Model Driven Context Aware Reactive Applications

Tony Clark, Dean Kramer and Samia Oussena

July 27, 2011

Abstract

Context aware reactive applications (CARA) are of interest because of the explosion of mobile, tablet and web-based platforms. The complexity and proliferation of implementation technologies makes it attractive to use model-driven techniques to develop CARA systems. This paper proposes a domain specific language for CARA applications consisting of stereotyped class models for the structure of the application and state machine models for the application behaviour. The models are given a semantics in terms of a transformation to a domain specific calculus called Widget. The languages are introduced using an example CARA application for mobile phones.

1 Introduction

As described in Daniele et al. [5] context aware applications are: intelligent applications that can monitor the user’s context and, in case of changes in this context, consequently adapt their behaviour in order to satisfy the user’s current needs or anticipate the user’s intentions. As defined by Harel and Pnueli in [11] reactive applications must deal with events that are received from their environment and react accordingly. Both context aware and reactive systems are of interest because of the increase in the number and diversity of mobile and tablet platforms. Together with web-applications, mobile and tablet apps operate by reacting to user input. In the case of mobile applications, there is increasing use of context aware software that modifies its behaviour to reflect changes in its environment.

There are some characteristic features to this family of applications: event driven; limited hierarchically organized GUI; state-based, etc. Many of the applications are fairly simple, however the development complexity arises because of the significant differences between multiple target platforms. For the purposes of this article we will refer to these applications as CARA.

Model Driven Development (MDD) [9] is an approach to software engineering that uses models to abstract away from implementation details and to use code generation or model execution to produce a complete or partial system.
By abstracting away from the implementation technology, the system definition can target different platforms and it is argued that the system becomes easier to maintain. Model Driven Architecture (MDA) is an approach that uses UML to perform MDD and involves UML being used to construct Platform Independent Models (PIMs) and Platform Specific Models (PSMs) and to model transformations between them. MDD is of interest to CARA development because of the diversity and complexity of target platforms; an application can be developed as a single model and then transformed to multiple implementation technologies using general purpose transformations.

Although there are characteristic CARA features, implementation technologies remain general purpose. Android and iPhone applications are developed using frameworks where application classes extend platform specific libraries that hide the application logic. MDD approaches seek to address these issues by abstracting away from the implementation details; however, current MDD approaches that are relevant to CARA are often incomplete and do not support reasoning about the application.

This article describes work that aims to provide a precisely defined framework for CARA MDD in terms of a modelling language and an associated calculus. Like other approaches to model-driven CARA, the structure and outline behaviour of an application is specified using class diagrams and state machines (equivalent to other approaches that use class diagrams and activity diagrams). However, we argue that approaches based purely on UML-style models lack expressivity necessary to capture application patterns and complex behaviour such as call-backs. Such approaches are often based on stereotypes and lack analysis tools such as type-checkers. Therefore, we propose a calculus, called Widget, used to represent complete CARA applications. Widget has a precisely defined operational semantics and a type system that can be statically checked. Structure and behaviour diagrams are views of partial Widget programs and we define a translation from models to Widget.

The rest of the article is organized as follows: section 1.1 describes related approaches to CARA MDD in terms of a modelling language and an associated calculus. Like other approaches to model-driven CARA, the structure and outline behaviour of an application is specified using class diagrams and state machines (equivalent to other approaches that use class diagrams and activity diagrams). However, we argue that approaches based purely on UML-style models lack expressivity necessary to capture application patterns and complex behaviour such as call-backs. Such approaches are often based on stereotypes and lack analysis tools such as type-checkers. Therefore, we propose a calculus, called Widget, used to represent complete CARA applications. Widget has a precisely defined operational semantics and a type system that can be statically checked. Structure and behaviour diagrams are views of partial Widget programs and we define a translation from models to Widget.

The rest of the article is organized as follows: section 1.1 describes related approaches to CARA and section 1.2 describes the problem to be addressed and our contribution. Section 2 describes a typical CARA case study called Buddy and analyses the CARA domain to identify key features. Section 3 introduces a modelling language based on UML class diagrams and state machine that can be used to represent CARA structure and behaviour; a model is given for Buddy. Section 4 introduces the Widget calculus and section 5 shows how CARA models are translated to Widget.

1.1 Related Work

As pointed out in [4] MDA approaches have been applied to a number of application areas, for example health care systems [14], however source models tend to focus on the static structure of a system and do not include detailed behaviour. MDA often produces code skeletons that must be edited after the PSMs are produced. Where multiple platforms are involved, this defeats the object since multiple implementations must be developed and maintained. The
approach described in [4] uses a DSL based on process flows defined by the A-MUSE project which differs from the work described in this paper in that widget-behaviour is expressed using a functional programming language which is simpler, more expressive than the A-MUSE DSL, and integrates both structural and behavioural aspects of a system.

There are many candidates for PIM modelling languages for CARA such as [27, 7, 25, ?]. Most of these approaches use UML class diagrams to express the structure of an application and activity models, collaboration models and statecharts to express the behaviour. Whilst these approaches can express any behaviour there is evidence that behaviours can become complex [?] and that “when a modeller finds two or more possible semantically equivalent options for modelling a system, he should pay special attention to the use of the constructs that are part of the components described in this work, e.g., reducing the total number of activities of the diagram if possible.” Our view is that the use of functional abstraction in conjunction with state-based behaviour can significantly improve the expressivity of collaboration, activity, and state-machine models alone, and can form a precise foundation for many different model driven approaches.

Context aware applications have been studied only recently and there are few proposals for modelling notations, for example [29], where context is declared from a number of sources and triggers are used to inform the application of context changes. Another example is (?) where context aware applications are modelled in terms of different viewpoints: social, task and space and where model transformations are used to produce platform specific models from the views.

Because of the increasing need to modularize the cross cutting context dependent behaviour, Context-Oriented Programming (COP) (?) has been proposed. COP is a programming paradigm to enable the expression of context-dependent behaviour. There have been several implementations of COP languages for Java [?, ?, ?], Objective-C [?], Lisp [?], and Smalltalk [?]. These approaches modularize context-dependent behaviour within layers, normally either layer-in-class or class-in-layer. Layer-in-class supports this modularization inside the class it affects. Class-in-layer supports this modularization outside the class, being largely comparable to aspect definitions. These languages are dependent on their intended platform and language, leading to difficulty in porting when attempting multi-platform development.

Given the rise of the target platforms (for example over 172 million smart phones shipped worldwide in 2009 [6]), there are likely to be multiple DSLs or UML profiles defined for this type of application. An MDA approach to context-aware applications is described in [1] involving platform independent models of different features of an application that are translated to produce platform specific artifacts. How can any candidate PIM language be evaluated and compared to others? How can the behaviour be defined in a universal way?

There are a number of systems that aim to deploy a single application across multiple mobile or web platforms. Approaches differ as described below: cross compilation of existing applications; a model driven approach using a UML-style
modelling language; new domain-specific programming languages.

The system described in [24] has been designed to help make code bindings between the different platform-specific frameworks by translating Java .class files to multiple platforms including Objective-C and JavaScript. A similar approach is taken in XMLVM [21, 22] where byte-code cross-compilation is performed using a tool chain. This tool chain currently translates Java Class files and .Net executables to XML documents, which then can be output to Java byte code/.NET CIL or to JavaScript and Objective-C. This tool chain was firstly used to cross compile Java applications to AJAX applications [23], because of the lack of IDE support and difficulty in creating an AJAX application. Further work to include Android to iPhone application cross-compilation, as described in [24].

The DIMAG Framework [19] was developed for automatic multiple mobile platform application generation. This is accomplished by creating a declarative definition language which is comprised of 3 distinct parts; firstly a language DIMAG-root, which provides references to the definitions for workflow and user interface in the application; secondly the language State Chart eXtensible Markup Language (SCXML) defines the workflow by the definitions of states, state transitions, and condition based actions; and finally DIMAG-UI language based on MyMobileWeb's IDEAL language using CSS to control the user interface. The main shortcomings of this method is that it relies on server-side code generation and download.

A recent proposal for a DSL for mobile applications [2] uses XText and Eclipse to implement a DSL that uses code generation techniques to target mobile platforms. This DSL uses fixed GUI structures such as section whereas our language uses external widgets. It is also not clear whether the DSL has a static type system and its semantics is not defined independently of a translation to a target platform.

Mobl (http://www.mobl-lang.org/) is a DSL that has been designed to support mobile application development and which targets JavaScript. It has many things in common with our language, however the mobl features for describing GUI components are fixed and the semantics is not defined independently of the target language.

Links [3] is a DSL that has been designed to support web application development where the 3-tier architecture is supported by a single technology. Like Widget, Links supports higher-order functions and is statically typed with respect to events and messages. Unlike our language, Links has been designed as a complete language with supporting tools, and indicates a possible future direction for layering a user language on Widget.

Web applications could not store local data to the web browser until the development of HTML5 [31]. In May 2007, Google released a plug-in for the Firefox web browser, Google Gears\(^1\). This plug-in supports caching of web applications to allow offline use, and also the ability for a web application to store data in a local database. Whilst this increases the suitability of web-

\(^1\)http://gears.google.com/
technology for cross-platform CARA systems, there are still limitations in terms of GUI widgets: a systematic use of events and static typing.

Since the arrival of HTML5 and WebKit, a number of open-source and commercial cross-platform frameworks have been proposed, such as the Appcelerator\(^2\), PhoneGap\(^3\) and Rhomobile\(^4\). These frameworks use either JavaScript or Ruby and therefore run in a browser. Furthermore, these applications can run offline and access the device’s full capabilities; such as a GPS or camera; providing the same look and feel as a native application.

Functional Reactive Programming (FRP) uses arrow combinators to embed discrete event processing into the functional language Haskell \([13, 8]\). The FRP approach is similar to the mechanism for representing commands in Widget and could be used as an alternative, however we feel that Widget is simpler and is specifically designed to integrate with externally defined CARA widgets.

DSLs in other areas include \([10]\) that concentrates on the abstraction of web applications to lower the complexity of the application and boilerplate code. Further work on this DSL led to the creation of Platform Independent Language (PIL) \([12]\). PIL was developed as an intermediate language, to provide a scalable method for developing for multiple platforms. A drawback of this method is currently it lacks support for mobile platform development.

Other efforts for making mobile application development easier include Google Simple\(^5\), a BASIC dialect for creating Android applications, and the Google App Inventor\(^6\) which is based on Openblocks \([26]\) and Kawa\(^7\). Particularly, Google App Inventor has vastly abstracted app development, but only supports development of Android applications. These approaches are similar to visual programming and offer a quick start for application development but offer limited support for sophisticated behaviour.

Brenhs has proposed MDSD, a DSL for iPhone. The language is more specific to data centric applications. Following from that work, they have started the Applause project for developing DSL for iPhone, iPad and Android\(^8\), but this is still not fully developed.

There are a number of formal approaches to model behaviour of event-driven systems including modal transition systems \([30]\), petri-nets, and the pi-calculus. Whilst these systems have good analysis properties, they do not integrate with the structural features of CARA models in the way that Widget does.

In review, there are many proposals for both model-driven approaches and DSLs for CARA. Most approaches lack an implementation independent semantics, are unable to check system properties, many are fixed in terms of CARA features, and some offer limited features for expressing behaviour.

\(^2\)http://developer.appcelerator.com/
\(^3\)http://www.phonegap.com/
\(^4\)http://rhomobile.com/
\(^5\)http://code.google.com/p/simple/
\(^6\)http://appinventor.googlelabs.com/about/
\(^7\)http://www.gnu.org/software/kawa/
\(^8\)http://code.google.com/p/applause/
1.2 Problem and Contribution

The complexity and diversity of CARA implementation platforms can be addressed by suitable MDD approaches. However, as described above, current approaches are lacking in terms of implementation independence, behavioural completeness, and support for application analysis. A lack of behavioural completeness compromises the model driven aims of these technologies in terms of being technology independent since the code that is produced must be edited in order to run on each target platform. Where there are many different target platforms for a single application, this can be a significant task.

This paper describes a simple DSML and its implementation in a calculus called Widget that has been designed to support CARA. The DSML is used to represent the structural and behavioural overview of a system, the complete system can be expressed in the calculus, and we show a translation from models to the calculus.

Widget is based on a functional language because it is simple and universal. Functional languages are increasingly used as an alternative traditional languages for web applications [16, 28, 3] partly because of the need for interactive applications to deal with continuations and partly because of the interest in state-less concurrent applications [17]. In addition the characteristic features of CARA applications are identified by adding them to a λ-calculus in a simple way, for example using higher-order functions as event handlers, continuations and to structure hierarchically organized application objects. We use an approach based on monads to contain those parts of an application that deal with updating state (SQLite for example). As described in [20] this supports the desirable situation where applications can be built from composable units.

The languages are exemplified in terms of a context aware application defined in [4] called Buddy. The DSML is used to express the structure and state-transition behaviour of Buddy which is then translated to Widget. A Widget interpreter has been developed in Java and used to implement the case study.

The overall approach is shown in figure 1 where a CARA Model consists of structure, behaviour and some constraints. A semantics mapping is used to translate the model to Widget where it can be extended with detailed behaviour. An implementation mapping is then viewed as a refinement of the semantics mapping in that it translates the Widget program for an appropriate target technology. The implementation mapping can be performed many different times for the same Widget program in order to target multiple technologies.

This paper describes CARA models in section 3, the Widget calculus in section 4 and the relationship between the models and the calculus in section 5. An interpreter for the calculus has been written in Java and used to implement Buddy against an external widget library written in Swing; figures 2, 3 and 4 are screen shots of the application.
2 Context Aware Reactive Applications

CARA applications have several common features. The user interacts via a collection of screens and initiates computation by performing actions that raise events and the application performs state transitions in response to receiving events. This section provides a simple example of a CARA application in section 2.1 and performs domain analysis in section 2.2 that identifies the key features required by CARA applications.

2.1 Example Application: Buddy

Figure 2 shows a mobile phone. The phone is always in contact with its network provider via a transmission cell located nearby. Each phone has a unique address that is used by others to contact the user, in this case it is tony@widget.org.

Each phone contains a database of contacts. New contacts can be added by clicking on the add button and entering the contact details. As shown in figure 3, Tony knows the address of Sally. A new contact is added by clicking on the add button; clicking on back returns to the previous screen.

Multiple phones are always in contact with the service provider via the local cell. Users want to know about contacts in their database that are co-located. If Tony or Sally move within a predefined distance then Tony is informed as shown in figure 4.

To achieve this the service provider is told of the location of each phone;
when one phone moves into the vicinity of the other then both phones are told of the availability of the other in terms of the contact address. If the address is in the user’s database then the phone flashes the contact.

This application is event driven; events arise either from the user or as changes in the context. The application interfaces are simple and organized hierarchically. The application proceeds through a number of states, driven by the events. Each application has local and global state.

2.2 Domain Analysis

A domain specific language is defined by performing a domain analysis [18] on a target family of applications in order to identify the common characteristic features. The domain analysis leads to the design of a technology that conveniently supports these features. Our domain analysis involved working with a media company to develop two small iPhone applications for the Tour de France cycle race results and for an on-line quiz, together with a review of a number of reported applications including the Buddy system.

The scope of this work is limited to simple CARA-based information systems, i.e. applications whereby users interact with a context-aware system in order to manage information. Within this limitation there are a huge number of existing applications and different platform types (phones, tablets, web-browsers) that can be considered and which have similar features. This section lists the features of CARA applications.

Screen Real Estate: Different platforms make varying amounts of screen available. For example a mobile platform is different to a tablet which is different to a desktop browser. The standard iPhone resolution is 480 by 320 pixel and the IPA supports a 1024 by 768 resolution. This compares to the Android screens, which vary by hardware vendor but resolutions range to about 480 by 800 pixel. However, in most cases the application logic is the same; how it is
Figure 3: Tony Knows Sally

Figure 4: Move in Range
realized in terms of the screen real estate can differ. Abstracting away from
the details of cross-platform differences is desirable when maintaining a single
application across multiple targets.

Layout Control: Layout control is an important consideration. Android con-
trols layout through the use of XML files, supporting different layout styles
(linear, relative and absolute). This compares to iPhone, that can do program-
matic layout and XML type interfaces using Interface Builder. Like screen size,
it is desirable to focus on application logic and factor out the layout control
details into external libraries.

GUI Element Containership: Most platforms use a form of GUI element
containership. In iPhone development, the emphasis is on the application win-
dow with views and sub-views. These are then ‘stacked’ onto each other to
create structured interfaces. Android uses a similar approach in terms of views
and view-groups. Interface control on both platforms have similarities and dif-
fences. On the iPhone, views are normally controlled by the use of view
controllers that contain event handlers. In comparison, Android development
uses intents and activities. HTML structures interfaces in terms of documents,
tables, div’s etc. This feature leads us to conclude that all CARA application
GUIs can be expressed in terms of a tree of widgets that manage data and
behaviour and whose detailed layout and rendering properties can be factored
into platform specific libraries.

Event Driven Applications: Most mobile application implementation lan-
guages register event handlers dynamically. Web applications process events by
dynamically testing identifiers embedded in URLs. This method means there
is a lack of checking at compile time to prevent an application crashing. Con-
textual events such as platform orientation, GPS, and battery levels must be
handled by a mobile application in suitable ways. This places a desirable feature
requirement on CARA development whereby the presence or otherwise of event
handlers can be detected at compile-time.

Hardware Features: Modern day mobile devices come equipped with many
different features. These features include microphones, accelerometers, GPS,
camera, and close range sensors. These features tend to be fairly standard in
their behaviour if they are supported by the platform. Although many platforms
have comparable hardware features, they differ in the details of how to control
and respond to them. CARA development should allow the details of hardware
to be factored out into platform specific libraries whilst supporting the events
and controls associated with them.

Object-Orientation: Mobile and web-based applications are typically OO.
iPhone uses Objective-C and Android uses Java. Javascript which is used by
many web applications has an object-oriented collection of data types for build-
ing applications. Applications are built by constructing new and extending
existing class/object types.

Transitional Behaviour: CARA applications execute in response to events
that originate either from the user or as context events from the platform. The
application performs a state transition in response to an event causing a change
to the application’s state (or to a system that is connected to the application)
and possibly a new interface screen.

Data Persistence: CARA applications usually need to persist data to physical storage between application invocation. Modern smartphone platforms currently have implementations of a SQLite, a lightweight serverless single file database engine.

Contextual Events: Within a mobile application, not all events are directly invoked by the user. Mobile platforms have to deal with event invocation from a range of different sources based on its current contextual environment. For example, when the battery is low on a phone normally the phone will display a message to the user to recharge the battery.

Static Typing: Type systems are used in programming languages as a method of controlling legal and illegal program behaviour. Static typing requires all type checking to be carried out during run time, as opposed to dynamic typing that requires checking at run-time. Since CARA applications rely heavily on events and event handlers, it is desirable that a program can be statically checked in order to match handler definitions against all possible events that can be raised.

3 CARA Models

CARA models must support the key features that were identified in 2.2. We use a DSL based on stereotyped UML class diagrams to represent the structure of CARA models and UML state machine models to represent their behaviour. The stereotypes are used by the semantic mapping to encode the structure into Widget and the state machine is used to define Widget event handlers that make transitions between screens. Section 3.1 describes the DSL used for modelling, section 3.2 describes the structure of the CARA phone application and section 3.3 describes its behaviour.

3.1 Modelling Features

A CARA model is represented using a DSL for structure and a UML state machine for behaviour. The structure of a CARA application is constructed using widgets that generate and handle events. *External* widgets, represented as classes with stereotype `<<external>>`, are provided by the implementation platform. All widgets inherit from the abstract external `Widget` class. *User-defined* widgets typically extend external widgets and are identified by the stereotype `<<widget>>`.

Widgets define properties that are set when the widget is instantiated. These are defined on a model using standard UML-style attributes. Widgets may also define queries, events, commands and handlers. A *query* is an operation that can access the current state, but cannot make any change to it; it is defined as a standard UML operation on a class. An *event* is a named, structured value that can be raised by a widget. An external widget generates events as a result of a change to the world state; user-defined widgets generate events when they fail to handle an event generated by a widget they contain. In addition user-defined
widgets can explicitly generate events. Events are defined as an operation with stereotype <<event>>. A command is an operation that can change the program state; it is specified using the <<command>> stereotype; associations and properties can also be tagged as commands when their values depend on the program state. A handler is a widget operation, tagged <<handler>> , used to handle events when they are raised.

Widget references are defined using associations. Widget containment hierarchies are modelled using UML black-diamond. Widget containment is used to construct hierarchical GUIs and also to define how events are handled. Events raised by a widget must be matched with a handler with the corresponding signature (name and arguments). If the widget raising the event defines such a handler then the event is supplied to the handler that must produce a replacement for the widget in the containment hierarchy. Otherwise, the widget does not define a handler so the search continues with the parent. If the parent handles the event then the parent is replaced in the containment hierarchy. This process continues until a handler is found; static type checking guarantees that a handler will be found for all events that can be raised.

The structure of a CARA model is defined as a collection of state models each of which must have a root container widget. The root is the GUI element that contains and references all other widgets in that system state. A general purpose root container is the external Window widget that contains GUI elements displayed on a phone screen or a browser window. Window can be specialized to produce application-specific external widgets.

3.2 Phone Structure

The structure of the Buddy application is defined using four state models that correspond to different screens. This section describes three of these state models, the fourth is a simple variation and so it omitted.

Figure 5 shows the state model for the main screen. All of the state models define root container widgets that extend Phone which itself extends Window. The Phone widget is external and must display a title, a display widget and some buttons in an appropriate way that can differ between target implementation platforms. In addition to the events generated by the contained display and button widgets, Phone will generate a move event since it inherits from Window.

The Main root container specializes the display and buttons associations so that the main screen of the application presents a clock and offers buttons for adding and deleting contacts. The Clock widget is external and raises no events. Each button widget specializes external Button that raises a push event (including a unique numerical id) when pressed. Both AddButton and DelButton have handlers for the push event that translate it into an add and del event respectively. The Main widget defines handlers for add and del that make a transition to new application states as described below.

The Main widget also contains a Notifier that is an external widget used to manage connections to the service provider. Two commands, connect and register, are used to initiate the connection with the provider after which
notify events will be generated when any phone that is connected to the same provider comes into range. Main handles move events that are passed on to the notifier whenever a phone moves from one cell to another.

Each state in the model has a reference to a database widget DB. The database widget manages a collection of records and provides commands for deleting and modifying records in the database. Note that the reference between Main and DB is not containment because the database does not generate any events.

The system state used to add new contacts to the database is shown in figure 6. The root container is Add, the display is an external widget AddScreen that manages browsing and adding new contact records. AddScreen provides two commands that are used to yield name and address strings that have been entered by the user via platform-specific text editing implemented by the AddScreen widget. Buttons provided in the Add state produce add and back events. The add event updates the database before returning to the Main widget and the back event just returns to the Main widget as described in section 3.3.
Invariant constraints are expressed using OCL. The Add widget must share the database, title and notifier with the Main widget:

```ocl
class Add
context Add
  m.contacts_db = db and m.notifier = notifier and m.title = title
```

The widget that implements contact deletion is similar to Add and is therefore not defined in this paper.

Figure 7 shows the widget for the notification screen that occurs when a contact is detected in range. The display is simply a label informing the phone user that the contact is nearby and the button dismisses the notification and returns to the Main screen. The title of the screens are the same:

```ocl
class Notify
context Notify
  m.title = title
```

3.3 Phone Behaviour

The CARA behaviour model for the phone application is shown in figure 8. Each state corresponds to a root container widget. Transitions correspond to the events that are handled by a root container. The figure shows that the application starts in the Main state. Pressing the add or del buttons cause a corresponding state transition. Notification events are ignored unless they occur in the Main state; if the contact is known then they are displayed via the Notify state, otherwise the event is ignored.
4 The Widget Calculus

The Widget Calculus is a simple functional language that has been designed to support CARA programs. Widget is both stand-alone and can be used as the target of a CARA PIM. In addition to being a standard functional language, Widget provides three key CARA elements: widgets that encode sources of reactive behaviour including both externally defined widgets and user-defined widgets; commands that make changes to the current world-state; events that arise from state-changes including both externally generated events and user-defined events. The core syntax of Widget-expressions is defined in figure 9. The rest of this section describes features of the syntax and concludes with an informal description of its operational semantics.

4.1 Basic Features

Widget consists of standard functional language expressions defined in figure 9: variables (2), strings (3), numbers (3), booleans (3), lists (4), records (5), field references (6). Functions (7) include the types of the arguments and the return type. Applications (8) and conditionals (9) are standard. A recursive definition is created using a fixed-point expression (10) in the usual way such that $f(fix(f)) = fix(f)$. Mutually recursive top-level definitions are introduced by keywords fun, val, type.

4.2 Polymorphism

Widget is a statically-typed language and supports operators that construct external widgets (see below). An example of such an operator is db that creates a database widget that maps keys to values, and that implements commands to update and access the database. The behaviour of a database is independent of the actual types of the keys and values, therefore the constructor db is polymor-
Figure 8: State Transitions
Figure 9: Widget Expressions, Commands, Values

\(e ::= \)

<table>
<thead>
<tr>
<th>expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
</tr>
<tr>
<td>variables</td>
</tr>
<tr>
<td>k</td>
</tr>
<tr>
<td>constants</td>
</tr>
<tr>
<td>([e,...,e])</td>
</tr>
<tr>
<td>lists</td>
</tr>
<tr>
<td>({x=e;...;x=e})</td>
</tr>
<tr>
<td>records</td>
</tr>
<tr>
<td>e.x</td>
</tr>
<tr>
<td>field refs</td>
</tr>
<tr>
<td>fun(x:t,...,x:t):t e</td>
</tr>
<tr>
<td>functions</td>
</tr>
<tr>
<td>e(e,...,e)</td>
</tr>
<tr>
<td>applications</td>
</tr>
<tr>
<td>if e then e else e</td>
</tr>
<tr>
<td>conditionals</td>
</tr>
<tr>
<td>top</td>
</tr>
<tr>
<td>fun[x,...,x] e</td>
</tr>
<tr>
<td>type abstraction</td>
</tr>
<tr>
<td>e[t,...,t]</td>
</tr>
<tr>
<td>instantiate type</td>
</tr>
<tr>
<td>x(t,...,t)</td>
</tr>
<tr>
<td>events</td>
</tr>
<tr>
<td>v :::= ([v,...,v])</td>
</tr>
<tr>
<td>lists</td>
</tr>
<tr>
<td>({x=v;...;x=v})</td>
</tr>
<tr>
<td>records</td>
</tr>
<tr>
<td>fun(x:t,...,x:t):t e</td>
</tr>
<tr>
<td>functions</td>
</tr>
<tr>
<td>raise x(v,...,v)</td>
</tr>
<tr>
<td>exceptions</td>
</tr>
<tr>
<td>do ({x:t<-e;...;x:t<-e; return e})</td>
</tr>
<tr>
<td>blocks</td>
</tr>
<tr>
<td>widget x:t (e) ({x:t<-e;...;x:t<-e})</td>
</tr>
<tr>
<td>widgets</td>
</tr>
<tr>
<td>top</td>
</tr>
<tr>
<td>top</td>
</tr>
</tbody>
</table>

\(z :::= x(t,...,t) \)
\(v :::= x \)
\(x \)
\(x \)
\(k \)
\(k \)
\(\{v,...,v\} \)
\(\{x=v;...;x=v\} \)
\(\{x=t;x:t\} \)

\(\) In order for Widget to statically check the use of databases, the key and values types must be supplied to the constructor: \(db[int,str] \) or \(db[str,int] \) etc.

Programs that work uniformly over all types (such as many list processing functions) can be declared with respect to one or more type parameters (15). When an expression that is parametric in one or more types is used, the actual type is supplied as an argument (16). A standard example is the identity function declared as: \(id=Fun[t] fun(x:t):t x \) and then used in two different ways: \(id[int](10) \) and \(id[bool](true) \). A special constant is used for the empty list: \([][t] \) in order to declare the type of the elements; therefore the empty list of integers \([][int] \) is different to the empty list of strings \([][str] \).

4.3 Commands

Commands are values that can be used to query the program state or to change program state or both. A command can raise an event, create a widget or perform a sequence of commands. All commands are values that are performed to yield a value. Widget has some built-in commands and the do-expression (12) that builds composite commands. Suppose that \(get(1) \) is a command that is performed to yield the contents of location 1, and \(set(1,i) \) is a command that is performed to set the contents of location 1 to be the value \(i \) and yield \(i \). The following function maps locations to commands that add 1 to the contents
of the location and yields the new value:

```haskell
fun add1(l:Loc):int = do { x:int <- get(l); y:int <- set(l,x+1) return y }
```

Commands are first-class values that can be passed as arguments and returned as results. Commands can also be nested as shown in the following example:

```haskell
fun add2(l:Loc):int = do { void:int <- add1(l); z:int <- add1(l); return z }
```

Events are generated by a raise command (11) that, when performed, yields a distinguished value *, and is processed as described below.

4.4 Widgets

A widget definition (13) is a command that yields a new widget. Each widget has the following form:

```haskell
widget self:t (parent) { x1:t1 <- e1; ...; xn:tn <- en }
```

where `self` is the name that can be used in the body of the widget to refer to itself and may be omitted if not used. All widgets inherit from a `parent` widget supplied as a command. The special command `top` (14) is used to create a distinguished widget that has no parent and acts like `Object` in object-oriented programming languages.

The idea is that user-defined widgets ultimately inherit from external widgets. The external widget will generate an event that the child can handle via its components. If the user-defined widget does not define any components then it is equivalent to the parent:

```haskell
widget (p) {} ≡ p ≡ widget(widget(p) {}) {}
```

Each definition `x:t <- e` in the body of the widget defines a command `e` that yields a component. The component is named `x` and can be referenced within other definitions and the parent. We use the convention that definitions whose value is a function can define the function in-line and that `x:t = e` is equivalent to `x:t <- do { return e }`.

A widget may define any type of component, but typically contains widgets and functions. The contained widgets raise events some of which may be handled by the container’s functions. The scope of variables in widget body definitions are scoped so that names used earlier in the list are scoped over values later in the list except for function definitions that are only available as event handlers. Therefore, value and function definitions in widgets can be treated separately by re-ordering values before functions in the body. Furthermore, it is possible to simplify any definition using the following equivalence:

```haskell
widget(e) { x <- e; d } ≡ widget(widget(e) { x <- e }) { d }
```

Each handler function must return a command that yields a widget. For example, if a window contains a single button that does nothing when it is pressed then we construct a widget with a parent using the external constructors `window` and `button`:

```haskell
widget self:MyWindow (window('My Window',button('PUSHME'))) {
  push(id:int):<MyWindow> = do { return self }
}
```
In the widget above, the parent is a window with a title 'My Window'. The contents of the window is the button `button('PUSHME')`. When a button is selected, it generates events of the type `push(int)`. Since the widget defines a handler whose signature matches the event then the handler defines a replacement for the entire window when the button is pressed. The handler returns a command that yields `self`, causing the window to be replaced with itself, i.e. nothing happens when the button is pressed.

Equivalently, the handler can be processed by the component widget. In the following, the button `b` handles the `push` event; the button is replaced with itself inside the window:

```plaintext
game(window(title,b)) {
  title:str = 'My Window';
  b:MyButton <- widget self:MyButton (button('PUSHME')) {
    push(id:int):<MyButton> = do { return self }
  }
}
```

The following is a window that oscillates between two buttons when they are pressed:

```plaintext
game(window('MyWindow',b1)) {
  b1:MyButton <- widget button('FORWARD') { push(i:int):<MyButton> = do { return b2 } };
  b2:MyButton <- widget button('BACK') { push(i:int):<MyButton> = do { return b1 } }
}
```

4.5 Types

CARA applications execute in terms of function application, message passing and by handling events. Some implementation technologies such as Javascript, are dynamically typed, and others, such as Java for Android, are statically typed. In virtually all cases, events are handled by registering event handlers with the underlying framework so that the handler is called when the event occurs. Handler registration occurs at run-time; in such languages it is not
\[
\begin{align*}
\text{T-VAR} & \quad \Gamma \vdash x : \alpha \\
\text{T-FUN} & \quad \Gamma \vdash \text{fun}(t_1^{i_1 \in [0,n]}, \ldots, t_n^{i_n \in [0,n]}) : (\alpha_1^{i_1 \in [0,n]}, \ldots, \alpha_n^{i_n \in [0,n]}) \rightarrow \alpha \\
\text{T-IF} & \quad \Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : \alpha \oplus \beta \\
\text{T-REF} & \quad \Gamma \vdash t : \{x_i : \alpha_i^{i \in [0,n]}\} \\
\text{T-OPT-1} & \quad \Gamma \vdash t : \alpha \\
\text{T-OPT-2} & \quad \Gamma \vdash t : \beta \\
\text{T-FIX} & \quad \Gamma \vdash e : (t) \rightarrow t \\
\text{T-EXC} & \quad \Gamma \vdash \text{raise } x(e_i)^{i \in [0,n]} : \langle \ast \rangle \cup \{x(t_j)^{j \in [0,n]}\} \\
\text{T-DO} & \quad \Gamma \vdash \text{do } \{x_i : t_i \leftarrow e_i^{i \in [0,n]} \text{ return } e\} : \langle t \rangle \cup \bigcup_{i \in [0,n]} X_i \\
\text{T-TOP} & \quad \Gamma \vdash \text{top} : \text{Top} \\
\text{T-UNI} & \quad \Gamma \vdash e : \text{Forall}\{x_i^{i \in [0,n]}\} t \\
\text{T-WID1} & \quad \Gamma \vdash \text{widget } x : t(e) \{x_i^{i \in [0,n]} : (t_i) \mapsto t \mapsto X_i^{i \in [0,n]} : (t) \uparrow X' \cup X_i^{i \in [0,n]}\} \\
\text{T-WID2} & \quad \Gamma \vdash \text{widget } x : t(e') \{x : W(X) \leftarrow e : (t) \uparrow X'' \cup X_i^{i \in [0,n]}\} \\
\end{align*}
\]

Figure 11: \(\mathcal{P}_\mathcal{V}\)Type Relation
possible to statically analyze an application for the existence of all required handlers.

Widget is a strongly typed, statically checked language. In addition to statically checking that the types of operator arguments and field references are correct, Widget can check that all possible events raised by an application have an appropriate handler definition. For context aware applications this means that a tool can check that all situations are handled, for example low battery power, change of platform orientation, etc. Whilst this does not guarantee the the application is correct, it reduces the possibility that the developer has inadvertently omitted a handler definition that could lead to sub-optimal or inappropriate application behaviour.

The types are defined in figure 10. Constants are strings, integers or booleans (1-3), a list must contain elements of a single type (4), the types of each field in a record may be different (5), a command that yields a value of type \mathbf{t} is of type $<$t$>$ (6), a value of a union type (7) is a value of either component type, a widget expression is a command that yields a value of a widget type (8) and each component field in the widget expression must be a command that yields a value of the corresponding field type, the expression \mathbf{top} is a command that yields a value of type Top (9), a function has a function type (10), a universal type (17) can be applied to type arguments to yield a type (11), a type may be recursive (12), types may be bound to type variables (13), types may be packaged up into type records (14) and referenced (15), finally, an event raising expression is a command that yields the value of type $*$ (16).

Figure 11 defines a relation between type assignments Γ, expressions e and types t such that $\Gamma \vdash e : t$ holds when e is assigned type t when free variables in e are assigned types by Γ. The relation is standard except in terms of event handling where raises X is written $\uparrow X$ for brevity. T-IF combines the types of the consequent and alternative arms $\alpha \oplus \beta$ where $(\langle t \rangle \uparrow X) \oplus (\langle t' \rangle \uparrow X') = \langle t + t' \rangle \uparrow X \cup X'$, otherwise \oplus is the same as +. T-EXC defines a raise command to yield the unit value and to raise an event of the appropriate type. T-DO combines all events raised by the definitions.

The refactoring of widget expressions in section 4.4, where single value definitions are extracted the parent, allows us to define widget type assignment as two separate rules T-WID1 and T-WID2. The shorthand $W(X)$ is used for $\mathbf{Widget}(t) \ \text{raises} \ X \ \mathbf{d}$ where only the events X raised by the widget type are of interest. T-WID1 defines type assignment where the body of a widget consists of handler definitions; the events handled by the child are erased from those raised by the parent. In T-WID2 the events raised by the contained widget are added to those raised by the parent.

4.6 Operational Semantics

In order to run on a CARA platform, a Widget program must have a specific type: $(W(\emptyset)) \uparrow \emptyset$, i.e. a command that yields a widget whose events have all been erased. Program execution cycles through four stages: evaluation; commands; display; event handling. Firstly the program is evaluated, or reduced,
Figure 12: Execution Cycle

to produce a value, or *normal form*. Given the type restrictions, the value is a command that yields a widget as a result of the second stage of execution. The second stage can perform side-effects.

A widget is a tree t whose leaves are external widgets (or *top*); the tree is projected onto a tree t' of external widgets that is displayed on an implementation platform. The third stage of execution displays t'. At this point the application waits to receive an event e, either from the underlying platform (a context event) or from user interaction. Stage four involves handling e by mapping from the receiving external widget in t' to the corresponding widget w in t. By traversing from w to the root of t a *most specific handler* h is found. The body of h is an expression e of type $\langle W'(X) \rangle \uparrow X'$ that yields a replacement for w. Since e is of the appropriate type, evaluation can re-start from stage one.

The operational semantics of Widget programs is shown as a state-machine in figure 12. The root container widget is called *root* and on the first iteration the starting state shown at the top of the diagram is $e=\text{root}=w$ and $\text{root} : \langle W \rangle$. Reduction produces a command $v : \langle W \rangle$. The command is performed with respect to the program state s to yield a value v' and a new state s'. The value v' is the replacement for the current target of the event: w in root (in the first case this replaces the root with itself). The root containment tree is projected onto a tree of builtin widgets using external which is then displayed on a screen. The system then waits for an event z which is sent to a widget w that is contained in root. At this point the target widget e is reset to the body of the handler for z in w. The cycle continues, each time, the target of an event is replaced by the value yielded by the body of the handler for the event.

5 Mapping and Behaviour

Section 3 has described how CARA models can represent a mobile phone application. Section 4 has described a technology-independent language for representing reactive applications. The CARA modelling language could be trans-
lated directly onto an implementation technology. In practice, this is how things would be done; however, such a strategy leads to a semantic definition for the application in terms of an implementation platform. This strategy has two significant disadvantages: firstly implementation technologies tend to be complex; secondly if the application is to be realized across multiple platforms then it is much more attractive to use a technology-independent semantic domain.

Our hypothesis is that Widget provides a suitable precise, lightweight and executable platform for CARA systems. This section describes a translation from CARA models to Widget programs in terms of the Buddy case study.

5.1 General Mapping

The CARA modelling language consists of stereotyped class diagrams, state machines and invariant constraints. Event handlers are indicated on a class diagram using the <<handler>> stereotype on a class operation, however the body of the operation may be omitted. As described in figure 1 CARA models are translated to Widget programs; the resulting program is a skeleton if operation bodies are omitted from the source models. This section specifies the translation and shows a simple example with respect to the Main widget and associated state machine defined in section 3.

In a CARA model, each widget class W is associated with a function F, \(M(W,F) \) where M is defined as follows:

\(M_0 \) If W is tagged <<external>> then F is a predefined function that constructs widgets of the appropriate type.

\(M_1 \) If W is tagged <<widget>> then F is a function definition with the same name. F has parameters specified by:

- A1 attributes of W or of any inherited or contained widget classes (except those for A3).
- A2 non-contained referenced widgets.
- A3 shared contained widgets (as specified by invariants).
- A4 the target of outgoing transitions from W and their associated arguments.

and a body B that is a widget definition specified by:

\(B_0 \) self is used for self-reference (the default).

\(B_1 \) The parent of B is a widget constructed by applying a function F’ to initialization arguments. If W’ is the super-class of W then \(M(W',F') \) must hold. The initialization arguments are supplied as required by A1–A4 in the context of F’ observing any sharing constraints.

\(B_2 \) There is a definition in B corresponding to each contained reference from W. If the reference is shared due to some constraint then it will have been passed as an argument. Otherwise it is constructed using the appropriate operator.
B3 There is a function definition for each handler. The body of the handler must be a command. The state machine declares the target state for the handler. If this is a self-transition then the target is self. Otherwise the transition is made by invoking the appropriate function for the target state passing any required arguments and observing any guards.

B4 References to commands must be performed as command bindings.

Consider the state Main. Applying M produces the following function (omitting type information) where the annotations on the right refer to the mapping conditions listed above. Where the rules refer to variables, they are listed in parentheses.

fun main(title,db,port,x,y) = M1, A1(title,port,x,y), A2(db)
widget(phone(title,clock(x,y),[add(),del()]) { M0, B0, B1
 n <- notifier(port);
 add() = add_screen(self,db,n);
 del() = del_screen(self,db,n);
 notify(address) = do { B3
 contacts <- db.records
 return
 if has_contact(addr,contacts) then notify()
 else self
 },
 move(x,y) = do { B3
 void <- notifier.move(x,y)
 return self
 }
}

The following section uses M to specify function definitions for Buddy.

5.2 Mapping Buddy

The CARA structure models in section 3.2 are translated into Widget type definitions that define widget signatures as shown in figure 13. The type signatures encode information about the containment structure of the widgets, inheritance from external widgets and the state transition from section 3.3 where each handler must return a command that yields a widget of the appropriate type. For example, when the back event in Add is handled, this will produce a widget of type Main because of the state machine in figure 8. The notify handler in Main yields a widget of type Notify or Main because there is a choice, modelled in figure 8 as two transitions with mutually exclusive guards that use has_contact to check whether an address exists in a sequence of records:

rec fun has_contact(addr:str,contacts:[Record]):bool = M1
 if contacts = [] then false
 else true
 else has_contact(addr,tail[Record](contacts))
type DoAdd = Widget(Button) raises add() { push:(int)-><> raises add() }

val create_notifier:<Notifier> = do {
 n:Notifier <- notifier(PORT);
 void:bool <- n.connect;
 void:bool <- n.register('tony@widget.org')
 return n
}

The operators clock, db and button (lines 2,3,4,6) are built-in commands and yield external widgets of the appropriate types. The main widget (lines 6–19) inherits from the built-in phone widget created using phone (line 6). The notifier (line 7) must perform a command that initializes the connection to the service provider; this is done in several steps as follows:

Each user defined root container is translated into a Widget function that returns a command yielding a widget of the appropriate type. Figure 5 is translated into the definition in figure 14. The main function returns a command (lines 1–21) that initiates some local variables (contacts_db,b1,b2,p) and then yields a widget of type Main. The operators clock, db and button (lines 2,3,4,6) are built-in commands and yield external widgets of the appropriate types. The main widget (lines 6–19) inherits from the built-in phone widget created using phone (line 6). The notifier (line 7) must perform a command that initializes the connection to the service provider; this is done in several steps as follows:

The event handlers add and del must perform a transition to the appropriate screen (lines 8 and 9). Notice that in each case the transition is performed by a function that returns a command yielding a widget of the appropriate type. The arguments to the function allow information (self, contacts_db and notifier) to be shared between widgets.

The notify handler (lines 10–14) checks whether the address of the contact that has come into range is in the receiver’s contacts database. If so then a transition to a notify screen is made otherwise the command yields self which is a null-transition.

Finally, the move handler (lines 15–18) informs the notifier of the change of location and makes a null transition.
fun main():<Main> = do {
 contacts_db:DB[str,str] <- db[str,str]('tony_phone.dat');
 b1:<DoAdd> = widget (button('add')) { push(i:int):<*> = raise add()];
 b2:<DoDel> = widget (button('del')) { push(i:int):<*> = raise del()];
 p:Main <-
 widget self:Main (phone[Clock,DoAdd+DoDel]('Tonys Phone',clock(50,50),[b1,b2])) {
 notifier:Notifier <- create_notifier;
 add():<Add> = add_screen(self,contacts_db,notifier);
 del(): = del_screen(self,contacts_db,notifier);
 notify(addr:str):<Notify + Main> = do {
 contacts:[Record] <- contacts_db.records;
 notify:Notify <- notify_screen(self,addr,notifier)
 return if has_contact(addr,contacts) then notify else self
 };
 move(x:int,y:int):<Main> = do {
 void:bool <- notifier.move(x,y)
 return self
 }
 }
 return p
}

Figure 14: The Main Widget

fun notify_screen(m:Main,addr:str,n:Notifier):<Notify> = do {
 b:<DoBack> = widget (button('back')) { push(i:int):<*> = raise back()];
 p:Notify <-
 widget self:Notify (phone[Label,DoBack]('Tonys Phone',label('CONTACT: ' + addr),[b])) {
 notifier:Notifier = n;
 notify(addr:str):<Notify + Main> = do { return self }
 back():<Main> = do { return m }
 move(x:int,y:int):<Notify> = do {
 void:bool <- notifier.move(x,y)
 return self
 }
 }
 return p
}

Figure 15: The Notify Widget

Figure 15 shows the implementation of the Notify widget. Notice how the use of functions allows system states to share information by passing argument values (line 1). In addition, since widgets can reference themselves (self in figure 14 for example) they can pass themselves as continuation arguments (m in figure 15) to allow the target state to make a back transition (line 9).

Figure 16 uses the built-in addscreen operation (line 3) to create a display involving the current contents of the contacts database. An add screen supports two commands name and address and is an example of a domain specific external widget that must be realized in a platform specific way for each implementation mapping. When the add event is generated, the update command is used to change the state of the database and a transition is made to the main screen.
fun add_screen(m:Main, db: DB[[str, str]], n: Notifier): <Add> = do {
 records: [Record] <- db.records;
 s: <AddScreen> = addscreen(records);
 b1: <DoAdd> = widget (button('add')) { push(i:int): <*> = raise add() };
 b2: <DoBack> = widget (button('back')) { push(i:int): <*> = raise back() };
 p: <Add> <-
 widget self: <Add> (phone[AddScreen, DoAdd + DoBack]('Tonys Phone', s, [b1, b2])) {
 notifier: Notifier = n;
 notify(add: str): <Add> = do { return self };
 add(): <Main> = do {
 name: str <- s.name;
 address: str <- s.address;
 void: str <- db.update(name, address)
 return m
 };
 back(): <Main> = do { return m };
 move(x: int, y: int): <Add> = do { return self };
 }
 return p
}

Figure 16: The Add Widget

6 Conclusion

This paper has described a rise in the interest in CARA due to the explosion of mobile, tablet and web-applications. The complexity and proliferation of implementation technologies makes it attractive to use model-driven techniques to develop CARA systems. As described in [?] there are a number of challenges that makes mobile application software engineering challenging. These include development tools including testing, and portability. Our claim is that CARA models and Widget are a contribution to these challenges. In particular, the formal definition of Widget provides scope for tool support and analysis. A VM implementation for Widget could be a basis of a write once run anywhere approach to CARA applications with the associated benefits to application verification.

The Widget calculus was initially described in [15] and has been implemented as a type checker and language interpreter in Java. The current version of the source code\(^9\) includes the Buddy application and uses a collection of general purpose external widgets and a phone simulator all written in Swing. Our next step is to provide a collection of external widgets using HTML and Android to show that the same Widget application can run on more than one platform. In addition, we plan to develop tooling around the CARA modelling language that can use the Widget calculus as a target.

Acknowledgements Thanks to Balbir Barn and Laurie Tratt for comments on an earlier draft of this article.

\(^9\) Available from http://www.eis.mdx.ac.uk/staffpages/tonyclark/Software/widget_v_1_0.zip
References

