
Making XTP Responsive to Real-Time Needs

W. Timothy Strayer, Bert J. Dempsey, Alfred C. Weaver

Computer Science Report No. TR-89-18
December 1, 1989

Making XTP Responsive to Real-Time Needs

W. Timothy Strayer, Bert J. Dempsey, Alfred C. Weaver

Department of Computer Science
Thornton Hall

University of Virginia
Charlottesville, Virginia 22903

(804) 924-7605
wts4x@virginia.edu, bjd7p@virginia.edu, acw@virginia.edu

ABSTRACT
Conventional transport protocol standards do not adequately support distributed real-time

systems. An ideal protocol would ensure that at all times the communications subsystem is
working on the task (message) of the most value to the overall system. In this report we
investigate how to develop a flexible and potent discrimination scheme based on importance, an
abstract concept that measures the degree to which a task contributes to the overall system goal.
We examine typical communication subsystems for what can and can not be expected from
such a policy. We review our chain of reasoning for producing several schemes with varying
degrees of complexity and usefulness. Finally, we look at the Xpress Transfer Protocol as a
case study of a transport layer protocol in development, and describe and critique the methods
proposed for making it responsive to special needs through a discrimination policy based on the
importance of the messages it must process.

1

1. Introduction

The subject of real-time, both in operating systems and communications, has generated

much literature and as many definitions as there are systems which claim to be real-time. As an

attribute, real-time commonly refers to a system’s ability to accomplish its goals in the presence

of time constraints. These time constraints usually manifest themselves as deadlines, and

separate real-time systems into hard and soft deadlines. A hard real-time system is one for

which missing a single deadline is disastrous; a soft real-time system relaxes the constraint to

say that missing a deadline degrades the system. As systems become more distributed, the

ability for a communications subsystem to provide services which are responsive to real-time

needs is more widely demanded.

There are two approaches to endowing a system with real-time capabilities: provide

services to system resources which are completed so quickly that the resources never represent a

point of contention; or provide the system with a manner of arbitrating between competing

tasks for the system resources. The former method is by far the more popular — increasing

clock speed has an immediate and tangible effect on a system. However, advances in sheer

speed cannot always outpace demands on a system. Furthermore, as systems become more

highly loaded, differentiating among tasks to promote the most important activities at the

expense of the less important ones becomes essential. Therefore, tasks within the system are

usually prioritized by some scheme so that these tasks may be ordered while competing for

shared resources. A priority is a mechanism by which a task has a relative importance assigned

to it for use during competition for resources. This importance, therefore, imposes a ranking

among all tasks. The server then chooses the highest priority task each time it can make such a

choice. Within a computing environment, this satisfies, at least nominally, the concerns of

users that all tasks are not equal.

2

One of the most valuable resources within a distributed real-time system is the

communications subsystem. Information transfer and process synchronization depends on the

timely and reliable performance of this subsystem. The communications subsystem must

therefore be responsive to the needs of the applications within the system without hindering

these applications unnecessarily. By making the underlying network as fast as possible,

hopefully much of the contention can be eliminated. Unfortunately, performance measurements

of several implementations of ISO standard communications protocols indicate that

communications subsystem and the interface to the subsystem are inefficient and use a fraction

of the available bandwidth [STRA88a,b,c]. When contention exists, there must be some way to

arbitrate between competing tasks in a method that serves the overall purpose of the system.

Ranking the tasks via some priority scheme is a reasonable means to provide such arbitration,

although a useful number of priorities is still debatable [PEDE88].

Three observations, however, pervade the use of priorities. First is the issue of global

knowledge. Unless each transmitting entity is both aware of and adheres to a globally

administered priority scheme, then locally determined priorities are meaningless since they

cannot fit into the global priority scheme. Second, no communications protocol in use or in

development avoids the problem of priority inversion, where a task of lower priority may

prevent a task of higher priority from being served. Finally, even if the first two concerns were

satisfied, most priority schemes are static, whereas it is more general to consider tasks whose

relative importance changes over time according to the changes in the environment. Four

observations, however, pervade the use of priorities. First is the recognition that there are

possibly as many priority domains as there are layers in the communications subsystem’s

architecture. A message can be assigned a priority at its entry into the server, which may

3

different from and possibly unrelated to the priority assigned at the Transport layer, which may

be different from the priority of the Network layer used in routers, which may also be different

from the priority used to access the media. Either there must be a unified priority domain that

transcends all layers, or there must be consistent treatment of the priorities at each layer; i.e., all

points of contention must discriminate with the same discrimination policy. Second is the issue

of global knowledge. Unless each transmitting entity is both aware of and adheres to a globally

administered priority scheme, then locally determined priorities are meaningless since they

cannot fit into the global priority scheme. Third, no communications protocol in use or in

development avoids the problem of priority inversion, where a task of lower priority may

prevent a task of higher priority from being served. Finally, even if the other concerns were

satisfied, most priority schemes are static, whereas it is more general to consider tasks whose

relative importance changes over time according to the changes in the environment.

In this paper we briefly survey the literature on requirements for real-time distributed

systems. The literature does not agree, of course, on a canonical set of requirements; we

provide this survey to show that there is little agreement in the field about such requirements,

and yet some underlying tenets exist, such as the need to be flexible and robust.

We continue by building our own abstraction, the importance abstraction, and relate

requirements of a communications subsystem (including real-time requirements) to this

abstraction. The importance abstraction is based on the principle that all tasks in a system

contribute to the overall system goal, and importance is the measure of their contribution. This

is a starting place, where we can make absurd assumptions. It does, however, help us to

understand the system concepts and define the roles and responsibilities of the various

components of the system and subsystems, especially the communications subsystem.

4

We then state the goal of this research, which is to find a scheme that can provide a

flexible and potent discrimination policy, yet is possible and appropriate for a communications

subsystem. We examine typical communications subsystems for what can and cannot be

expected from such a policy. This investigation yields an interesting list of open questions and

research directions.

We examine some schemes and ideas as possible solutions to the problem of making a

communications subsystem responsive to real-time and other special needs. We find we are

stymied by the need for such a scheme to be powerful and yet implementable, so it is instructive

to include these "first tries" at offering a general scheme, since they have helped us to realize

that this problem is genuinely hard.

Finally, we present the scheme adopted by XTP Revision 3.4 for the sort field, which

addresses the problem of how XTP can avoid the shortcomings of its predecessors inasmuch as

real-time communications’ needs are concerned. A survey of the attempts in earlier Revisions

of the XTP Definition to deal with this issue is followed by an explanation and evaluation of the

sort field mechanism for Revision 3.4.

2. Requirements for a Real-Time Communications Subsystem

It is important to remember that the communications subsystem is not responsible for the

attribute real-time; rather it is responsive to the needs of the system, and that includes the

special needs of a real-time system. What are the special needs of a real-time system? This

question has no universal answer; the term real-time is vague and ambiguous. Given the

emphasis on designing a communications subsystem to support real-time systems, however, the

question deserves discussion.

5

A real-time distributed system consists of several applications that are distributed among

different processing nodes connected via a common network. The applications may be

executing in parallel subject to both precedence and timing constraints. The communications

subsystem has responsibility to provide the services necessary for a timely response to changes

in the application’s environment. It must provide sufficient functionality and performance to be

useful to applications which require time-constrained communication, allowing the application

to effectively handle error conditions without the communication system inducing errors of its

own ([STRA88d]).

There are three major requirements of distributed real-time processing on a local area

network environment [ZNAT87]. Robustness is the combination of reliability, availability, and

dependability requirements, and reflects the degree of system insensitivity to errors and

misinformation. Flexibility relates to the ease of designing and structuring a network that can

support real-time processing. Finally, timing requirements are the timing guarantees demanded

of the network by any given station attempting to access the channel.

The real-time communication system must be efficient and reliable. It must be

performance oriented in order to provide a very short response time while ensuring that network

errors are detected and are recovered from without involving the network users. There is a trade

off: as network error detection and recovery protocols provide more robust and hence more

reliable service, the cost of executing these protocols on each protocol data unit increases,

degrading performance. Thus it is desirable for a real-time communication system to

implement only the necessary communication services. This is a minimum according to the

required quality of service.

A major requirement of real-time applications is fault tolerance [HWAN87]. Generally,

real-time applications produce specific network load conditions and traffic patterns; the load is

6

relatively light and the traffic pattern varies slightly from predictable behavior [STOI88]. Errors

within the application, however, must be detected, confined, and corrected using fault tolerance

techniques built into the application. These fault tolerance techniques may cause unpredictable

sudden bursts of high priority communication, are called alarms. An alarm message must not

be stopped by flow control. This sudden peak in load due to alarms is called an alarm

avalanche. Unless the communications subsystem can meet the deadlines of each of these

alarms during an alarm avalanche the error condition will worsen, and more faults will be

introduced. It is not sufficient for a real-time system to provide adequate performance during

normal activity; the system must actively influence the ability of the fault tolerance techniques

to confine and correct the faults before others compound. Real-time system designers must

anticipate these message bursts, providing sufficiently robust transfer capacity for all network

nodes under all load conditions. This requires high throughput and predictable message delays.

Simply increasing the transmission bit rate cannot relieve congestion caused by burst traffic

[MIRA83].

End-to-end resource allocation is also necessary to guarantee response times or

throughput. Typically, this is accomplished with end-to-end flow control using windows and

credits. However, this method only guarantees that buffer space will be available when

messages arrive. Le Lann, in [LELA85], identifies at least two other types of resources that

must be allocated, CPU cycles and I/O capacity. In fact, buffers have become a cheap and

readily available resource, whereas most LANs are bound by the CPU and system busses.

Connections allocate resources upon creation. However, this allocation may be too costly

to maintain if the connection is scarcely used or if there are many connections being supported.

The robustness of a communications subsystem must not adversely effect the cost of

maintaining the system, whether that cost is measured in resources or message delay.

7

The most notable and fundamental principle of a real-time communication system is that

it must ensure that a message is delivered to its destination before the deadline. Its inability to

do so is considered a failure. It may be both useless and dangerous to deliver a message past its

deadline, as its significance is no longer a factor and its presence may confuse or overwrite data

that did meet its deadline. The mechanisms used for meeting deadlines are priorities and

multilevel message scheduling.

Latency control is seen as another requirement. Messages handled at all layers of

protocols should be scheduled according to specific algorithms [LELA85]. Establishing finite

upper bounds for access delay only solves part of the general problem. Finite upper bounds

must be guaranteed for all service times at all layers for given conditions of utilization. Also, a

cost function must be minimized when these bounds are exceeded. Such cost functions for a

real-time system are the number of messages which miss their deadlines or the average or

maximum message lateness over a given time interval. Deterministic message scheduling

algorithms are needed to enforce the guarantee of finite upper bounds as well as ensure that the

least costly messages are discarded on overload or in abnormal situations.

3. The Importance Abstraction

Importance is an abstract concept which ranks activities according to how much they

contribute to the overall system goal. Within a system there are several subsystems, such as the

communications subsystem. Within each subsystem are an arbitrary number of tasks requiring

attention. These tasks are created by application processes within the system and are serviced

by the appropriate subsystem. For the communications subsystem, these tasks are messages. A

subsystem can be viewed as a server, where the application processes within the system are the

clients which submit the tasks to the subsystem. In this section we present the importance

abstraction, briefly as a characteristic of the general client/server model, then specifically as it

8

applies to the communications subsystem. There are some aspects of the communications

subsystem which make the importance abstraction more tractable; we will try to point out when

the importance abstraction can not be generalized easily.

Informally, the system is doing the best it can to accomplish the system goal if each

subsystem is also doing the best it can to service the tasks it has at hand according to which task

will contribute the most toward the system goal. Somehow the subsystem must determine

which task is the most important at each instant in time and service that task. The importance

of a task is relative to the importance of all other tasks competing for the service within the

subsystem, and the task with the greatest level of importance may change as the importance

levels of the various tasks change. Therefore, for a subsystem, viewed as a server or a series of

servers, to do the best it possibly can given a set of tasks and their relative importance levels,

instantaneous preemption is necessary. Ideally, this preemption should save as much work

already done as possible. Thus we consider a client/server model with the following

characteristics: (1) each task has some function of time associated with it which describes the

task’s importance over its lifetime and whose value is always known to the server; (2) the client

must provide enough information to the server to determine the task’s importance over its

lifetime; (3) at any point in time, all tasks are well-ordered according to their importance, and a

most important task may be identified and served; and (4) the server is able to preempt tasks

instantaneously without loss of work already accomplished. Thus a subsystem that can provide

these characteristics will have the further characteristic that it will be doing the best that it is

possible to do, according to what is globally considered important.

3.1. Importance Function Definition

Since the various subsystems are simply responsible for servicing the tasks submitted to

them by the application processes, the subsystems must be given some mechanism for

9

determining the order of the tasks to service. Within a client/server model, this is known as

scheduling. Jensen et al. [JENS85] define a scheduling policy for operating systems by noting

that within computer systems there is a value which varies with time associated with the

completion of a process (an operating system’s task). This value function, V (t), is the value to

the system for completing that process at time t. The goal of the scheduler is to optimize the

cumulative value over the lifetime of the system, so that scheduling decisions are made based

on what process can contribute the most value.

As a process’s value function may increase and decrease with time, scheduling the current

highest-valued process (greedy solution) often does not result in the optimal cumulative value.

There are processes for which it is beneficial to "hold" them inactive until some time when the

values associated with completing these processes have become optimal. This is not typically

characteristic of a communications subsystem. Generally, no message is held once inside of the

communications subsystem; it is delivered (completed) as soon as possible. Therefore, a

communications subsystem which does the work at hand until no work is left will likely not

produce an optimal value, since messages will not be held until their value functions have

reached a maximum.

Rather than a function that provides the value of completing a message at some time, the

application process should submit some function associated with the message which will

describe the message’s importance value over the lifetime of the message. This importance

function is different from Jensen’s value function in the following way. Instead of trying to

optimize the value upon completion of a message, the communications subsystem is using the

importance value at every moment in the lifetime of the message to rank that message among

other messages, so that it can be working on the most important message at all times. The

function which describes the message’s importance is based on some set of system and

environment parameters and maps these into any well-ordered set, for example the integers.

10

Since the system parameters are changing with time, every importance function, I (t), is at least

implicitly dependent on time.

There are variables implicit to the system which are measures of conditions which exist

within the system. These variables trace the changes in the system according to outside

influences or internal activities. An importance function may need to be responsive to these

changes, since a message’s importance may increase or decrease as these conditions on or

within the system change. These system variables must be parameters to the importance

functions, and are therefore called system parameters. However, the importance function may

not use a particular parameter; in fact, we shall present importance functions that use none,

some, and many system parameters.

3.2. Importance Function Issues

Now that we have defined a class of functions that maps a message’s importance to the

system into a well-ordered set, we raise some issues about this class. The design of the

importance function controls the precision with which the importance function represents the

value this message contributes to the overall system goal; high precision schemes generally

entail more complexity. These schemes may be classified into types of importance functions.

Furthermore, various applications have differing needs of a discrimination scheme; most do not

need a complex scheme but a few require one. We offer a taxonomy of application’s needs.

Also, the more the importance function can describe, the greater the need to calibrate the

function (relative to the number of "levels" possible) so that its values are comparable within

the well-ordered set. This is called homogenization. Finally, it is observed that the importance

function should be evaluated infinitely often to ensure an accurate ranking of messages. Since

this is unrealistic, decision points must be assigned. The degree to which a communications

subsystem can provide evaluation of the importance function infinitely often is called

11

granularity.

3.2.1. Taxonomy of Types of Importance Functions

The taxonomy of possible types of importance functions is laid out in the tree of Figure 1.

Generally, an importance function may actually change with time or may maintain the same

value as time elapses. The former are called dynamic schemes, the latter, static. Static schemes

are first broken into two cases: the very special case of one priority for all tasks (that is, no

discriminating scheme at all) and multi-level static priorities, where I (t) = n or I (t) = 2n . The

multi-level schemes are further divided into the trivial scheme with only two classes of tasks, a

scheme with a small enough number of levels of importance that a human being could

understand and keep the distinctions between levels in his head, a scheme where a human being

hh

nn
2 2nsmall large

multi-levelnone

dynamicstatic

Importance

parameters
system

defined by defined by
data

movement

defined by
f (t)

Figure 1 — Taxonomy of Types of Importance Functions

hh

12

with the aid of a handbook could look up the distinctions between levels of importance but

could not keep them in his head, and a scheme where the number of levels is so high that they

can only be meaningfully assigned by an algorithm and not by a human being. Dynamic

importance functions could be defined as either explicit functions of time or by some set of

system parameters, in which case importance implicitly depends on time.

The most general importance function is one that depends on all of the system parameters.

The system has many such parameters, like load, congestion at particular stations, level of

criticality, and time. Each system parameter may itself be considered a function of time: load

and congestion change over periods of time, criticality depends on what is happening at a

certain time (such as battle conditions), and time certainly changes. Therefore, the importance

function can be described on a planar graph with time as the dependent variable. Unfortunately,

since there is no way of knowing what the system parameters will be in the future, there is little

hope of graphing the importance function into the future. (It should be noted that time is a

system parameter which can be predicted, so an importance function which depends solely on

the current time (such as deadline scheduling) has the property that it may be graphed into the

future.)

3.2.2. Taxonomy of Applications

Applications have differing needs for a discrimination scheme. It is desirable to be

responsive to all types of applications. Figure 2 shows a pyramid of discrimination schemes

according to application’s needs. At the top of the pyramid sits a scheme suitable for time

dependent traffic, the deadline traffic scheme, which provides the most flexible and most

complex method of assigning priorities. Only a tiny fraction of all applications, namely real-

time applications, will need the full power offered by this scheme. A somewhat larger number

of applications will desire a k-level priority space. This class of applications will be said to

13

hh

Scheme
Traffic
Deadline

Priority
Scheme

Trivial
Scheme

Scheme
No

Figure 2 — The Pyramid of Discrimination Schemes

hh

need simply a priority scheme. A still larger set of applications require only a trivial scheme,

having normal and extraordinary tasks to perform. Finally, the broadest class of applications,

the base of the pyramid, will not deem any discrimination scheme to be worth the effort and

will have all its communications work done at the same priority.

3.2.3. Homogenization

Under every circumstance all of the messages in the subsystem must be well-ordered; that

is, the ordering implied by the importance function must reflect the actual order of importance

of the messages. Consider deadline scheduling where the message requiring delivery the

soonest is the most important. Using only the system parameter of time, the set of messages in

the system is well-ordered based solely on the difference between the time-to-serve and the

14

current time. However, if there are also messages which have a static priority (a function of the

null set of system parameters), making accurate decisions regarding which message is the most

important becomes a matter of comparing deadlines against static priorities. In order for the

importance function to produce a scalar value from the set of system parameters, each of the

parameters must be weighted appropriately. In other words, there must be some homogenizer

which can ensure that all messages, regardless on what set of system parameters they depend,

are well-ordered according to which messages can contribute most to the system goal. The

question remains: how do messages with different importance functions, and hence different

criteria for importance, relate to each other?

One method of trying to simplify the problem is to enumerate all of the clearly useful

importance functions. Now the problem becomes one of relating a finite number of functions at

the expense of complete generality. The homogenization problem is simplified further by

restricting the system to a small, closed environment. Designers of a closed system may have

some idea of the characteristics of the system and can adjust the importance functions

accordingly. At this time, this is considered too restrictive, since wide area networks with many

gateways and high bandwidth are soon to be a cornerstone of the scientific computing

community.

3.2.4. Granularity and Decision Points

For the statement "the communications subsystem is servicing the most important

message at all times" to be true, the subsystem must be able to know the values of importance

for each of the messages in the system at each point in time. Since time is continuous, the

importance function must be evaluated infinitely often so that at the instant when a message’s

importance value supercedes the current most important message, that message may be

preempted and the new most important message may be served. In reality, this is impractical.

15

The degree to which a communications subsystem can adhere to the above statement is called

granularity. As the granularity becomes more gross, the communications subsystem can ensure

the most important message is being serviced at almost every point in time.

Thus, the importance abstraction provides a method for considering a system which has

the basic principle that it is always trying to do the most important activity according to what

contributes most toward the system goal. Unfortunately, the characteristics of the pure

importance abstraction are impractical; no server can preempt messages instantaneously without

loss of work, nor can an importance function be evaluated infinitely often at no cost for

computation. The importance abstraction is the right place to start, however, as long as relaxing

the assumptions mentioned provides a close approximation to the pure scheme. For example,

the importance functions may be evaluated periodically so that during the period no changes

occur in the ordering of messages. This period should be chosen so that the calculated

importance values could be updated faster than the actual importance can change substantially.

This period may be no smaller than a bit-time and still be meaningful, since a bit is an atomic

entity within computers. Another scheme is to define decision points based on the observation

that there are certain times in a message’s lifetime when it is possible to reorder the messages,

so that a new most important message may take the place of the message that used to be the

most important. These decision points include at least message entrance into the

communications subsystem, transmission onto the medium, servicing within gateways, and

exiting the communications subsystem.

4. Applying a Discrimination Policy to a Communications Subsystem

The goal of this research is to find a scheme that will provide a discrimination policy that

is flexible and potent. It needs to be flexible enough to apply to all types of networks, from

coast-to-coast wide area networks to tightly closed control networks. It must apply to all types

16

of traffic as well, from real-time to background communications. It must be consistent at every

installation, yet make no assumptions about the environment in which the network resides. In

order to suggest a reasonable scheme to be used within a communications subsystem, we must

first observe what most classic transport protocols cannot do with respect to the abstract notion

of importance. We can then observe what the transport protocol can and should do. We also

recognize a set of open questions and discuss their implications.

4.1. What a Communications Subsystem Cannot Know

A communications subsystem built upon a classical transport layer protocol is not

endowed with any special characteristics that would make it suitable for a real-time system. It

provides the reliable, end-to-end data transfer service to its users as a part of a communications

subsystem. However, there are aspects of the system that the transport protocol cannot know

yet ignorance of them will hinder its responsiveness to real-time needs.

(1) Obviously, no protocol can control for bit errors on the medium or packets lost in the

network. These errors destroy any latency guarantees that are not probabilistic.

(2) The "system goal", as defined by the system designers, is neither the communications

subsystem’s business nor responsibility to understand. As part of the communications

subsystem, the transport protocol must provide the best service it can, based on the

requests issued by the application processes.

(3) Likewise, the communications subsystem cannot know what the enclosing environment is,

such as whether the area of distribution is wide or local. There are parameters within the

transport protocol which can be tuned and adjusted for its various uses, but the protocol

itself should remain consistent under any environment. Specifically, the discrimination

mechanism must rely on the same principles under any environment as well.

17

(4) The communications subsystem cannot assign values of importance to the messages it

handles. These messages are important only to the application processes which create or

use them, and a message’s system-wide importance only makes sense to entities which

know the system goal. It is the responsibility of the communications subsystem, and the

transport protocol specifically, to be responsive to the needs of the application processes

by enforcing the discrimination required; it is not the communications subsystem’s

responsibility to make up the discriminators it must enforce.

(5) Typical transport protocols are designed to work in conjunction with any physical (and

MAC) layer protocols which provide the common basic frame transfer services. It is not

known to the transport what protocols are providing these services, so it is not known how

to cause the lower layers to be responsive to the discrimination scheme that it is trying to

enforce. For instance, Ethernet and FDDI are both considered viable lower layer

protocols for use with various transport protocols; however, Ethernet has no medium

access priorities and FDDI has infinitely many of them. Yet, the transport protocol cannot

know with which protocol it is being used. Furthermore, it cannot know the signaling

speed or the propagation delay between stations, or how many routers and/or bridges there

are on the network.

4.2. What a Communications Subsystem Can and Should Know

In spite of things that a communications subsystem cannot do, there are some things that it

can and should do to provide some form of discrimination among messages according to their

importance to the system. The communications subsystem controls several resources for which

messages may contend. These resources include buffer space, processing attention, and

network access. The most important message should not have to wait on a resource, since that

would imply that a less important message is preventing access to that resource. This is called

18

priority inversion. The subsystem should periodically order activities according to which

activity has the highest importance value. At each decision point it should give preferential

treatment to the most important activity, where a decision point is an opportunity for reordering

activities.

With any scheme for providing discrimination, the hope is that some class of messages

will benefit from the shedding of the load of all classes of less importance. A message with

moderate importance may be impeded by messages of more importance; likewise this message

may impede the progress of messages of less importance than itself. Degraded service of less

important messages due to this impedance is the price for providing preferential treatment of

the more important messages. The most important message should be the least impeded.

Furthermore, impedance on the most important message should be only slightly more than the

impedance of a message on a zero-loaded network without any discrimination scheme at all.

Proper management of system resources within the realm of a communications subsystem

means avoiding priority inversion and reducing the impedance of the more important messages.

One way to ensure that the subsystem has the power to accomplish these objectives is to allow

the preemption of less important tasks in favor of more important ones. Preemption is a

powerful and costly tool: powerful in that the communications subsystem can take away a

resource at any time in order to give it to a more important task than the current one, but costly

in that when a task is preempted either work will be lost or there will be a good deal of

overhead in saving the state of the work. Hence the use of preemption must be sparing else the

performance penalty will cancel all advantage.

However the discrimination scheme is implemented within the communications

subsystem, a doctrine concerning such schemes must still hold: there should be varying degrees

of preciseness, and the price for such a scheme should increase only with the increased

19

precision. As the scheme becomes more precise about which message is the most important,

the cost of determining this message will increase. Having no scheme is to have a scheme that

does nothing; this scheme provides no discrimination among messages but should provide the

highest overall system throughput, since no load of messages are being shed. There should be

no overhead due to a discrimination scheme if one does not use the discrimination scheme.

Four tiers of precision are useful: none, trivial, static, and precise. No scheme provides only a

normal data transfer service, it is up to the application process to discriminate. A trivial scheme

is a binary division, perhaps like ISO Transport Protocol Class 4’s normal and expedited

services. The static scheme provides a range of priorities, which, once set, are not changeable.

Finally, the precise scheme provides a dynamic priority which is raised and lowered by the

measure of importance that message has to the system. These four schemes should be able to

coexist. Clearly, the more precise the scheme, the more it will cost to calculate which message

is the most important. Herein lies a delicate trade-off: if the ability to provide a very precise

method of preferring one message over a set of others costs more than the benefit gained by the

preferred message, the scheme only hinders the system performance. A discrimination scheme

is an investment which must show tangible benefits to the class of messages whose performance

it wishes to improve.

As suggested in Figure 3, no discrimination scheme at all results in a first come first serve

(FCFS) service discipline. Any attempt to order messages into importance classes is equivalent

to having multiple queues which the server must drain. Since having no scheme requires less

effort, it must be that the throughput for the FCFS system is higher than the system with

discrimination. As a doctor’s first rule is to do no harm, so a protocol designer must be sure

that any proposed discrimination scheme does not result, due to the computational overhead of

determining the importance of each message, in a lower latency for the class of preferred

messages than what would have resulted from an unintelligent FCFS discipline.

20

hh

ServerServer

Line
Dead-

Layer
Multi-TrivialNone

Serve
First
Come
First

NetNet

Figure 3 — Unintelligent vs. Discriminant Schemes

hh

The communications subsystem should provide a good interface to the user, regardless of

how precise the discrimination scheme may be. The interface should be simple, low overhead,

consistent, orthogonal, regular, and clear. The scheme should be able to operate unambiguously

from the parameters which are provided to it by the application process.

Regardless of the scheme used, a message placed into the communications subsystem

should be delivered as soon as possible, according to its relative importance with the rest of the

messages contending for the attention of the subsystem.

4.3. Open Questions

There are many questions which must be answered before the definition of a priority field

can be made completely.

21

(1) What are all of the decision points in a communications subsystem, where activities may

be reordered if warranted by the discrimination scheme? Since a transport layer protocol

cannot control the layers below it, its only realm of influence is the processing it performs

on the message itself.

(2) The interface to the communications subsystem must convey enough information to allow

the subsystem to be responsive to the relative importance values of the messages. What

parameters must be included in this interface? How will the scheme use them? Also, how

will the transport layer protocol, once it knows a message’s importance, convey that

importance to the underlying services, without knowing what they are?

(3) Real-time applications are by definition constrained by time. How necessary is it to have

a time-based discrimination scheme? If it is necessary, common time must be distributed

to all network nodes (not an easy task), and it must be an order of magnitude more

accurate than is necessary. Algorithms for time distribution exist ([GORA]), but they are

complicated and hinder efficiency. The communications subsystem cannot get the system

time through system calls; this is surely too costly. Perhaps the subsystem should have its

own time of day clock. Even so, accuracy is a major issue, and a time-based scheme

would be gross at best. Real-time application processes may have deadlines and time

constraints, but it is not clear that the communications subsystem really can enforce

deadlines. It can give preferential treatment according to a deadline and some other

weighting factors, but the deadline time itself may not actually need to be included in the

priority field.

For the purposes of this discussion a deadline is a time by which the receiving operating

system must be notified that a message has arrived. This definition is reasonable since the

communications subsystem can do no more than deliver a message to an exit queue. After

22

that point the message leaves the communications subsystem’s sphere of influence.

Even assuming that having an accurate system clock is a solved problem, the use of

deadlines remains problematic. A deadline handed to the communications subsystem by

an application process is not meaningful for calculating importance. This raw deadline

contains no information about the time that it will take the message to be delivered and

hence does not accurately reflect the urgency of the message’s delivery from the

communications subsystem’s point of view. To make a deadline, D, useful in ascertaining

importance, the following times must be known (or estimated): time required for the

subsystem to seize the necessary resources (tSR), time to gain network access (tNA), time to

transmit (tTR), propagation time (tP), time in routers and gateways (tRG), and time in

receivers (tRVR). If these times are subtracted from the deadline, one gets the "latest time

to transmit", tTRANS , which represents a "true deadline" from the communications

subsystem’s perspective. A plausible discrimination scheme then would be to service

messages by an earliest transmit time first discipline:

(4.1)tTRANS = D − tSR − tNA − tTR − tP − tRG − tRVR

Unfortunately, many of the variables in Equation 4.1 are unknown, are hard to measure, or

have a very high variance. There is no way to know or predict with accuracy how long a

message might spend in routers and gateways or in an entrance queue waiting for access

to the network. The only time that is easily computed is the time to transmit which is

simply the size of a message divided by the capacity of the network. But this fact is of

little use since the tTR variable is one of the least significant terms in Equation 4.1.

Moreover, even if the intractable problem of computing tTRANS were solved, an underlying

assumption in earliest transmit time first is that two messages with the same deadline are

equally important, which may not be the case.

23

(4) It is not clear that a message will be in a communications subsystem long enough for its

importance value to change. This surely depends on the environment; wide area networks

with several gateways may impose a large latency on messages. If all messages can be

delivered before any appreciable change occurs in their importance values, then a dynamic

scheme may not be necessary. It is probably true that some scheme is necessary to resolve

contention, whether this is dynamic is an open question.

(5) What assertions and guarantees fall apart during the presence of errors in the

communications subsystem? Transport layer protocols provide a reliable service, which

implies some need for acknowledgements or negative acknowledgements. Latency may

be as much as two orders of magnitude larger in the presences of errors than during error-

free operation. Resources remain tied up while the transport layer tries to recover. Under

these circumstances, is it clear that a static scheme is all that is necessary? What

importance values should acknowledgements and retransmitted data carry?

These are a few of the observations and questions our research has lead us to discover.

5. Toward A Workable Discrimination Policy

In general, each message in a subsystem must have some method of encoding the

importance function within it so that the communications subsystem can choose the most

important message to serve. As the system parameters change, the value of the importance

function changes to respond to the new environment. The communications subsystem can

evaluate the importance function as it needs to know a message’s importance value; ideally this

evaluation would be done infinitely often with no cost so that the instant one message becomes

the most important message over the previously most important message, the communications

subsystem can preempt the old message and serve the new one.

24

Admittedly, this scheme is unrealistic for any subsystem, particularly the communications

subsystem. It is nonetheless the place to start since the assumptions which are made about the

communications subsystem can be relaxed later. This scenario represents the best that can

happen because the system is in essence being driven by an oracle which can properly assign

importance functions to each message and thus determine how the communications subsystem

can be most responsive to the system’s overall goal.

First and foremost among the difficulties with the abstraction of importance is how the

applications can assign importance functions that will accurately describe a message’s

importance during its lifetime. In order to do this the system designer must know a priori what

other messages are possible at every moment during the message’s lifetime, what their

importance functions may be, and furthermore must ensure that some message does not preempt

a message which is really more important or is not preempted by a message which is really less

important due to an improperly assigned importance function.

In this section we examine some aspects of the importance functions which produce some

"useful curves". These curves represent the mapping of an importance function onto a planar

graph with time as the abscissa. An importance function may be based on many aspects of the

system, we show graphs with only one aspect contributing. We also discuss the problem of

mapping many individual importance functions into a common planar space. This mapping is

called homogenization. We conclude this section with some ideas on implementing a workable

discrimination policy, complete with tradeoffs and compromises, in two subsections describing

example schemes.

25

5.1. Message Types and Useful Curves

While it is not clear that a canonical list of message types exists, one possibility for the

communications subsystem includes: deadline, dynamic priority, static priority, and no priority

scheme at all. Each message’s importance is derived from what is important to it. For

example, if it is important for a message to be delivered before a deadline, the importance

function will depend upon the system parameter of time and the message’s deadline. Other

parameters, such as whether the message has a hard or soft deadline, will help rank it among

other deadline traffic, and in fact, among all other traffic.

Although the importance abstraction is powerful enough to provide a system with the

mechanism necessary to impose a ranking among messages competing for the communications

subsystem, without a canonical list of the message types it is virtually impossible to write down

a function which will adequately describe a message’s importance over its lifetime. The value

of an importance function I (t) changes as the set of system parameters upon which it is based

changes. How the value changes depends on the nature of the importance function. There are

many possibilities to consider: should I (t) be linear, stepwise, or exponential? Is I (t)

decreasing, increasing, or monotonic? Is I (t) everywhere defined? Based on our own

experience, experience reported in the literature, and discussions with several system designers,

we have attempted to draw several shapes of curves that might be useful importance function

shapes.

The simplest to draw and to understand is the static priority scheme, Figure 4, where the

application process provides the message with a number, or fixed importance level, which it

will keep during its entire lifetime. The origin of the graph, t 0 , is the birth of the message, or

when the message enters the subsystem. Figure 5 shows a hard deadline example where the

importance increases exponentially to infinity as the critical time approaches. If the message is

26

hh

I (t)

p

t 0
time

Figure 4 — Static Priority

I (t)

t 0

critical time

time

Figure 5 — Hard Deadline

hh

27

hh

I (t)

t 0

p

critical time

time

Figure 6 — Soft Deadline

I (t)

t 0

critical time

time

Figure 7 — Window of Opportunity

hh

28

not satisfied by the critical time, its importance value becomes negative, indicating that it is

very unimportant. Figure 6 shows the same importance function before the critical time is

reached, only now the message retains some importance even if the critical time passes, as

might a message with a soft deadline. Figure 7 shows an importance function of a message that

has a "window of opportunity", where the message’s greatest importance value occurs over an

interval of time centered on the critical time. Notice that in this case the importance function is

symmetrical about the critical time. This indicates that the message is as important to satisfy

some time before the critical time as it is to satisfy the same amount of time after the critical

time. Of course, there are many variations on these themes; the point was to show some useful

shapes of curves which may be used for the importance functions of certain types of messages.

5.2. Ideas on Homogenization

Another problem with the importance abstraction is that the values of the importance

function must somehow relate to one another in order to impose a ranking. Thus, if one

importance value is higher than another, it is defined to be more important. However, in order

to ensure that all importance functions, and there can be infinitely many of them, are mapped

onto a planar space in a manner which is consistent, each importance function would have to be

carefully calibrated. Mapping all possible importance functions onto a common planar space is

called homogenization. For example, consider an importance function of one message that is

based on a deadline such that the importance of the message is exponentially increasing as the

deadline approaches, such as Figure 5. Also consider the importance function of another

message which is static, like Figure 4. How are these messages related? At what point should

the deadline message become more important than the message with static importance? What

parameters must be included so that the two functions share the same planar space? Each

possible message’s importance function would have to be compared to each other’s importance

29

function, which is combinatorially explosive.

The following is an idea which can simplify matters without compromising the integrity

of the importance scheme. It is not clear at this time whether the premise is completely correct.

The premise is: all messages which are dependent on deadlines are inherently more important

than any other messages. Thus, all messages can be split into the two categories: deadline and

priority. Priority messages are messages whose importance function is either a constant (static

priority) or implicitly dependent on time by being explicitly dependent on some system

parameters which are dependent on time (dynamic priority). Deadline messages no longer have

to share the same importance space as priority messages; there is now an importance space for

each category of messages.

Our reasoning which led to the above premise was that the communications subsystem

cannot appreciate the consequences of failing to meet a message’s deadline, therefore the

communications subsystem relies on the application to assign deadline driven priority only to

those messages for which the consequences are profound. No other message can be as

inherently important as a message with deadline driven priority since it has no concrete point of

consequence.

In terms of implementation there could be two queues, one that dealt exclusively with

deadline messages, and one that dealt with all other messages. Within these queues, messages

would be ordered by their individual importance functions; however, all messages in the

deadline queue are satisfied before any message in the other queue is. This clears up the

question about how deadline and non-deadline messages are related — the deadline messages

are always more important.

It should be noted that there is at least one important exception. An alarm message is

always more important than any other message, except possibly another alarm message.

30

Alarms do not necessarily have deadlines, but would be more important than any deadline

message. To handle an alarm by the scheme above, one would have to artificially treat it as a

message with a deadline, even though no deadline is appropriate.

5.3. Example Scheme Number 1

Another idea has more promise. It is based on the observations that (1) calculation of an

arbitrary function to determine the importance of a message may be too expensive, and thus

actually hinder rather than help the application processes; (2) the importance function should be

evaluated fairly often to catch any changes; and (3) a series of static importance values may

come close enough to approximating a continuous importance function to be usable. The

following discussion builds on these observations.

The priority field associated with a message will contain an encoding for three decision

times, call them t 1 , t 2 , t 3 , at which the importance may be raised or lowered. (Note the

existence of decision times is predicated on a common time reference within the

communications subsystem.) Also encoded for each region on the time line will be an integer

in the range −1 to some maximum, n, where higher numbers are assumed to represent higher

importance values. The priority values for the four regions of the time line, that is p 1 , p 2 , p 3

and p 4 , may be assigned any value from −1 to n. Figure 8 shows how the time line is divided.

Recall the four classes of priority schemes shown in Figure 2. All can be accommodated

in one importance space under our proposed mechanism. Time dependent traffic, or deadline

traffic, is inherently more important than traffic that is not time dependent. For this reason

deadline traffic will have the use of all possible priority values, -1 to n. Priority traffic will

have the values from −1 to n/2 available to its importance functions.

31

hh

. .

−1

0

t 3t 2t 1

all traffic

time

deadline traffic only

p 1 p 2 p 3 p 4

n/2

n/4

n

I (t)

Figure 8 — The Importance Space with Three Decision Times
hh

The value −1 will represent the kill priority, which provides a mechanism for controlling

the lifetime of a message within the communications subsystem. The value of the importance

function can be computed by determining into which region of the time line the current time

falls and reading the priority value for that region. If the value is −1, the message is

immediately discarded.

To illustrate, consider Figure 9 where the hard deadline case of Figure 5 is modeled. The

deadline (or critical time) can be encoded as time t 3 in the priority field. Initially the

importance of the message is small, so the priority may be chosen to be less than n/2 to allow

32

the system to service other (possibly non-deadline) messages. At time t 1 the importance jumps

to a higher priority. In particular it jumps to a priority above n/2 so that this deadline message

is now assured of preempting all traffic in the lower priority schemes. At time t 2 the

importance goes still higher since the approaching deadline increases the urgency of performing

the message. Finally, since the semantics of a hard deadline application dictate that the

message should not be delivered if it misses its deadline, after time t 3 the message is given the

kill priority. (To model instead the soft deadline of Figure 6, p 4 would be some (presumably

low) non-negative priority.)

An important aspect of this scheme is its ability to ensure that during certain time

intervals a deadline message does not have to compete with any non-deadline traffic. A

deadline message is assumed to be inherently more important as the deadline approaches than

any time independent traffic; hence the highest priority values are reserved for use by deadline

traffic only. On the other hand the overall efficiency of the communications subsystem and its

fairness are improved by allowing time dependent traffic to be assigned priorities less than n/2.

A deadline message’s importance is indeed low when the deadline is far into the future or, in

some cases, after the (soft) deadline has passed.

If desired, the deadline can be encoded as time t 2 . Now, when the deadline is passed, a

message may have its priority reduced in the interval between time t 2 and t 3 and then be killed

after time t 3 . In this way a message that has only an interval of time after its deadline during

which its delivery would be useful can be accommodated.

An exact deadline means that the message will be most effective if delivered precisely at

the deadline. This is the "window of opportunity" illustrated in Figure 7. Here the importance

function should have p 2 and p 3 as the same (high) priority and p 1 and p 4 as the same (low)

priority. In this way the message is most likely to exit the communications subsystem in the

33

hh

−1

0

p 4

p 3

p 2

t 3t 2t 1

time

p 1

n/2

n/4

n

I (t)

Figure 9 — An Example

hh

interval from time t 1 to time t 3 .

Some applications will need only a k-level priority scheme for their traffic. For dynamic

priorities the importance value of a message may be raised or lowered at each of the decision

times t 1 , t 2 , and t 3 . An application achieves static priorities by assigning p 1 , p 2 , p 3 and p 4 to

all have the same value. A common use of p 4 will be to control the lifetime of a message; that

is, p 4 may be given the kill priority as its value so that a message will not remain in the

communications subsystem beyond a certain time, t 3 .

34

Applications requiring only a trivial priority space, that is, one with two priority values,

or no scheme at all, need only static priorities. For the trivial scheme normal traffic should be

mapped to priority 0 and extraordinary traffic to some middle value in the importance space of

all priority scheme traffic, namely n/4. If it uses no scheme at all, the application has indicated

no concern about discriminating between messages, and the communications subsystem cannot

divine importance on its own. The lowest importance value, 0, is thus the logical value to

assign all messages from these applications.

5.4. Example Scheme Number 2

Recalling the principles we set forth in Section 4, we present another flexible and potent

scheme for use within a transport layer. The following is a description of the syntax and the

semantics of this scheme, and how a transport layer would provide different classes of service.

This scheme is examined for its ability to provide an application process (i.e., the transport user)

with the ability to assign its messages an importance according to the type of service they

would need.

A cleanpoint is defined [CHES88b] as a point in the sequence of operations where data

structures are in a stable and consistent state and can be modified without danger of race

conditions or inconsistent behavior. It is expected that the maximum time to a cleanpoint can

be bounded in terms of packet transmission times. As a packet is being transmitted, another,

more important one, may become active. Once the first packet is completed, a cleanpoint exists

for the choosing of the next packet to transmit; the most important one of those pending is

chosen. A cleanpoint must exist at each scheduling point so that the activities at that scheduling

point may be ordered.

35

There are at least four places throughout the communications subsystem where urgency

values should affect communications: entry scheduling, media scheduling, gateway scheduling,

and exit scheduling [CHES88b]. The output message selection is the entry scheduling;

associating sort values with priority queues allows the user to manipulate the entry scheduling.

Media and gateway scheduling may be seen as an extension of entry scheduling. Exit

scheduling is the order in which messages are passed to the application process.

Consider an importance field which is 16 bits wide for use in transport packets. Of those

16 bits, the first 4 are reserved bits and the last 12 are used to provide the mechanism for

discrimination among transport protocol data units (TPDU packets). The semantics of the

importance field are supported within the transport protocol as the discrimination policy.

Each packet carries the connection’s importance value in its importance field, including

data packets as well as control packets. This implies that acknowledgements are as "important"

as the packets they are acknowledging. Thus a connection is said to have an importance value,

which implies that all packets generated by that connection will likewise have that importance

value. The user of this connection may change the importance value of that connection at any

time during the connection’s life, giving a dynamic nature to its importance and allowing the

connection to respond to the (possibly) dynamic nature of the user.

There are three classes of priorities: normal, expedited and preemptive. Normal packets

adhere to all flow and rate control and local allocation policies set up for that context and

enforced by the transport layer. Expedited packets are more important than normal packets, and

at every cleanpoint point all contexts with the expedited importance value are served before any

context with a normal importance value may be served. The expedited packets are allowed to

bypass the normal flow control restrictions. Preemptive packets are the most important, and all

contexts with the preemptive importance value are served before any other context is served.

36

These packets are allowed to preempt any other packets in progress to ensure instantaneous use

of any transport level resources it may need. These packets move through the system as if no

other traffic were there to impede their flight. Therefore, a preemptive packet may seize buffer

space if none is readily available, destroying what had previously occupied that buffer space,

which is the tradeoff for very low latency communications.

The priority space provided by 12 bits is 212 , or 4096 levels. Within this space, the

highest level is reserved for the preemptive class: level 212−1 (all ones). The second highest

level is reserved for the expedited class: level 212−2. All other levels are left for use within the

normal class: levels 0 through 212−3. Connections with higher importance values will be

served before connections with lower importance values. At each decision point, once the

packet is in flight, the packet with the highest importance value will be served before any other

packet. The two special importance values will be served according to the semantics of the

class for which they are reserved. Note that preemption can only occur on those resources

controlled by the transport layer; standard, non-preemptive services below transport are

allowable without severely reducing the power of the expedited class.

The preemptive class fulfills the goal of reducing the impedance of a critical message to

nearly the impedance on a zero-loaded network. A packet with the highest priority traverses the

network with no resistance since it commandeers resources at every point of contention and

waits on no other message. The use of preemption is potentially costly in the amount of work

lost, but in a real-time environment the need for the lowest possible latency for critical (alarm)

messages outweighs concerns about reduced throughput for less important messages.

Expedited messages will move quickly through the communications subsystem without

suffering the constraints of flow control and without waiting on any normal traffic, yet

expedited messages will not penalize the throughput of the system nearly as severely as

37

preemptive messages might. This class of importance clearly provides a lower latency for its

messages than that of normal traffic. That is, the investment of reduced throughput in using

expedited messages does pay off in the form of reduced latency for this class of message.

The importance field is present in every packet, so the scheme applies consistently across

the entire route of the packet. Every packet, data or control, is treated according to its

importance value at every scheduling point throughout the route.

The semantics of the importance field are known to each transport implementation. In

some protocols it was up to the end systems to agree on the meaning of the an importance field,

which would allow various installations to define their own ranking schemes. That would be

highly flexible but would lead to inconsistent uses of the importance field. This scheme retains

flexibility while allowing the transport layer to enforce the meaning of the importance value in

a consistent manner. The added benefit is that all packets traversing a gateway may be treated

consistently without the gateway needing to know every installation’s (previously agreed upon)

interpretation of the importance field.

Furthermore, allowing the transport layer to enforce the discrimination scheme implies

that the layer can become an active participant in providing classes of service to its clients.

Some protocols are only allowed to rank the packets according to the importance values in

ascending order. A packet with a low importance value could be caught behind a packet with a

higher one until that packet’s transmission was complete. That is priority inversion. Since

there may be an arbitrary number of gateways between two end systems, a packet may suffer an

arbitrary number of delays due to priority inversion. Because the proposed discrimination

scheme allows the transport layer to aid packets that are very important, it actively contributes

to the scheme. Expedited packets are allowed to bypass flow control; preemptive packets are

allowed to stop the current transmission fatally. Although expensive, by enforcing these classes

38

the transport layer takes on an active role in the latency control of packets.

The importance value applies to the entire connection. Since the connection is typically

the conduit for a specific communications profile, the importance value applies to all packets

generated by that connection. Emergency and fault isolation and recovery communications are

typically independent activities, so they would be given their own connections. The connection

of an emergency communications channel may have the preemptive class importance value; it

may not be used very often, but when it is, it is very important that the latency is low. Bulk file

transfer may have a normal class importance value; transmission is often but timeliness is not

essential.

Because the importance value applies to the entire connection, it may be said that the

message, which is made up of several packets, has the importance value of the connection.

Also, control packets which are acknowledgements inherit the importance value of the data

which they acknowledge. If data has a certain importance associated with it, the

acknowledgement of that data must certainly be as important since the acknowledgement

"closes" the resources outstanding due to that packet.

The normal class packets obey all of the flow and rate control and local allocation policies

within the transport layer. Expedited class packets are allowed to bypass the flow control.

Flow control prevents a transmitter from creating congestion and overruns from lack of buffer

space. Rate control differs in that it is how fast a node can handle inbound packets, not how fast

the buffer space becomes available but how fast the transport implementation can handle the

inbound packets. Expedited class packets should retain the rate control as it would be foolish to

pump packets into a receiver that was not physically capable of keeping up. Bypassing flow

control may mean that some buffer space is overrun, but this is the price for guaranteeing that

packets will not have to wait on buffer space occupied by less important packets. Preemptive

39

class packets not only bypass flow control but can fatally preempt a less important packet while

it is being transmitted. The guarantee is that preemptive class packets have the minimum

latency; the price is lowered throughput due to bumping less important packets.

This discrimination scheme also supports the notion of criticality. Expedited class

packets may shut off normal class packets by taking precedence at each cleanpoint and by

overwriting the buffer space occupied by a normal class packet if necessary. If the load of

expedited class packets were sufficiently high, the normal class would essentially be shut off.

Likewise, the preemptive class can shut off both the normal class and the expedited class.

There are some drawbacks to this scheme, however, that should be mentioned. The most

notable is that there is no concept of time in the importance field. The importance field size

could be extended to allowed an application process to define a large number of the bits to be an

absolute time. This time could be used as a deadline in real-time systems. The 12 bits

proposed here are far too few for a timestamp of any usable kind. It is unfortunate that time is

not present, but a much more serious problem must be overcome before time’s absence would

even be an issue. Furthermore, bringing in the concept of time requires different importance

values for all packets, even of the same connection. Current transport layers do not have a

notion of global time, as discussed in the open questions of Section 4.3. Before scheduling with

nanosecond accuracy is possible, all participants in the scheduling must be on common time to

at least that granularity. As seen in the definition of the sort field in XTP Revision 3.4 (Section

6.1.5 of this document), static priority and clock time are overloaded into the same field, though

they are never used at the same time within the discrimination policy.

It is not clear that only one level for the preemptive class, or only one level for the

expedited class, or 212−2 levels for the normal class is sufficient or necessary. In the normal

class, 4094 levels may actually be excessive. The major contribution here is the division of

40

service into classes for varying degree of latency control, not the number of levels within each

class.

In effect this scheme falls under the heading of multi-level static scheme with the number

of classes large enough that an algorithm must be used to assign importance values. The

mechanism has all the advantages of static schemes, namely the avoidance of the difficult

problems of calculating importance functions and comparing (possibly disparate) importance

values. It does have the distinct advantage over a flat static priority space, however. The

classes of packets allows a transport layer to be a full participant in the control of latency, which

is essential in time constrained and other special needs communication.

6. Xpress Transfer Protocol

One of the legitimate criticisms of ISO protocols is that they were not originally designed

for real-time applications; they were designed for interoperability, not performance. In a test of

protocol performance over an Ethernet at Silicon Graphics Inc., it was reported in [CHES87a,b]

that, of the 10 Mbps signaling speed on an Ethernet, 6.7 Mbps were available at the MAC layer,

4.5 Mbps after passing through the internet layer, 2.8 Mbps at the top of TCP, and 1.2 Mbps

were available to the application program. Some measurements of ISO protocols, as in

[STRA88a,b,c], reported even lower throughput. Two other problems often encountered are: (1)

In TCP and ISO Transport Class 4, flow control operates end-to-end, so gateways do not

regulate traffic. This increases the probability of congestion in the gateway, which in turn

increases the probability that messages will be lost and retransmitted, further reducing

performance. (2) Internet gateways add buffering to the connection, thus increasing end-to-end

message latency.

41

These observations inspired the Protocol Engine Project, whose goal was to design a

high-speed transport protocol (called XTP for Xpress Transfer Protocol [CHES88a, CHES89,

PEI88a,b, PEI89]) and then implement that protocol in VLSI hardware. XTP is the high-

performance protocol designed for the Protocol Engine Project which combines the classic

transport and network layers into a single layer denoted as the "transfer" layer. XTP and the

protocol engine have been in development for over two years, and continue to evolve as the

XTP definition stabilizes toward a VLSI implementation. The current definition is XTP

Revision 3.4, dated July, 1989.

This section presents a brief overview of XTP, followed by some of the specifics within

the XTP definition. This is not a tutorial, however, and we do expect some fluency with the

current definition of XTP. The primary purpose of this overview is to explain what XTP does

to handle flow and rate control, and the history behind the sort field so that the presentation of

the stabilized scheme for the sort field in XTP Revision 3.4 will have meaning.

6.1. Protocol Overview

There are three main goals driving the design of XTP. The first is that XTP must maintain

full functionality. The protocol must provide a transparently reliable service; XTP is designed

to provide the classic functionality of the transport and network layers. XTP is the most useful

set of functions consistent with a simplified implementation. Second, XTP will provide real-

time performance. The most efficient use of an underlying medium is to stream data to it at

media rates. XTP is designed so that it will complete all protocol processing for an inbound or

outbound packet in an amount of time equal to the transmission of the packet on the media.

Finally, the protocol engine which will be the hardware implementation of XTP must provide

integrability. The protocol engine itself should achieve the desired functions and performance

in a small number of VLSI packages.

42

By design, XTP’s basic service is connection-oriented (i.e., virtual circuits). Datagrams

are treated as short-lived connections. The fundamental philosophy of the underlying

connection-oriented service is based on the observation that a receiver is inherently more

complicated than a transmitter. Because the receiver must perform checks and tests, system

performance is heavily dependent upon the receiver’s performance. XTP attempts to simplify

the receiver as much as possible so that it is a very high performance engine. An example is

that receivers do not generate response messages unless specifically commanded to do so; this

reduces backtalk and generally improves performance. XTP’s design strategy is to start with a

clever receiver architecture. The design of the transmitter follows as a complement to that of

the receiver. The transmitter’s tasks are to build output packets and control the receiver with

command codes within those packets.

Because the protocol engine is designed to provide the transport (transfer) layer user with

data rates comparable to those found at the media access layer, data buffering is intentionally

quite limited — the protocol engine must accept, evaluate, and buffer one packet in the time it

takes for a second packet to arrive. To achieve the high data transfer rates needed, accepting a

packet consists of a series of steps. This sequence of events is described below and shown in

Figure 10.

(1) Translation. As the packet header arrives, a key in the header is used to look up state

vector information in memory.

(2) Load. The result of the address translation is used to load the appropriate state vector into

the protocol engine. If no connection is active (as would be the case with a datagram or

with the first data packet of a connection), a new state vector is constructed.

(3) Evaluate. Sequence numbers are checked and the packet is determined to be in order (so

processing continues) or out of order (so the packet is dropped).

43

(4) Buffer. Incoming data is buffered pending the next accept/reject decision.

(5) Commit. After the protocol engine computes the frame check sequence, the receiver

either discards data if the CRC is incorrect or else accepts the data and updates the

connection’s state vector.

From the outset, the design of the protocol engine hardware is intended to scale from

medium speed (10 Mbps for Ethernet) to high speed (100 Mbps for FDDI) to very high speed (1

Gbps for networks now operating in the laboratory). The initial target is to interface the

protocol engine to the Ethernet chip set, and afterwards to the FDDI chip set.

A block diagram of the protocol engine is shown in Figure 11. The conceptual design is

that the protocol engine, running XTP, would be reduced to three, four, or five VLSI chips, and

that this collection would provide the transfer layer services. The protocol engine would in turn

interface to FDDI or Ethernet chips for its datalink and physical layer services.

hh

Header Data FCS Header Data FCS

Translate Load Eval

Buffer Data

Translate Load Eval

Buffer Data

Commit

Figure 10 — Time Diagram of XTP Sequence of Events

hh

44

hh

Network interface

Network interface logic

Address logic

Buffer logic

Host interface logic

Host bus/interface

P-engine
Control
Logic

RAM

RAM

Figure 11 — Block Diagram of the Protocol Engine

hhh

A pair of protocol engines can be used back-to-back as a bridge across same-type address

domains or as a router across dissimilar address domains. This latter option has significant

consequences with regard to overall protocol design, buffer management, and flow control.

Figure 12 shows how protocol engines can be used to interconnect networks. Information

arriving from, say, an FDDI network is accepted and buffered by one protocol engine, then

delivered to the system bus which interconnects protocol engines. From there a second protocol

engine accepts the message and transmits it on another, possibly dissimilar, network. Each of

these networks has its own implementation of the transport layer and below, both possibly XTP

implementations. Packets entering from one network destined for the other must actually leave

45

the protocol stack attached to the source network before entering the protocol stack attached to

the destination network. This performs a protocol conversion; this would be necessary between

a hardware implementation of XTP and a software implementation.

Since XTP is a connection-oriented protocol, there are state machines and variables

associated with each connection. The set of these state variables at one end of a connection are

referred to collectively as a context. A connection is established between two user processes,

each of which acts or reacts to the changes within the context on that end. XTP exchanges

packets between the ends of the context, one format for data exchanges and one format for

control information exchanges. The data packet contains header and trailer information, such as

an address key, a sequence number, a packet command code and a type code. The command

code tells the receiver to buffer the user data, generate a response message, or establish/remove

hh

FDDI

P-engine

System Bus

Host
CPU

P-engine P-engine

Ethernet Ethernet

Figure 12 — Network Interconnection Using Protocol Engines

hhh

46

a connection context. The sequence numbers are the actual data byte count on that context.

Control packets contain flow, error, window, message, and timestamp information important to

the protocol but not needed with every packet.

6.2. Protocol Specifics

Some of the state variables within a context control the flow of data between XTP entities,

and some control the rate at which that data should flow. Flow control is a method of

restraining the volume of information that may be sent to help avoid congestion at the transport

connection end points and on the network connection. Rate control is the technique of limiting

the rate at which a sender is allowed to transmit data, usually by enforcing a time delay after

each packet and/or a time delay after each burst of packets. Rate control can limit congestion in

the center of a network, i.e., at gateways, as well as limiting overruns at receivers.

A typical use of flow control is when traffic is heavy and continuous, or when there is

intensive multiplexing. Proper use of flow control can optimize response times and resource

utilization. One method of imposing flow control is to use a sliding window protocol, where the

window size indicates the number of PDU’s that the receiver is allowing the sender to transmit.

By varying the size of the window, the sender’s transmissions can be throttled according to the

resources available in the receiver.

In XTP, a receiver typically gives a do-not-exceed packet sequence number to a remote

host. This parameter is called alloc, and it constrains the sender from introducing more data

than the receiver’s buffers can accept. The alloc field appears in the control packet, and its

value is communicated from the receiver to the transmitter. The value of alloc is one greater

than the highest sequence number that the receiver will accept.

47

The dseq field is in the common trailer. It is the sequence number of the next byte to be

delivered to the destination application process; it is one greater than the sequence number of

the last byte delivered to the destination. All bytes with sequence number less than dseq have

been successfully transferred to the destination client. The rseq field is in the control packet. It

is the sequence number of the first byte not yet received from the network. All bytes associated

with sequence numbers less than rseq have been input and buffered by the receiving XTP

process, but may not have been delivered to the destination process yet. Thus, rseq is one

greater than the largest consecutively received data byte sequence number. The relationship

between alloc, dseq, and rseq is:

dseq ≤ rseq ≤ alloc.

XTP also provides a reservation mode for bulk transfer. The receiver is requested to

provide an allocation window that represents only the amount of space available in locked down

application receiver buffers. This is necessary on very high speed networks to prevent queue

overflows. This guarantees that queues can be drained into receive buffers.

XTP is designed to be used on several different scales. There will be many who employ a

software version of XTP and some who use the hardware protocol engine. Underlying physical

layer signaling speeds may vary from installation to installation. Because they have XTP in

common, they can all be interoperable. However, interfacing an FDDI network to, say, an

Ethernet could cause severe problems in a traditional transport protocol. If multiple packets

were directed from the FDDI network to the Ethernet, the speed mismatch would undoubtedly

cause buffer congestion in the intervening gateway, leading in turn to buffer exhaustion, a

closed sliding window, and eventual retransmission of lost packets. While no protocol can

make the 10 Mbps Ethernet accept data at the 100 Mbps rate of FDDI, XTP does regulate the

rate of data by allowing the protocol engines, acting as routers or gateways, to participate in the

48

rate control decisions. Unlike ISO Transport Class 4 or TCP, in which rate control is

approximated by flow control which operates end-to-end, XTP rate control operates between

protocol engines. This allows XTP to do a much better job in regulating rate between networks

of differing capacity.

XTP gateways assign a maximum packet rate to each new route, applied to all traffic from

the source along the route. This is a maximum do-not-exceed bandwidth, or packet rate, to each

unique source/destination path throughout the internet. Connections sharing a particular route

must divide the assigned rate to avoid a surge at a gateway. Gateways along a route may

regulate rate according to observed load and available resources. This mechanism for rate

control is seen as more efficient than rate control via sliding window flow control scheme,

resulting in less work for gateways. An XTP router can administer rate control based on the

number of source/destination pairs, not the number of active connections, which would be much

higher.

The rate control parameters are separation and credit. The value of separation is used to

guarantee that the slow receiver has sufficient time between back-to-back packets to complete

protocol processing on each data packet before the arrival of the next data packet. Changing the

value of credit allows the router to dynamically control the flow into the router so as to avoid

overwhelming it with requests. The sender is allowed to send an amount of data not to exceed

the amount limited by credit in a 1/60 second time period with minimum spacing between

packet of separation microseconds. This specifies interpacket spacing as well as aggregate rate,

which is useful when a hardware implementation is communicating with a software

implementation since it is unlikely that the software implementation could handle back-to-back

packets. Also, in hardware to hardware communications, back-to-back packets may be lost if it

takes a too long to deliver a burst to the host.

49

Both the credit and separation fields are sent in a control packet. Their values are

communicated to the sender, and, together with the flow control parameters and local allocation

policies, constrain the sender in order to avoid as many problems during the time that the

context is active as possible.

Some local allocation parameters include robin and oqmax. The robin parameter to a

context imposes a round-robin style of satisfying active context’s request for service. The

oqmax parameter limits the maximum size of the output queue per context. The maximum

output burst for any particular context is the minimum of credit and robin.

6.2.1. Sort Field

Like many transport protocols, XTP redefines "real-time communications" as being "very

fast communications." More than any other protocol, XTP is likely to achieve the goal of being

very fast. Still, that is not the same as ensuring that no application process will miss its real-

time deadlines. A fast, light-weight protocol increases the probability of acceptable real-time

performance, but does not guarantee it. The later revisions of the XTP definition have

attempted to address the issue of making XTP responsive to real-time needs. The so-called sort

field is a result of these attempts. Over the last several revisions of the XTP definition, the sort

field has had an interesting evolution, which is presented here as historical perspective before

endeavoring to explain its current syntax and semantics.

Prior to XTP Revision 3.25, priority was a local issue; the interface between the user and

XTP (e.g., the control block) defined a priority field which communicated the priority of the

operation requested by the control block. The real-time community, including the Navy, with

their interest in XTP for SAFENET II, and industrial and academic constituents, expressed

concern for the lack of an end-to-end approach to scheduling message processing.

50

6.2.2. XTP Revision 3.25

Revision 3.25 included an order field within the address segment of the initial information

packet, and a sort field within the control block. The order field was 32-bits long and provided

a way to specify end-to-end priority or other system-dependent concepts. It was sent through

the address segment to the receiver where XTP would deliver the order value to the destination

host. It was to be interpreted at the destination by convention established between end systems.

XTP was not to know the semantics, nor attempt to interpret the semantics of the order field.

Each XTP implementation was expected to have at least one output queue, where output refers

to the host to XTP exchange. Each output queue would be associated with a 32-bit sort value.

The output control block would be delivered to XTP, where the sort value in the control block

would select an output queue. These queues would operate on a priority basis; a control block

with lower sort value would be serviced before one of higher sort value when the next control

block was being selected. The XTP user could alter the sort and/or order values in the control

block by using the MODIFY operation on the busy control block.

This mechanism was promising insofar as the priority could be communicated via the

order field between end systems. However, the order value was to be sent once, within the

address segment of the initial information packet, and not sent again over that context unless the

context were to send another address segment, which would likely be unnecessary. The order

value, however, would be interpreted by the end systems, remained constant throughout the

entire life of the context. It was the sort value which could change. The idea of prioritized

output queues solved the problem of scheduling messages where the most is known about their

importance — at the entry point. However, since this value was not communicated, the

destination system had no idea how important the source system deemed that packet, and thus

the special treatment at the source would be lost to the destination.

51

6.2.3. XTP Revision 3.3

Revision 3.3 dropped the order field and used the sort field as the end-to-end method of

communicating priority. The job of the old sort field, that is, to select an output queue, was

taken over by a new field called qnumber. This new field would do exactly what the old sort

field did, only the name is more indicative of its purpose.

XTP retained the term sort instead of priority since priority has so many connotations

acquired from classical system methodology, and sort suggests that the packets are being

arranged according to some schema. The sort value would denote a computed value used to

determine a schedule for the processing of the packets. Next generation system are expected to

label tasks and messages with values which appear as priority but which are actually

sophisticated functions capturing concepts of urgency and importance and high-resolution time.

This is not adequately solved by only a few bits of priority at the transfer layer. XTP would

provide 64-bits in the sort field for current and future use.

The sort field would be located within the information segment of an information packet.

It would be neither header data nor user data; it would be, rather, out-of-band information

exchanged between end systems as a means for scheduling the packets at both ends of the route.

Like with the order value, sort would not be interpreted by XTP itself. In some sense, the sort

value would be the output queue label and the qnumber would be the implementation-

dependent queue identifier used for selecting the output queue for the control block on systems

that provide priority queues on a host to XTP exchange.

It would be the responsibility of the user of XTP (e.g., a real-time operating system) to

map from sort values to queue numbers. Different applications would define different sort-to-

queue functions. These functions must be duplicated in the gateways so that incoming sort

values can map packets to outgoing queues.

52

The mechanism defined for XTP Revision 3.3 differs from the one defined for Revision

3.25 in few ways. The names of the field were changed around so that they better indicated

their use. The sort field was increased to 64 bits and moved to the information segment. It

could be sent at any time as long as the appropriate flag bits were set to indicate that the first 8

bytes of the information segment were being used for the sort value.

This mechanism for scheduling the processing of packets within XTP is championed

mostly by visionaries working in future real-time operating systems research [JENS89]. The

distributed computing system may incur communications resource congestion when the node

processor speed and message generation rate become very high compared to the transport rate

of the communications subsystem. During such congestion, transient queues build up at the

entry and/or exit points of the communications subsystem. XTP, through mechanisms such as

the sort field, would control the order in which messages waiting at a node for transmission are

processed. This ordering is currently provided by small integers serving as priorities, but such

information as time is not present. The sort field semantics would be defined by XTP’s clients

and not be interpreted by the XTP subsystem. The 64 bits would provide enough width to

include absolute time measured in nanoseconds as well as other information such as

importance. The value would be passed along with each message so that it may be used by the

destination client for exit scheduling.

We feel that this mechanism for making XTP responsive to real-time needs is not quite

sufficient. The sort field in Revision 3.3 was designed to provide some means of scheduling

packets without constraining any particular user or implementation of XTP to that scheme. It

was intentionally vacuous. XTP itself could only passively administer the discrimination

policies of the user; the interpretation of the sort field was left to the agreement of the end

systems. A system designer would create the policy, XTP would provide the mechanism. We

feel that XTP should define both the mechanism and the scheme, but that the scheme should be

53

flexible enough to apply to all types of networks, yet be potent enough to provide for each

user’s special needs, including the special needs of real-time.

6.2.4. XTP Revision 3.4

The Revision 3.4 sort field is a 32-bit field which associates a value to each packet. There

are two mutually exclusive interpretations of the value within the sort field: it may be used as a

32-bit static priority or as a 32-bit clock time. The latter interpretation is designed for use in

real-time system where deadlines are imposed. In both cases the increasing sort values

correspond to lower priority. This is especially good for deadline driven communications

where the difference of the deadline and the current time approaches zero, indicating that the

message is approaching the highest priority.

The sort field is enabled by a SORT bit in the options field of the XTP header. There is

also a DEADLINE bit which, if set, indicates that the deadline interpretation is in use;

otherwise, the static priority interpretation is in use. The deadline scheme dictates that the 32-

bit sort field be used as a clock time with a resolution of 100 microseconds. This is largely to

satisfy the current and projected timing requirements of real-time operating systems. An XTP

implementation should not implement an expired deadline policy; this is considered the

responsibility of an outside authority, such as a user process. XTP should alway deliver, or

operate on, the next available sort value.

The homogenization of the two sort field interpretations is considered prohibitive. Thus it

is assumed that a network based on XTP will either be using the static interpretation or the

deadline interpretation, but never both at the same time. If the SORT bit is not set then the field

is ignored and no policy is required. It is further assumed that the XTP-based hosts will have

some access to a synchronized clock.

54

An XTP implementation will impose a preemptive priority queue discipline on both input

and output. An application will supply an active context with the current sort value for output

packets. This value will be inserted into each packet’s header for use at the receiving side. All

packets of the currently highest priority (lowest sort value) at the host are transmitted prior to

the transmission of any packet of lower priority, subject to rate and flow control constraints.

Only if a context is blocked by rate or flow control can a packet of lower priority be serviced

before those of higher priority. As soon as the flow or rate control constraint is off, however,

the XTP implementation must revert back to transmitting the highest priority packets. The

receiving XTP implementation will copy the sort value from the sort field in the packet header

and place it into the local context. This value is then used to schedule the order in which data is

delivered to the applications.

The advantage to having a context hold the sort value for its messages is that the next

message to service is easily found by ordering the contexts. Also, the XTP user has control

over the sort value by updating the value dynamically, while the message awaits service.

Unfortunately, this only works well with the static priority approach. All messages in a context

cannot be expected to have the same deadline, and hence the same sort value. This problem

will cause the text of Revision 3.4 to be changed.

It may be naive to assume that a network, real-time or not, will use only the static priority

or the deadline scheme, but not both. Gateways and routers will undoubtably have some traffic

with deadline bit set, some without, so it will have to homogenize the two schemes. This is a

very difficult task, as described in Section 5.2. General homogenization may not be possible.

Even with the two simple interpretations, the question of homogenization is so open that XTP

has declared that the two interpretations will be used in mutually exclusive installations.

55

The nearest deadline first is the easiest scheduling algorithm for deadlines. It is also

troublesome. There are instances when a message must get to its destination, even if it misses

the deadline. There are other instances when it is not only inefficient but harmful if a message

with a missed deadline is delivered. This may be why XTP has declared that it makes no policy

for missed deadlines, and always tries to deliver messages unless instructed not to by a higher

authority. Also, nearest deadline first probably does not accurately describe all deadline traffic;

there is at least a residual importance associated with each message, regardless of how near its

deadline is.

Section 5.4 describes a scheme based on priority classes, where each class has a semantic

interpretation by the transport layer implying that the transport layer becomes an active

participant in the discrimination of the packets it handles. The preemptive priority queue

discipline defined for XTP Revision 3.4 does not nail down the power of the preemptive class;

that is, that, with respect to transport level resources, it fatally remove all obstacles in the effort

to ensure the lowest possible latency. The expedited class would bypass the flow control, so

never would it be subject to priority inversion except when waiting for a cleanpoint. There are

no specific sort values with these powers. Furthermore, it is not clear exactly what the

definition of a preemptive queueing discipline is from the XTP Revision 3.4 document, and

when packets may be preempted. Unless there is some notion of fatal preemption of packets,

there will be priority inversion at the transport layer. We feel that the scheme described in

Section 5.4 is implementable within XTP without any major restructuring of the protocol

algorithms. Preemption can be handled by XTP on only those resources that XTP has control

over, like certain buffer spaces and the use of the packet deliver protocol (most likely FDDI

MAC). This scheme is not dependent on preemption at the very low layers of the protocol

suite; only within XTP itself. We feel that including timestamps becomes less necessary when

the protocol itself can actively participate in latency control. Furthermore, many of the

56

problems identified with the current sort algorithms can be eliminated with this scheme.

In general, using the dynamic priority features of XTP will be difficult. We suggest a

great deal more explanation, perhaps as an appendix. We believe that implementers would run

the gamut from being overly simplistic to overly complex in trying to implement a sort field

with the guidance of Revision 3.4 only.

7. Conclusions

This is an ongoing research project for which the answers to many of the open questions

still need thought. We are attempting to make a new communications protocol responsive to

the needs of its users, especially the very constrained needs of real-time systems. Without

designing the communications subsystem from the bottom up, endowing each component with

the attributes that are required by the importance abstraction, this is a truly difficult task. Yet

we still wish to give current transport protocols the mechanism to do the best they can to meet

the needs of their users. We are identifying the aspects of these transport protocols and the

communications subsystem in which they are a part that are hindering this goal, and those

characteristics that are useful in simplifying the task. We have presented here our initial

abstraction of importance, how importance can be related to communications subsystems, and

some ideas and schemes which probably will not prove to be the ultimate encoding schemes but

are useful and instructive toward gaining closure on our goal.

As a case study of a transport layer protocol which is being developed to meet a wide

range of commercial and military needs, we presented a brief overview of XTP and some of the

specifics of the protocol. XTP is unique in that there is a concerted effort toward making XTP

responsive to real-time needs. The definition of XTP changes and evolves; during these

changes several ideas about how to make XTP responsive to special needs as well as usable for

57

common communications have been explored. We presented a history of these ideas and

discussed their advantages and disadvantages. Based on the importance abstraction and

realistic expectations of communications subsystems, we have proposed a scheme for use

within XTP that provides latency control for very special packets, even at the expense of

throughput. Each of the scheme’s three classes of service, normal, expedited and preemptive,

has a relative ordering in its priority space as well as semantics within XTP itself. This is to say

that XTP can actively aid in the reduction of latency for the most important packets, which is

tantamount to the claim that the most important packet will have the minimum delay.

58

ACKNOWLEDGEMENT

This work was sponsored by the Naval Surface Warfare Center, Dahlgren, Virginia, under

contract number N60921-87-D-A315 task B062, and the Southeastern Center for Electrical

Engineering Education. Our technical director at NSWC is David Marlow.

59

REFERENCES

CHES87a Chesson, G., "Protocol Engine Design", USENIX Conference Proceedings,
Phoenix, Arizona, June 1987.

CHES87b Chesson, G., "The Protocol Engine Project", Unix Review, September
1987.

CHES88a Chesson, G., "XTP/PE Overview", 13th Annual Conference on Local
Computer Networks, Minneapolis, Minnesota, October 1988.

CHES88b Chesson, G., "XTP Design Notebook: Message Priority", Transfer, Vol. 1,
No. 6, November and December 1988.

CHES89 Chesson, G., "XTP/PE Design Considerations", IFIP WG6.1/6.4 Workshop
on Protocols for High-Speed Networks, Zurich, Switzerland, May 1989.

GORA86 Gora, W., Herzog, U., and Tripathi, S.K., "Clock Synchronization on the
Factory Floor", Proceedings of the Workshop on Factory Communications,
National Bureau of Standards, pp. 87-108, March 17-18, 1987.

HWAN87 Hwang, K.W., Tsai, W.T., and Thuraisingham, M.B., "Implementing a
Real-Time Distributed System on a Local Area Network", (Abstract),
Proceedings of 12th Conference on Local Computer Networks, pp. 142,
October 5-7, 1987.

JENS85 Jensen, E.D., Locke, C.D., Tokuda, H., "A Time-Driven Scheduling Model
for Real-Time Operating Systems", Proceedings of the Real-Time Systems
Symposium, December 3-6, 1985, pp. 112-122.

JENS89 Jensen, E.D., "SORT", Comments to the Technical Advisory Board, PEI
89-91.

LELA85 Le Lann, G., "Distributed Real-Time Processing", Computer Systems for
Process Control, pp. 69-90, 1985.

MIRA83 Mirabella, O., "Real Time Communications in Local Area Network
Environment", Proceedings of MELECON ’83, A1.07 Vol. 1, 1983.

PEDE88 Peden, J.H., and Weaver, A.C., "The Utilization of Priorities on Token
Ring Networks", 13th Annual Conference on Local Computer Networks,
Minneapolis, Minnesota, October, 1988.

PEI88a "XTP Protocol Definition, Revision 3.25", Protocol Engines, Inc.

PEI88b "XTP Protocol Definition, Revision 3.3", Protocol Engines, Inc.

PEI89 "XTP Protocol Definition, Revision 3.4", Protocol Engines, Inc.

60

STOI88 Stoilov, E.I., "Coordination mechanisms in Local Area Networks for
Real-Time Applications", Computer Communications Systems, IFIP, 1988.

STRA88a Strayer, W.T., and Weaver, A.C., "Performance Measurement of Data
Transfer Services in MAP", IEEE Network, Vol. 2, No. 3, May 1988.

STRA88b Strayer, W.T., and Weaver, A.C., "Performance Measurements of
Motorola’s Implementation of MAP", 13th Annual Conference on Local
Computer Networks, Minneapolis, Minnesota, October 1988.

STRA88c Strayer, W.T., Mitchell, M., and Weaver, A.C., "ISO Protocol Performance
Measurements", ISMM International Symposium Mini and
Microcomputers, Miami Beach, Florida, December 1988.

STRA88d Strayer, W.T., Weaver, A.C., "Evaluation of Transport Protocols for Real-
Time Communication", University of Virginia, Department of Computer
Science Technical Report No. TR-88-21.

ZNAT87 Znati, T., and Ni, L.M., "A Prioritized Multiaccess Protocol for Distributed
Real-Time Applications", Proceedings of the 7th International Conference
on Distributed Computing Systems, pp. 324-331, 1987.

