calkin–Wilf tree.

Definition 4. (Branches and diagonals). Let \(v \) be any vertex of the \(q \)-Calkin–Wilf tree and \(j \in \mathbb{N} \). The set of all vertices that is generated when an infinite number of right (left) movements proceed from the left (right) child of \(v \) is denoted by \(L_v \) (\(R_v \)) and its called the left (right) branch of \(v \). The set \(L_v \) (\(R_v \)) includes the left (right) child of \(v \).

The \(j \)th left (right) diagonal \(L_j \) (\(R_j \)) of the \(q \)-Calkin–Wilf tree is the set of all vertices found at the \(j \)th leftmost (rightmost) position in each level of the tree beginning at level \(\lceil \log_2 j \rceil + 1 \).

Example 2. We have for \(m \in \mathbb{N}_0 \),

\[
L_1 = \left\{ \frac{1}{1 + mq} \right\},
\]

\[
R_1 = \left\{ \frac{1 + q}{1 + mq + mq^2} \right\},
\]

\[
R_1 = \left\{ \frac{\sum_{i=0}^{q} q^i}{1} \right\},
\]

\[
L_2 = \left\{ \frac{1 + (m + 1)q}{1 + mq} \right\}.
\]
and
\[R_2 = \left\{ \frac{\sum_{i=0}^{m} q^i}{\sum_{i=0}^{m+1} q^i} \right\}. \]

The proof of the following theorem when \(q = 1 \) can be found in [4] and an inductive proof is found in Aigner and Ziegler [1]. Recently, Bates et al. [3] offered a proof based on branching in the tree which can be readily generalised to establish the following theorem relating to the \(q \)-Calkin–Wilf tree.

Theorem 1. Let the concatenation of successive levels of the \(q \)-Calkin–Wilf tree form a sequence. The denominator of each vertex in this sequence is the numerator of the next vertex in the sequence.

Remark 1. The sequence described in Theorem 1 is of the form
\[\left\{ \frac{g(n; q)}{g(n + 1; q)} \right\}_{n \in \mathbb{N}_0} \]
for some function \(g \) with \(g(0; q) = g(1; q) = 1 \). Now the left and right children of
\[\left\{ \frac{g(n; q)}{g(n + 1; q)} \right\} \]
are respectively,
\[\left\{ \frac{g(2n + 1; q)}{g(2n + 2; q)} \right\} \quad \text{and} \quad \left\{ \frac{g(2n + 2; q)}{g(2n + 3; q)} \right\}. \]
Thus by Definition 1, we obtain for all \(n \in \mathbb{N}_0 \),
\[g(2n + 1; q) = g(n; q) \]
and
\[g(2n + 2; q) = gg(n; q) + g(n + 1; q). \]

Theorem 2. The \(q \)-Calkin–Wilf sequence is the concatenation of successive levels of the \(q \)-Calkin–Wilf tree. That is, for all \(n \in \mathbb{N}_0 \),
\[g(n; q) = f(n; q). \]

Proof. We proceed by induction on \(n \).

The theorem is true for \(n = 0 \). Assume that the theorem holds for all integers 1, 2, . . . , \(2n \). We now prove it for the cases \(2n + 1 \) and \(2n + 2 \).

Case 1. \(2n + 1 \). Using the proof of the case \(f(2n + 1; q) = f(n; q) \) under the restriction \(q = 1 \) in [3, Theorem 2], there exists a bijection \(\alpha : \mathbb{H}_{2n+1} \rightarrow \mathbb{H}_n \) such that \(h_{2n+1}(x) = h_n(\alpha(x)) \). Accordingly,
\[f(2n + 1; q) = \sum_{x \in \mathbb{H}_{2n+1}} q^{h_{2n+1}(x)} \]
\[= \sum_{y \in \mathbb{H}_n} q^{h_n(y)} \]
\[= f(n; q). \]

By our induction hypothesis, \(f(2n + 1; q) = g(n; q) = g(2n + 1; q) \).
Case 2. : $2n + 2$. From the proof of [3, Theorem 2], it follows that each hyperbinary expansion $x \in \mathbb{H}_{2n+2}$ can be mapped to either the hyperbinary expansion x' of n or the hyperbinary expansion x'' of $n + 1$ such that $h_n(x) = h_{n+1}(x') + 1$ and $h_n(x) = h_{n+1}(x'')$. Accordingly,

$$f(2n + 2; q) = \sum_{x \in \mathbb{H}_{2n+2}} q^{h_{2n+2}(x)}$$

$$= \sum_{x' \in \mathbb{H}_n} q^{h_n(x')} + \sum_{x'' \in \mathbb{H}_{n+1}} q^{h_{n+1}(x'')}$$

$$= qf(n; q) + f(n + 1; q).$$

By our induction hypothesis, $f(2n + 2; q) = qg(n; q) + g(n + 1; q) = g(2n + 2; q)$.

The result follows.

Corollary 1. For all $n \in \mathbb{N}_0$,

$$f(2n + 1; q) = f(n; q)$$

and

$$f(2n + 2; q) = qf(n; q) + f(n + 1; q).$$

Proof. This follows from Remark 1 and Theorem 2.

We now present alternative recurrence relations to those given in Corollary 1.

Theorem 3. For $n \in \mathbb{N}$,

$$f(n; q) = \begin{cases} f(n - 1; q) - qf(n - 2; q) & n \text{ odd} \\ qf(n - 1; q) + f(\frac{n}{2}; q) & n \text{ even.} \end{cases}$$

Proof. We have the following cases:

(1) n odd: We prove this by induction on n.

We have $f(1; q) = f(0; q) - qf(-1; q)$.

Let for some k, $f(2k + 1; q) = f(2k; q) - qf(2k - 1; q)$. By Corollary 1,

$$f(2k + 2; q) = qf(k; q) + f(k + 1; q)$$

$$= qf(k; q) + f(2k + 3; q).$$

That is, $f(2k + 3; q) = f(2k + 2; q) - qf(2k + 1; q)$.

(2) n even: By Corollary 1,

$$f(2k + 2; q) = qf(k; q) + f(k + 1; q)$$

$$= qf(2k + 1; q) + f(k + 1; q).$$

Letting $n = 2k + 2$ gives the result.
Definition 5. \textit{(Generating function for the q-hyperbinary sequence).} The generating function for the q-hyperbinary sequence \(\{f(n; q)\}_{n \in \mathbb{N}_0} \) is given by

\[
F(x, q) = \sum_{n \in \mathbb{N}_0} f(n; q)x^n.
\]

Theorem 4. The generating function \(F(x, q) \) is given by

\[
F(x, q) = \prod_{j \in \mathbb{N}_0} (1 + x^{2^j} + qx^{2^{j+1}}).
\]

Proof. Let \(F(x, q) = F_{\text{odd}}(x, q) + F_{\text{even}}(x, q) \) where

\[
F_{\text{odd}}(x, q) = \sum_{n \in \mathbb{N}_0} f(2n + 1; q)x^{2n+1} \quad \text{and} \quad F_{\text{even}}(x, q) = \sum_{n \in \mathbb{N}_0} f(2n; q)x^{2n}.
\]

By Corollary 1, and since \(f(-1; q) = 0 \),

\[
F_{\text{odd}}(x, q) = xF(x^2, q) \quad \text{and} \quad F_{\text{even}}(x, q) = (1 + qx^2)F(x^2, q).
\]

And so,

\[
F(x, q) = (1 + x + qx^2)F(x^2, q) = (1 + x + qx^2)(1 + x^2 + qx^4)F(x^4, q) = \cdots = \prod_{j \in \mathbb{N}_0} (1 + x^{2^j} + qx^{2^{j+1}}),
\]

as claimed. \(\square \)

Theorem 5. We have

\[
f(2^k - 2; q) = \begin{cases}
\frac{q^{k-1}}{q-1} & \text{for } q > 1 \\
k & \text{for } q = 1.
\end{cases}
\]

Proof. If \(f(n; 1) = 1 \) then \(n \) has only one hyperbinary expansion \(h \) which is the binary expansion of \(n \), which implies that \(h_n(h) = 0 \) and \(f(n; q) = 1 \). It follows from [3, Theorem 4] that \(f(2^k - 1; q) = 1 \).

By Corollary 1,

\[
f(2^k - 2; q) = qf(2^{k-1} - 2; q) + f(2^{k-1} - 1; q) = qf(2^{k-1} - 2; q) + 1.
\]

(2.1)

By repeated use of (2.1),

\[
f(2^k - 2; q) = 1 + q(1 + qf(2^{k-2} - 2; q)) = 1 + q + q^2 + \cdots + q^{k-1}f(0; q) = 1 + q + q^2 + \cdots + q^{k-1},
\]

as claimed. \(\square \)

The following theorem is a generalisation of a result found in [3, Theorem 3]. It shows that \(f(n; q) \) is even only when \(n \equiv 2 \mod 3 \) and \(q \) is odd.
Theorem 6. We have

i) \(f(3n; q) \) and \(f(3n + 1; q) \) are odd

ii) \(f(3n + 2; q) \) is even (odd) for \(q \) odd (even).

Proof. The result follows by induction on \(n \). \(\Box \)

3. Branches

We now derive results for left and right branches of the \(q \)-Calkin–Wilf tree.

Theorem 7. For \(k \in \mathbb{N}_0 \),

(i) \(R_{\frac{a}{b}} = \left\{ \frac{qa + b}{kq(qa + b) + b} \right\} \),

(ii) \(L_{\frac{a}{b}} = \begin{cases} \left\{ \frac{q^k a + (qa + b) \sum_{i=0}^{k-2} q^i}{qa + b} \right\} & \text{for } q > 1 \\ \left\{ k + \frac{a}{q + b} \right\} & \text{for } q = 1 \end{cases} \)

Proof. We consider \(R_{\frac{a}{b}} \) and \(L_{\frac{a}{b}} \) respectively.

(i) \(R_{\frac{a}{b}} \): The right child of \(\frac{a}{b} \) is \(\frac{c}{b} \) where \(c = qa + b \). Consecutive left descendants of \(\frac{c}{b} \) are

\[
\frac{c}{qc + b}, \frac{c}{2qc + b}, \frac{c}{3qc + b}, \ldots
\]

That is, the \(k \)th term, \(k > 0 \), in \(R_{\frac{a}{b}} \) is

\[
\frac{qa + b}{(k - 1)q(qa + b) + b}.
\]

(ii) \(L_{\frac{a}{b}} \): The left child of \(\frac{a}{b} \) is \(\frac{d}{b} \) where \(d = qa + b \). Consecutive right descendants of \(\frac{d}{a} \) are

\[
\frac{qa + d}{d}, \frac{q^2 a + (q + 1) d}{d}, \frac{q^3 a + (q^2 + q + 1) d}{d}, \ldots
\]

That is, the \(k \)th term, \(k > 1 \), in \(L_{\frac{a}{b}} \) is

\[
\frac{q^{k-1} a + (qa + b) \sum_{i=0}^{k-2} q^i}{qa + b} = \begin{cases} \frac{q^{k-1} a + (qa + b) \sum_{i=0}^{k-2} q^i}{qa + b} & \text{for } q > 1 \\ k - 1 + \frac{a}{q + b} & \text{for } q = 1 \end{cases}
\]

\(\Box \)

Corollary 2. We have

\[
L_{\frac{a}{b}} = \left\{ \frac{q^k a + (qa + b) \sum_{i=0}^{k-2} q^i}{qa + b} \right\}_{k \in \mathbb{N}_0}
\]

Proof. The result follows from Theorems 7 ii) and 5. \(\Box \)
4. Predecessors and Successors

We now generalise some of the results for succession and precession found in [3] by determining successors and predecessors in the q-Calkin–Wilf sequence.

Theorem 8. (Successors). Let x_n be the nth term in the q-Calkin–Wilf sequence where $n \in \mathbb{N}$. Then

\[
x_{2n+1} = \frac{1}{1 - qx_n}.
\]

Proof. By Definition 3 and Corollary 1,

\[
x_{2n} = \frac{f(2n+1;q)}{f(2n+2;q)} = \frac{f(n;q)}{qf(n;q)+f(n+1;q)} = \frac{m}{p},
\]

say, and

\[
x_{2n+1} = \frac{f(2n+2;q)}{f(2n+3;q)} = \frac{qf(n;q)+f(n+1;q)}{f(n+1;q)}.
\]

That is,

\[
x_{2n+1} = \frac{p}{p - qm},
\]

and

\[
\frac{1}{x_{2n+1}} = 1 - q \frac{m}{p} = 1 - qx_n.
\]

The result follows. \(\square\)

Theorem 9. (Predecessors). Let x_n be the nth term in the q-Calkin–Wilf sequence where $n = 2, 3, 4, \ldots$. Then,

i) For $q > 1$,

\[
x_{n-1} = \begin{cases} \frac{q-1}{q} & \text{for } \frac{1}{x_n} \equiv 1 \mod q, \\ \frac{1}{x_n} - 1 \left(1 - \left\{ \frac{1}{x_n} \right\} \right) + \frac{q-1}{q} & \text{otherwise}. \end{cases}
\]

ii) For $q = 1$,

\[
x_{n-1} = \begin{cases} \frac{q-1}{q} & \text{for } \frac{1}{x_n} \in \mathbb{N} \\ \left\{ \frac{1}{x_n} \right\} + 1 - \left\{ \frac{1}{x_n} \right\} & \text{otherwise.} \end{cases}
\]

where $\left\lfloor \frac{1}{x_n} \right\rfloor$ denotes the integer part, and $\left\{ \frac{1}{x_n} \right\}$ the fractional part, of $\frac{1}{x_n}$.

Proof. There are three cases to consider.
(1) For $q > 1$, if $x_n = \frac{1}{1 + kq}$, $k \in \mathbb{N}$, then $x_n \in L_1$, for which

$$x_{n-1} = \frac{1 + q + q^2 + q^3 + \cdots + q^{k-1}}{1}$$

found on R_1. Thus

$$k = \frac{\frac{1}{x_n} - 1}{q}$$

and the result follows since $1 + q + q^2 + q^3 + \cdots + q^{k-1}$ is a geometric progression with common ratio q, and $\frac{1}{x_n} = 1 + kq$.

(2) For $q > 1$, let $\frac{a}{b}$ be the root of x_{n-1} and x_n. Then x_{n-1} and x_n are the kth terms respectively in the left and right branches of $\frac{a}{b}$. From Theorem 7, for $k \in \mathbb{N}_0$,

$$x_{n-1} = \frac{q^k a + (qa + b) \frac{a^k - 1}{q-1}}{qa + b}$$

and

$$x_n = \frac{qa + b}{kq (qa + b) + b}.$$

Let

$$\frac{m}{p} = \frac{1}{x_n} = \frac{kq (qa + b) + b}{qa + b}.$$

Then $\left\lfloor \frac{1}{x_n} \right\rfloor = \left\lfloor \frac{m}{p} \right\rfloor = kq$. That is, $k = \left\lfloor \frac{m}{q} \right\rfloor$.

Also $p = qa + b, b = p \left\{ \frac{m}{p} \right\}$ and $qa = p - p \left\{ \frac{m}{p} \right\}$. Thus

$$x_{n-1} = \frac{\left\lfloor \frac{m}{p} \right\rfloor - 1}{p} \left(p - p \left\{ \frac{m}{p} \right\} \right) + \frac{\left\lfloor \frac{m}{q} \right\rfloor - 1}{q} \left(q - 1 \right)$$

$$= \frac{\left\lfloor \frac{m}{p} \right\rfloor - 1}{q} \left(1 - \left\{ \frac{m}{p} \right\} \right) + \frac{\left\lfloor \frac{m}{q} \right\rfloor - 1}{q} \left(q - 1 \right)$$

$$= q \frac{\left\lfloor \frac{m}{q} \right\rfloor - 1}{q} \left(1 - \left\{ \frac{1}{x_n} \right\} \right) + q \frac{\left\lfloor \frac{m}{q} \right\rfloor - 1}{q} \frac{\left\lfloor \frac{m}{q} \right\rfloor}{q - 1}.$$

(3) The $q = 1$ case is proven in [3, Theorem 18].

\[\square \]

Acknowledgement 1. We thank the referees for suggesting important improvements to the presentation of this paper.
References

Department of Mathematics, University of Haifa, 31905 Haifa, Israel
E-mail address: toufik@math.haifa.ac.il

Centre for Pure Mathematics, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW, Australia 2522.
E-mail address: bbates@uow.edu.au