ABSTRACT

Hands-on experiences are indispensable to train IT operators. However, it is often difficult to conduct hands-on practices in many locations due to lack of resources such as PCs and network equipments. The cost of gathering lecturers and participants at one hands-on site is another possible problem in this situation. Utilization of remotely located hands-on environment is one of the solution to solve these problems. StarBED is a testbed facility for conducting network experiments. Installation of any OSes, adjusting the network topologies according to the requirements can be easily realized utilizing StarBED and SpringOS. A software suite, SpringOS, was developed exclusively for automating the experiment setups in StarBED. This facility could be used to address the problems of lack of resources and high cost for traveling. This research conducted a region-wide remote hands-on workshop utilizing the StarBED inviting 42 participants from 10 Asian countries. The workshop was designed so that the remote participants do not have to travel to single place, and prepare same specification PCs at each site. Through the collected data and feedback, the proposed workshop model was proved to be feasible and effective.

This paper describes the requirements and approaches for region-wide remote hands-on workshop utilizing the StarBED for building target hands-on environment. As the contents of the conducted workshop could be applied to the general IT human resource development programs, this paper could be useful for the future remote hands-on programs to train IT operators.

Categories and Subject Descriptors
C.2.3 [Network Operations]: [Network management, Network monitoring, Public networks]

General Terms
Management

Keywords
Distributed Hands-on Environment, Network Testbed

1. INTRODUCTION

Actual hands-on experiences of IT technologies are important for developing IT operator’s skill. Generally, operators gain their skills though their actual operations. However, it is difficult to have these experiences on the current Internet, as it is already established as a social infrastructure, and network failures are hard to be accepted. Therefore, providing a hands-on workshop that imitates the real environments is considered to be efficient, where all participants can have a real experiences through exercises and problems introduced by lectures.

School on Internet Asia (SOI Asia)[3, 17] is a distance education project that provides a platform which shares educational contents such as real-time and archived lectures through the Internet with 27 organizations in 13 Asian countries. In order to guarantee a sustainable platform operations, SOI Asia has been conducting yearly workshop since 2002[4]. The workshop started in a face-to-face model, but
since 2006, SOI Asia has conducted a location-distributed workshop in order to accommodate more participants at the same time that utilized virtualization technology. The hands-on workshop system has successfully accommodated 42 participants from 19 organizations in 10 countries[11, 16]. The hands-on environment was feasible, but experienced an insufficient machines performance.

StarBED is a network testbed consisted with 680 PCs used for performing experiments. This environment can also be used for grid computing experiments and for conducting educational programs. StarBED is highly customizable, and experimenters face few restrictions in customizing it to satisfy their requirements — experimenters can easily make changes to assigned nodes, change the OS, install application software, and create various network topologies using VLAN. We have developed SpringOS[19, 20, 12], a supporting software suite that allows experimenters to easily perform experiments on StarBED according to their configurations. The diverse possibilities afforded by SpringOS allow StarBED to used with a wide range of applications.

We conducted SOI Asia 2008 Spring Global E-Workshop utilizing a hands-on environment on StarBED accommodating 42 participants from 16 organizations in 10 Asian countries. Based on the data and feedback collected during the workshop, the approach to conduct remote hands-on workshop utilizing the StarBED was proved to be feasible and effective.

In this paper, we present an overview of StarBED and SpringOS, and then describe our efforts toward building the remote educational hands-on environment utilizing StarBED and SpringOS. The educational contents of the workshop are described in another paper[10]. This paper could be an example for conducting remotely located hands-on workshops environment, and furthermore, it could provide information to build new network testbeds.

2. RELATED WORK

The simplest way to conduct a hands-on exercise is gathering PCs and switches to single location and build environments using these equipments[13] and participants should be at the same location with the equipments. However, it is difficult to conduct hands-on exercise with this method when the number of the participants increase as the maintenance cost of equipments. Therefore, many researches were proposed to provide hands-on laboratory utilizing virtual machine technologies [21, 8] and utilizing remote connections [23]. Virtual machine technologies help to reduce costs to build and maintain hands-on facilities and increase the number of participants to join the exercise. Remote connections enable to participate in the hands-on exercise remotely when the participants cannot visit the location personally.

The result of these researches are valuable, however, the purpose and scales are different than the proposing region-wide IT education. The related work cannot be applied to our proposal directly. A study[11] shows the performance of virtual machines is not enough for hands-on exercise with many participants.

At the same time, there are several network testbeds to conduct network experiments. These include Emulab[24], Planetlab[22], VM Nebula[18], ONL[14] and StarBED[20]. Most of these network testbeds has supporting software which helps to build target experimental environments and conduct network experiments.

Major problems of hands-on exercises and network experiments are the same; cost of building and maintaining an environments for these works. Network testbed has large number of nodes for experiments and the maintainers have been developing supporting software to automate network experiments. The essential goals are the same with the remote hands-on environments and general purpose network testbeds. Utilizing nodes on network testbeds for hands-on exercise is quite straight-forward approach. There are some reports using network testbed for hands-on exercises[25].

Our approach is to build a hands-on exercise environment utilizing StarBED and SpringOS. There are many actual PCs for network experiments in StarBED and we can use these real (not virtual) nodes as hands-on nodes. StarBED is designed to conduct many type of network experiments, so most kinds of hands-on exercises may also be conducted on StarBED.

3. STARBED AND SPRINGOS

StarBED is located at National Institute of Information and Communications Technology (NICT) Hokuriku Research Center. StarBED aims to support experiments on large-scale complex experimental environment by offering many actual nodes for experiments. The cost of building an experimenter’s target environment is not low because the experimenter has to manage many nodes in StarBED. In order to assist the development of required environment, we have developed SpringOS; it manages PCs and switches required to build a target environment. The experimenters can reduce the cost of building the environment and increase the accuracy of performed experiments by utilizing the SpringOS.

This section describes StarBED and SpringOS.

3.1 StarBED Facilities

StarBED is a PC cluster for network experiments consisted of 680 PCs and 7 switches that connect all the nodes. Experimenters can build their target topologies and drive scenario on the topologies. Nodes in StarBED should have their own roles, which is different with PC cluster for grid computing. Purpose of clusters for grid computing is to get computing result as soon as possible and that of StarBED is to observe behaviors of each node and link.

Any network problems could occur during the experiment, and it is better for the experimenters to have control over all the nodes in such situations. In order to manage the experimental nodes in such cases, StarBED nodes have two out-of-
Nodes in StarBED are divided into six groups according to their specifications. The specifications are listed on the StarBED WWW page[5].

3.2 Roles and Features of SpringOS

SpringOS has various features to help setting up experimental environments and managing nodes during an experiment. Generally, experiments involve the following steps:

1. Resource assignment
2. Installation of OS and application software onto assigned nodes
3. VLAN configuration
4. Scenario driving

SpringOS helps automate these steps; we describe the mechanisms used to accomplish the above steps.

Resource management Experimental resources should be selected by experimenters, and be assigned by StarBED administrators. In order to automate this process, a manager that possesses resource information and can assign suitable resources to an experimenter is required. The resource manager of SpringOS selects and assigns suitable resources according to the experimenter’s requirements. It stores the allocation information and mediates resource assignment to the experimenters. It is also important to provide information about the available resources to the experimenters so that they can determine whether their experiments can be conducted using StarBED.

Software installation onto nodes Installation and configuration of OS and application software on the StarBED nodes is necessary in order to conduct experiments. Manual installation of such software onto all nodes requires a long time. Here, it should be noted that we can use the same OS and application software for many nodes in an experimental environment although the application software that should run might be different. Therefore, SpringOS distributes a template binary disk image of an entire partition or hard disk drive to the experimental nodes. The experimenters only need to install and configure the OS and application software on one node; they can then use this installation as a template for a disk image, and install this image on the other nodes using SpringOS. Nodes in StarBED can be operated in diskless environment. Figure 2 explains this concept of software installation.

Topology configuration StarBED is responsible for Layer 2 (L2) topologies and not for the Layer 3 (L3) one. Experimenters can change the virtual L2 topology using VLAN without changing the physical topology. SpringOS configures the VLAN settings of switches in the experimental network.
faces then communicate the information to the managers that are actually responsible for the processes.

SpringOS automates experiments using all of these features, and experimenters can select the features required for their experiment. For instance, if they want to complete automation of their experiment, they will use all of the features, while if they only want to build experimental environment, they will not even require scenario driving. These options allow great flexibility in conducting experiments, and multiple interfaces are prepared depending on the purpose.

The details of StarBED and SpringOS are described in other papers[20, 19, 12].

4. REQUIREMENTS AND OUR APPROACH

In order to utilize the StarBED as an educational environment, several requirements must be satisfied. This section describes these issues especially with regard to facilities.

4.1 Requirements for Educational Hands-on Environments

Generally, a hands-on practice require some initial environment for the participants to install OSes and application software and change the configuration on the installed OSes and software. Then, the lecturers and teaching assistants monitor the participant’s hands-on progress. Building the initial state is the same as the experimental use of the testbed — installing the required OS and application software and configuring the target network topology. Accordingly, the following features are required:

1. Resource management
2. Software installation onto nodes
3. Topology configuration
4. Scenario Driving
5. Nodes’ power management

Figure 2: Concept of Distributing Diskimage

Figure 3: Scenario Driving

Scenario driving After the software installation onto nodes and L2 topology configuration, experimental scenarios can be run by executing commands on each experimental node. Scenario is consisted of command lists and timing triggers. SpringOS distributes scenarios to each node, and a slave program running on the experimental nodes executes the commands in the scenario. When the nodes require synchronization, they send a message to the scenario manager running on a management node; the scenario manager then triggers events by passing messages to the experimental nodes. Figure 3 shows an example of scenario driving in SpringOS.

Node power management When installing the OS and facing problems during the experiment, the experimental nodes must be turned on or rebooted. When the experiment is over, the nodes should be turned off. In order to automate these actions, StarBED and SpringOS adopt WoL[7], SNMP and IPMI[15]. The technologies that can be used for the power management depend on the node groups, because some of them requires hardware supports.

Figure 4 shows the conceptual relationships of the StarBED facility and the SpringOS modules. The experimenters should enter their requests using the SpringOS interfaces; the inter-
Adding to the basic requirements, the testbed may have to satisfy the following features should be satisfied.

1. Console sharing
2. Out-of-band access to a participant’s console when the participant is using the system
3. Monitor and oversee participants’ hands-on exercises

An ordinary hands-on workshop requires significant resources such as time, travel budgets, and so on to gather lecturers and participants at a same location. In order to avoid these problems distributed hands-on workshop models are proposed and implemented[16].

Figure 5 shows an example of a distributed hands-on workshop. The lecturers and participants are distributed worldwide or region-wide. The class contents are broadcasted to the participants’ PCs at several locations. Bidirectional communication should be possible between the participant sites and the lecturer site in order to allow participants to ask questions. However, the network link from the lecturer to the participants and from the participants to the lecturer can be asymmetric. Participants and lecturers access a concentrated cluster during a hands-on class.

Adding to the basic requirements, the testbed may have to offer several features to conduct a distributed hands-on class.

The following difficulties are encountered in such workshops when attempting to provide the same situation as the concentrated environment[11]:

1. Accessibility from participants’ PC to the hands-on node
2. Interactions between lecturer and participants
3. Monitor and oversee participants’ hands-on exercises

The methods to facilitate interactions between the lecturer and participants such as question and answer are important. However, they will be supported at the software level such as IRC, instant messengers, which are irrelevant to the StarBED facilities. Therefore, the interaction methods will not be discussed in this paper.

4.2 Our Approach

In this subsection, we explain our approach to satisfy the above-mentioned requirements using StarBED.

The features provided in SpringOS for building an experimental environment can also be used for creating a base environment for an educational environment; this includes topology settings, software installation, and scenario driving.

The out-of-band access method can be used for monitoring and overseeing the participants’ exercises. In particular, KVM is a suitable tool, because it cannot be influenced by the participants’ behavior. Lecturers can take over the control of the participants’ PCs during any network problems except hardware crashes. Lecturers can use application software such as watch, screen and ttysnoop to monitor the participants’ progress and recover problems on participants’ PCs.

For a distributed environment, the management and experimental networks in StarBED can be connected to the Internet using the high-quality Internet connections provided by WIDE Project (10 Gbps) and JGN2plus (1 Gbps). We employ a KVM provided by Raritan[2]; this product enables the use of KVM features via web browsers from remote locations, and it can thus support an educational environment even if the participants and lecturers are distributed.

5. SOI ASIA 2008 SPRING GLOBAL E WORKSHOP

This section describes SOI Asia operators workshop 2008 as an example of an educational hands-on workshop conducted using StarBED.

The SOI Asia Project[17] offers e-learning environments to 27 organizations in 13 Asian counties using Internet technologies. In order to share a real time lecture and maintain the network and applications distributed in region-wide, operational staffs are required at each site. Developing skills of the operational staffs are mandatory to keep a sustainable operation. Therefore, this workshop aims to develop the skills of staffs that will support the operation of this distance education platform.
The contents of the hands-on workshop are as follows:

1. Network configuration for end nodes
2. OSPF routing configuration
3. Multicast routing configuration
4. Server configuration

Participants will setup a network for an assigned node, install a routing daemon and servers, and then configure these application software. The workshop is conducted with hands-on exercises after a lecture because this type of class is suite for the purpose of this workshop.

Forty-two participants from sixteen organizations in ten countries took part in this workshop.

The following section explains the details of the workshop and our approaches to satisfy its requirements.

5.1 Target Environment

Figures 6, 7 and 8 and Table 1 show nodes and topologies information for the workshop. The workshop lasted for four days, and the topologies were changed based on the exercises of every day. The solid lines in these figures indicate the network for the hands-on exercises while the broken lines indicate the management network used to login onto nodes and supervise the participants. These topologies are designed based on previous workshop experiences.

<table>
<thead>
<tr>
<th>Day</th>
<th>OS</th>
<th>Topology</th>
<th># of nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>FreeBSD 6.2</td>
<td>1</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>FreeBSD 6.2</td>
<td>2</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>Fedora Core 6</td>
<td>3</td>
<td>56</td>
</tr>
</tbody>
</table>

Participants built a site as part of exercises and connect it to Asian Internet Interconnection Initiatives Project (AI3)[9] network via WIDE’s network for receiving actual packets from lecturer’s sites. One node is assigned to each participant and they login to the stepping stone machine in order to connect their node in StarBED.

A machine next to the stepping stone is used for observing the access traffic to StarBED and it measures the mirrored traffic to the stepping stone.

5.2 Environment Deployment

In order to create the environment described in the previous subsection, we had to address the following issues.

5.2.1 Node Assignment

In this case, we only had to setup the initial node state and L2 configuration using VLAN because the participants performed the L3 configuration and installation of the required application software as a part of the exercises. We assigned group F nodes because hands-on nodes were required to have at least two network interfaces on the experimental network and due to performance issues. Group F is consisted of 168 PC nodes that have 3.2 GHz HT acceptable Pentium 4 CPU, 8 GB memory, 2 × 80 GB SATA hard disk drives and 4 gigabit ethernet controllers. Furthermore, the nodes can be controlled utilizing IPMI; it enables us to wake, shutdown and reboot nodes from remote sites.

5.2.2 Installation of OS and Application Software

This step is exactly the same step for experiments. We have installed and configured one template node for each OS, and then we have distributed these to the experimental nodes, as described in Section 3.2.
We installed the template on an experimental node not as a part of the entire experiment but only as an installation. This enables us to understand the node binding of the logical topology for the workshop and physical topology of StarBED. Moreover, we needed to change the L2 topology between days 2 and 3 without changing of the disk images. Therefore, it was convenient that the software installation and topology configuration phases were separated.

Since 168 reserved nodes were sufficient to prepare 60 FreeBSD nodes and 67 Fedora Core nodes simultaneously, we prepared FreeBSD nodes and Fedora Core nodes before the workshop.

The stepping stone machine and the observation node were installed and configured manually for two reasons. First, the configurations were definitely different from those of the other nodes and second we did not use the nodes for the experiments because we changed the physical topology to connect them to a global line directly.

5.2.3 Network Configuration

There is a SpringOS module, called switches manager, that is running in StarBED for configuring the switches to build target topologies. It configures VLAN on each switch based on the experimenter’s requests after checking permissions of the experimenter to configure requested ports and VLAN ids. In order to build the target topologies, we used a script for configuring the switches statically. The script sends requests that include node id, port number, and VLAN id to the switch manager to setup a VLAN according to the configuration file. It also changes the port states to activate or inactivate.

For the external connections, WIDE and AI3 operators configured the connections manually.

5.2.4 Offering Out-of-band Access for Lecturers

As described above, out-of-band accesses are required for lecturers to administrate participants and establish a participant’s connection to the hands-on nodes. The stepping stone machine, which is connected to the Internet provides both of these functions. KVM over IP offers a method to monitor and handle a participant’s hands-on behavior during network problems.

In order to understand StarBED environment and prepare OS images, a teaching assistant visited StarBED and learned its behavior before the workshop.

5.3 Workshop Deployment

Table 2: Time for Picking Up OS Images

<table>
<thead>
<tr>
<th>OS</th>
<th>partition size</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreeBSD</td>
<td>18 GB</td>
<td>1275</td>
</tr>
<tr>
<td>Fedora Core</td>
<td>16 GB</td>
<td>873</td>
</tr>
</tbody>
</table>

Table 3: Time for Distributing OS Images

<table>
<thead>
<tr>
<th>OS</th>
<th># of nodes</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreeBSD</td>
<td>67</td>
<td>2552</td>
</tr>
<tr>
<td>Fedora Core</td>
<td>60</td>
<td>1832</td>
</tr>
</tbody>
</table>

The hands-on works had been conducted during the workshop from March 30 to April 4, 2008. Forty-two participants from sixteen organizations in ten countries joined this workshop. The lecturers and teaching assistants didn’t visit StarBED physically, and one StarBED administrator monitored and operated the StarBED facilities by communicating using IRC, instant messengers, and Skype.

We had prepared the following a week before the workshop.

1. Fedora Core and FreeBSD installation
2. Configuring these OSes for hands-on work
3. Picking up diskimages of these OSes
4. Distributing these images to required nodes
5. Setting up topologies
6. Configuring stepping stone node and measurement node

The required numbers of nodes are listed in Table 1, and we prepared spare nodes in case there were problems. We installed 67 FreeBSD and 60 Fedora Core. We required 4 lecturer nodes maximally, thus we prepared 7 nodes including spare nodes. The FreeBSD node number includes this lecture nodes because we could use the same image for FreeBSD hands-on nodes. Some of the nodes experienced hardware problems and we had to replaced these nodes with spare nodes.

6. EVALUATION

The evaluation of the region-wide remote hands-on workshop is described in this section. Firstly, the times for developing the environment following the steps illustrated in Subsection 5.3 are described. Secondly, the feedback result from the workshop lecturers and participants are described.

6.1 Environment Evaluation

Table 2 and Table 3 show the required times for accomplishing the third and fourth item in Subsection 5.3. The former is to pick up FreeBSD and Fedora Core disk images, and the latter is to distribute the picked up OSes to each PC both utilizing SpringOS.

The required times for building the target topologies, which is the fifth item in Subsection 5.3, is listed in Table 4. The measured times are quite long, because the switch manager and interface script of the switch manager were not optimized. The times of building the target topologies could be shortened if the optimization is done. However, the times
were short enough to configure the daily network in this workshop and the topology changes were performed after the daily hands-on practices. As topologies 2 and 3 utilized different set of OSes and PCs and they can coexist, the changes were conducted after day 2 hands-on practice simultaneously. The required times for topology changes were measured again after the workshop to check the average time required for the task. The result is shown in Table 5, and the times for the topology change don’t differ by each trial. From this result, we can expect the times for building the topologies that is depends on the scale of target topologies.

After the workshop, hard disk drives on each node were required to be cleaned up by writing the default diskimage. VLAN configurations on switches also had to be set to default. The required time for initializing the nodes is shown in Table 6, and for setting the VLAN configuration to default, 2201s were required.

Considering the result, we can say that the hands-on practice environment on StarBED could be prepared following the steps in Subsection 5.3 in a few days.

6.2 Feedback Evaluation

We conducted questionnaire at the end of the workshop to the workshop lecturers, teaching assistants and the participants.

In the past region-wide distributed hands-on workshops[3], SOI Asia used VMware machines on a physical node to build a sufficient large scale environment. The node performance have improved in this workshop as each participant was using one physical high-end StarBED node. The only problem encountered in this workshop should be the connection speed from the distributed site to the StarBED site via the Internet. Thus, one of the questionnaire is to know the each day’s participant’s satisfaction degrees of their speed for SSH connection to the StarBED hands-on node. Five indicate the best satisfaction and one is the least. The time includes the line speed and ssh processing time of the hands-on server. We evaluated that 5 and 4 indicate positive response, 3 indicates fair response, and 2 and 1 indicate negative response and list the result in Table 7. Thirty-three participants for day 1 to day 3, and thirty-four participants for day 4, answered the questionnaire. Based on the evaluation as shown in Table 7, more than 76% participants were satisfied with the SSH connection from their local node to the StarBED hands-on node, and we evaluated this rate to be feasible.

Four out of four lecturers gave the feedback, and the questionnaire and their answer is shown in Table 8. One lecturer did not answer the questionnaire because she did not use StarBED for her lecturing topic. Almost all answers were positive to the hands-on environments on StarBED.

According to the result, it can be said that our approach utilizing the StarBED and SpringOS was satisfactory in terms of node performance and monitoring methods.

6.3 Problems in the Workshop

During the workshop, we encountered the following problems:

1. Lecturers could not access KVM over IP
2. Problems caused by participants

The former one was solved by restarting the server machine. The latter one was not really a “problem”, but it needed to be addressed in order for the lecturer and teaching assistants to administrate a participant’s exercise. Most of the time, the participants could solve the problems by double-checking the textbooks. However, there were some
cases the lecturers or the teaching assistants had to help, such as incorrect configurations in OS bootstrap files or deletion of important files. Those problems were solved by utilizing the KVM access to the StarBED nodes, or by utilizing IPMI to shutdown and turn on the targeted nodes.

7. CONCLUSION AND FUTURE WORK

It is important to train IT specialists to solve future Internet-related problems. Generally, operators gain substantial knowledge through hands-on experiences. However, in these days, it could be disastrous for the operators to make any mistakes in the Internet operations, as the Internet is used as a social infrastructure, and it provides many critical services. Moreover, these services are abstracted at a high level and newcomers cannot quickly learn the framework of each service. Therefore, it is important for operators to have hands-on experiences in an educational environment separated from the actual environments.

This paper describes our approach to conduct region-wide real-time distributed hands-on workshops utilizing StarBED and SpringOS. An educational environment could be built utilizing tools for conducting network experiments on this network testbed. On the proposed environment, we conducted SOI Asia 2008 Spring Global E-Workshop inviting 42 participants from 16 organization in 10 countries.

According to the questionnaires, problems were encountered in the lecturers’ and teaching assistants’ preparation and experiences for using StarBED. It was the first workshop for both SOI Asia staffs and StarBED administrators, and neither of them had experiences to use StarBED for educational purpose. However based on this experience and with more preparation, problems mentioned in the evaluation section could be solved for the future workshops.

Based on the evaluation, most of the participants and lecturers were satisfied with our approaches for the stabilization and performance of nodes and connections, and we evaluated this environment as feasible and effective as the hands-on practice environment for distributed participants.

In this workshop, we adopt hands-on exercises after a lecture. StarBED features enable to conduct this kind of hands-on workshop; experimental environment on StarBED can be connected to the Internet, install any kind of OS onto each node, can run routing daemons building any L2 topologies and period based reservation. Furthermore, our approach should enable other type of exercise such as trial and error type exercise depending on the purpose of exercise.

In order to reduce the preparation cost without decreasing the stabilization and performance of hands-on site, it is possible to utilize the virtual nodes for future hands-on practice environments utilizing StarBED. In previous workshop, we adopted virtual node technologies but there were performance problems. In order to address this issues, we will use one virtual node for one physical node. The portability of virtual nodes will allow lecturers to prepare the environment more easily, at the same time the optimum performance for the hands-on nodes is maintained as occupation of a physical node resources is done only by one virtual node. Moreover, many tools can be used to monitor and control virtual nodes without accessing the virtual node console. We will discuss the use of virtual nodes in our next workshop.

8. REFERENCES

http://www.starbed.org/.
http://www.wide.ad.jp/.

