Studio report: Linux audio for multi-speaker natural speech
technology research

Charles FOX, Heidi CHRISTENSEN and Thomas HAIN
Center for Speech and Hearing
Department of Computer Science
University of Sheffield , UK

charles.fox@sheffield.ac.uk

Abstract

The Natural Speech Technology (NST) project is the
UK’s flagship research programme for speech recog-
nition research in natural environments. NST is
a collaboration between Edinburgh, Cambridge and
Sheffield Universities; public sector institutions the
BBC, NHS and GCHQ; and companies including Nu-
ance, EADS, Cisco and Toshiba. In contrast to as-
sumptions made by current commercial speech recog-
nisers, natural environments include situations such
as multi-participant meetings, where participants may
talk over one another, move around the meeting room,
make non-speech vocalisations, and all in the presence
of noises from office equipment and external sources
such as traffic and people outside the room. To gener-
ate data for such cases, we have set up a meeting room
/ recording studio equipped to record 16 channels of
audio from real-life meetings, as well as a large com-
puting cluster for audio analysis. These systems run on
free, Linux-based software and this paper gives details
of their implementation as a case study for other users
considering Linux audio for similar large projects.

Keywords

Studio report, case study, speech recognition, diarisa-
tion, multichannel

1 Introduction

The speech recognition community has evolved
into a niche distinct from general computer au-
dio and Linux audio in particular. It has its own
large collection of tools, some of which have been
developed continually for over 20 years such as the
HTK Hidden Markov Model toolkit [Young et al.,
2006]. We believe there could be more crosstalk
between the speech and Linux audio worlds, and
to this end we present a report of our experi-
ences in setting up a new Linux-based studio in
Sheffield, UK, for dedicated natural speech tech-
nology research.

In contrast to assumptions made by current
commercial speech recognisers such as Dragon
Dictate, natural environments include situations
such as multi-participant meetings [Hain et al.,
2009], where participants may talk over one an-
other, move around the meeting room, make non-
sentence utterances, and all in the presence of
noises from office equipment and external sources
such as traffic and people outside the the room.
The UK Natural Speech Technology project aims
to explore these issues, and their applications to
scenarios as diverse as automated TV programme
subtitling; assistive technology for disabled and
elderly health service users; automated business
meeting transcription and retrieval, and home-
land security.

This paper provides a studio report of our ini-
tial experiences setting up a Linux based studio
for natural speech technology research. Our stu-
dio is based on a typical meeting room, where par-
ticipants give presentations and hold discussions.
We hope that it will serve as a self-contained tu-
torial recipe for other speech researchers who are
new to the Linux audio community (and have thus
included detailed explanations of relatively sim-
ple Linux audio concepts). It also serves as an
example of the audio requirements of the natural
speech research community; and as a case study
of a successful Linux audio deployment — such
reports are still quite rare and much needed to
demonstrate the power of modern Linux audio.

2 Why Linux audio?

The use of open source software is practically a
prerequisite for exploratory research of this kind,
as it is never known in advance which parts of
existing systems will need to be opened up and
edited in the course of research. The speech

Figure 1: Meeting room recording setup. The
boxes on the far wall are active-badge trackers.
The frame on the ceiling and the black cylinder
on the table each contain eight condenser micro-
phones. Participants wear headsets and active
badges.

community generally works on offline statistical,
large data-set based research. For example cor-
pora of 1000 hours of audio are not uncommon
and require the use of large compute clusters to
process them. These clusters already run Linux
and HTK, so it is natural to extend the use of
Linux into the audio capture phase of research.
As speech research progresses from clean to nat-
ural speech, and from offline to real-time process-
ing, it is becoming more integrated with general
sound processing [Wolfel and McDonough, 2009],
for example developing tools to detect and clas-
sify sounds as precursors to recognition. The use
of Bayesian techniques in particular emphasises
the advantages of considering the sound process-
ing and recognition as tightly coupled problems,
and using tightly integrated computer systems.
For example, it may be useful for Linux cluster
machines running HTK in real-time to use high
level language models to generate Bayesian prior
beliefs for low-level sound processing occurring in
Linux audio.

3 Meeting room studio setup

Our meeting room studio, shown in fig. 1, is cen-
tred on a six-person table, with additional chairs
around the walls for around a further 10 people.
It has a whiteboard at the head of the table, and
a presentation projector. Typical meetings in-
volve participants speaking from their chairs but
also getting up and walking around to present
or to use the whiteboard. A 2x2.5m aluminium
frame is suspended from the ceiling above the
table and used for mounting audio equipment.
Currently this consists of eight AKG C417/I11
vocal condenser microphones, arranged in an el-
lipse around the table perimeter. A further eight
AKG C417/IIIs are embedded in a 100mm ra-
dius cylinder placed in the table centre to act
similarly to eight-channel multi-directional tele-
conferencing recorder. The table can also include
three 7-channel DevAudio Microcones (www.dev-
audio.com), which are commercial products per-
forming a similar function. The Microcone is
a 6-channel microphone array which comes with
propriety drivers and an API. A further 7th au-
dio channel contains a mix of the other 6 chan-
nels as well as voice activity detection and sound
source localisation information annotation. Some
noise reduction and speech enhancement capabil-
ities are provided, although details of the exact
processing are not made public.

There are four Sennheiser ew100 wireless head-
sets which may be mounted on selected partici-
pants to record their speech directly. The stu-
dio will soon also include a Radvision Scopia
XT1000 videoconferencing system, comprised of
a further source-tracking steered microphone and
two 1.5m HD presentation screens. In the four
upper corners of the meeting room are mounted
Ubisense infrared active badge receivers, which
may be used to track the 3D locations of 15 mo-
bile badges worn by meeting participants. (The
university also has a 24-channel surround sound
diffusion system used in an MA Electroacoustic
music course [Mooney, 2005], which be useful for
generating spatial audio test sets.)

Sixteen of the mics are currently routed
through two MOTU 8PRE interfaces, which take
eight XLR or line inputs each. Both currently run
at 48kHz but can operate up to 96kHz. The first
of these runs in A/D conversion mode and sends
all 8 digitised channels via a single ADAT Light-

Pro apps Consumer apps
eg. HTK tools eg.
Ardour VLC, Banshee, Firefox W

‘OSS(padsp)‘ ‘ ALSA H canberra‘GStreamer‘

firewire

Figure 2: Audio system for recording.

pipe fibre optic cable to the second SPRE. The
second 8PRE receives this input, along with its
own eight audio channels and outputs all 16 chan-
nels to the DAW by Firewire 400 (IEEE 1394, 400
bits/sec). (The two boxes must be configured to
have (a) the same speed, (b) 1x ADAT protocol
and (c) be in be in converter/interface mode re-
spectively.) Further firewire devices will be added
to the bus later to accomodate the rest of the mi-
crophones in the room.

4 Linux audio system review

[Note to reviewers: we are including this as we
had a hard time finding a definitive account of
how all these parts fit together. We hope putting
it together in a peer-reviewed paper will be useful
to others. Please could you help us out by checking
this, and the diagrams, in detail so that we can get
everything perfect for people to use in future?|

Fig. 2 outlines the current Linux audio system
and highlights the parts of the possible Linux au-
dio stack that are used for recording in the meet-
ing room studio. The Linux audio architecture
has grown quite complex in recent years, and is
reviewed here and illustrated in fig. 2 to help
readers who may be using this paper as a stand-
alone tutorial.

Historically, the OSS system was developed for
Linux in the early 1990s, focused initially on the
Creative SoundBlaster cards then extending to
others. It was a locking system which allowed only
one program at a time to access the sound card,
and lacked support for modern features such as
surround sound. It allowed low level access to the
card, for example by cataudio.wav > /dev/dspO.
The ALSA system was designed as a modern re-
placement for OSS, and is used on most current
distributions including our Ubuntu Studio 11.10.
PortAudio is an API with backends that abstract
both OSS and ALSA, as well as sound systems of
non-free platforms such as Win32 sound and Mac
CoreAudio, created to allow portable audio pro-
grams to be written. Several software mixer sys-
tems were built to resolve the locking problem for
consumer-grade applications, including PulseAu-
dio, ESD and aRts. Some of these mixers grew
to take advantage of and control hardware mix-
ing provided by sounds cards, and provided addi-
tional features such as network streaming. They
provided their own APIs as well as emulation lay-
ers for older (or mixer-agnostic) OSS and ALSA
applications. (To complicate matters further, re-
cent versions of OSS4 and ALSA have now be-
gun to provide their own software mixers, as well
as emulation layers for each other.) Many cur-
rent Linux distributions including Ubuntu 11.10
deploy PulseAudio running on ALSA, and also
include an ALSA emulation layer on Pulse to
allow multiple ALSA and Pulse applications to
run together through he mixer. Common me-
dia libraries such as GStreamer (which powers
consumer applications such as VLC, Skype and
Flash) and libcanberra (the GNOME desktop
sound system) have been developed closely with
PulseAudio, increasing its popularity. However,
Pulse is not designed for pro-audio work which re-
lies on very low latencies and minimal drop-outs.

The JACK system is an alternative software
mixer which fills this need. Like the other soft
mixers, JACK runs on many lower level plat-
forms — usually ALSA on modern Linux machines.
The bulk of pro-audio applications such as Ar-
dour, zynAddSubFx and gSynth run on JACK.
JACK also provides network streaming, and em-
ulations/interfaces for other audio APIs including
ALSA, OSS and PulseAudio. (Pulse-on-JACK
is useful when using pro and consumer applica-

tions at the same time, such as when watching a
YouTube tutorial about how to use a pro appli-
cation. This re-configuration happens automati-
cally when JACK is launched on a modern Pulse
machine such as Ubuntu 11.10.)

5 Software setup

Our DAW is a relatively low-power Intel E8400
(Wolfdale) duo-core, 3GHz, 4Gb Ubuntu Stu-
dio 11.10-64-bit machine. Ubuntu studio was in-
stalled directly from CD — not added as pack-
ages to an existing Ubuntu installation — this
gives a more minimalist installation than the
latter approach. In particular the window
manager defaults to the low-power XFCE, and
CPU-hogging programs such as Gnome-Network-
Monitor (which periodically searches for new wifi
networks in the background) are not installed.

The standard ALSA and OSS provide inter-
faces to USB and PCI devices below, and to
JACK above. However for firewire devices such
as our Pre8, the ffado driver provides a direct
interface to JACK from the hardware, bypassing
ALSA or OSS. (Though the latest/development
version provides an ALSA output layer as well.)
Our DAW uses ffado with JACK2 (Ubuntu pack-
ages: jack2d, jack2d-firewire, libffado,
jackd, laditools. JACKI is the older but per-
haps more stable single-processor implementation
of the JACK API) and fig. 3 shows our JACK
settings, in the gjackctl tool. Note that the
firewire backend driver (ffado) is selected rather
than ALSA.

It is important to unlock memory for good
JACK performance. As well as ticking the unlock
memory option, the user must also be allowed to
use it, eg. adduser charles audio. Also the
file /etc/security/limits.d/audio.conf was
edited (followed by a reboot) to include

Q@audio - rtprio 95

©@audio - memlock unlimited

These settings can be checked by

ulimit -r -1.

The JACK sample rate was set to 48kHz,
matching the Pre8s. (This is a good sample rate
for speech research work as it is similar to CD
quality but allows simple sub-sampling to power-
of-two frequencies used in analysis.)

Fig. 4 shows the JACK connections (again in
qjackctl) for our meeting room studio setup.

The eight channels from the converter-mode Pre8
appear as ADAT optical inputs, and the eight
channels from the interface-mode Pre8 appear as
‘Analog’ inputs, all within the firewire device. Ar-
dour was used with two tracks of eight channel
audio to record as shown in fig. 5.

5.1 Results

Using this setup we were able to record simul-
taneously from six overhead microphones, eight
table-centre microphones, and two wireless head-
sets, as illustrated in fig. 5. We experienced no
JACK xruns in a ten minute, 48kHz, 16-channel
recording, and the reported JACK latency was
8ms. Total CPU usage was below 25% at all
times, with top listing the following typical to-
tal process CPU usages: jack 11%, ardour 8%,
jack.real 3%, pulseaudio 3%.

However, we have been unable to play audio
back through the Pre8 system, hearing highly dis-
torted versions of the recording. For our speech
recognition this is relatively unimportant, and can
be worked around by streaming the output over
the network with JACK and playing back on a
second JACK/ALSA Linux machine. The ffado
driver’s support for the Pre8 hardware is currently
listed as ‘experimental’ so work is needed here to
fix this problem.

The present two Pre8 system is limited to 16
audio channels, we plan to extend it with fur-
ther firewire devices to record from more audio
sources around the meeting room and from tele-
conferencing channels in future. We have not
yet needed to make further speed optimisations,
but we note that for future, more-channel sys-
tems, two speedups include disabling PulseAu-
dio (adding pulseaudio -kill and pulseaudio
-start to gjackct!l’s startup and shutdown option
is a simple way to do this); and installing the real-
time rt-linux kernel.

5.1.1 Analysis system

Analysis of our audio data is performed on a
cluster of 20 Linux machines having about 80
cores (average 2.9GHz) in total, running the Or-
acle (formerly Sun) Grid Engine and the HTK
Hidden Markov Model Tool Kit. During analy-
sis, audio playback on desktop machines is useful
and is done with the setup of fig. 6. An im-
portant note for speech researchers is that the
HTK tools use the OSS sound system, which may

Setup - JACK Audio Connection Kit + X

j I Save * Delete
jﬂame:l(default) jDrivgr: firewire Iv
Parameters

Realtime Priority: | (default) j Interface: | (default) ji‘
[0 No Memory Lock Frames/Period: [128 j Dither: None [-
Unlock Memory Sample Rate: [48000 j Audio: Duplex [+
Ez;g:‘n:ide Periods/Buffer: | 3 j Input Device: | (default) ji‘
Force 16bit e '° j Qutput Device: | (default) ji‘
Wait (usec): | 21333 j [nputChannels:llE—E,

[Sei g"s:| Options Display Miscl

Preset Name: I NST-studio-1-charles

Server
Server Path: I Jusr/binfjackd

[H/W Monitor

[H/W Meter Channels: [(default) Output Channels: [12 3
0O Ignore HW Port Maximum: | 256 j Input Latency: | (default) :

Verbose messages Timeout (msec): | 500 j Output Latency: | (default) :
MIDI Driver: none Iv Start Delay (secs): (2 Latency: 8 msec

Cancel OK l
Z

Figure 3: 16 channel recording JACK settings.

Connections - JACK Audio Connection Kit + - 0X

Audiul Mo |

Readable Clients / Output Ports M Writable Clients / Input Ports M |
~ [@ ardour

& Audio ceiling/out 1 ®, Audio
& Audio ceiling/out 2 ®, Audio
Audio tablefout 1 R, Audio
Audio tablefout 2 %, Audio
auditionerfout 1 ', Audio
& auditioner/out 2 %, Audio
& clickjout 1 ®, Audio
& clickjout 2 ', Audio ceiling/in 8

%, Audio tablefin 1
'Y, Audio tablefin 2
%, Audio tablefin 3
&, Audio tablefin 4
&, Audio tablefin 5
', Audio tablefin 6
‘%, Audio tablefin 7
', Audio tablefin 8
®, masterfin 1
&, master/in 2
& TEST/in 1

= [firewire_pcm

masterjout 1
masterfout 2
& TEST/out 1
& TESTjout 2

~ [firewire_pcm
A 0001f20000092f87_cap_ADAT1_in
A 0001f20000092f87_cap_ADAT2_in
A 0001f20000092f87_cap_ADAT3 _in
A 0001f20000092f87_cap_ADAT4_in
A 0001f20000092f87_cap_ADATS _in
A 0001f20000092f87_cap_ADAT6_in
A 0001f20000092f87_cap_ADAT7_in

4 0001f20000092f87_cap_ADATS_in

A 0001f2000009287_cap_Mix-L_in
A 0001£2000009287_cap_Mix-R_in

4 0001f20000092f87_cap_Analogl_in
£ 0001f20000092f87_cap_Analog2_in
A 0001f20000092f87_cap_Analog3_in
4 0001f20000092f87_cap_Analogd_in
A 0001f20000092f87_cap_Analog5_in
£ 0001f20000092f87_cap_Analog6_in
4 0001f20000092f87_cap_Analog7_in
£ 0001f20000092f87_cap_Analog8_in

¢ 0001f20000092f87_pbk_ADATL out
< 000120000092f87_pbk_ADAT2_out
< 000120000092f87_pbk_ADAT3_out
¢ 000120000092f87_pbk_ADAT4_out
¢ 000120000092f87_pbk_ADATS_out
¢ 000120000092f87_pbk_ADAT6_out
< 000120000092f87_pbk_ADAT7 out
< 000120000092f87_pbk_ADATS_out
< 0012000009287 _pbk_Main-L_out
¢ 000120000092f87_pbk_Main-R_out
¢ 000120000092f87_pbk_Phones-L_...

> @ PulseAudio JACK Sink i 0001f20000092787_pbk_Phones-R_...

.|~ PulseAudio JACK Source
S Connect | X Disconnect | 3¢ Disconnect All | € Expand All | (5 Refresh |

Figure 4: 16 channel recording JACK connec-
tions.

be emulated on PulseAudio on a modern ma-
chine, by installing the padsp tool (Ubuntu pack-
age pulseaudio-utils_0.9.10-1ubuntul_i386)
then prefixing all audio HTK commands with
padsp.

We have used this cluster to align text tran-
scripts to 1300 hours of two-subject, monophonic
audio meetings (16kHz, 16bit audio; 450 speak-

a8k - Ardour.

00:01:43:26 052 |04|1474

Figure 5: 16 channel meeting room recording in
Ardour, using two 8-channel tracks..

Pro apps Consumer apps
eg. HTK tools eg.
Ardour VLC, Banshee, Firefox W

‘OSS(padsp)‘ ‘ ALSA H canberra‘GStreamer‘

streaming Pulse ESD aRts

IS4
N>
s
=

753 —
PP A=<

‘ ffado ‘ ALSA ‘ 0SS ‘ Win32‘ CoreAudio ‘

firewire

‘ usB ‘ PCI ‘

Figure 6: Audio system for data analysis.

ers; 580,598 speaker lines; 11.7M word tokens;
51K unique words; 2.5 words/sec rate). HTK on
the cluster was used to extract Perceptual Lin-
ear Predictive speech coding features [Hermansky,
1990]. Alignment was performed using the HTK
tool HVite and typically takes about 2.5 hours to
run on the cluster for data of this size. Using an
HTK Hidden Markov Model trained on a previous
meeting set, we have so far obtained alignment of

400 hours of this data.

6 Research applications

The NST project aims to further use the meeting
room studio and analysis cluster to improve recog-
nition rates in natural meeting environments,
with multiple, mobile speakers and noise sources.
We give here some examples of algorithms rele-
vant to natural speech, and their requirements for
Linux audio.

Beamforming and ICA are microphone-array
based techniques for separating sources of au-
dio signals, such as extracting individual speak-
ers from mixtures of multiple speakers and noise
sources. ICA [Roberts and Everson, 2001] typ-
ically makes weak assumptions about the data,
such as assuming that the sources are non Gaus-
sian in order to find a mixing matrix M which
minimises the Gaussian-ness over time ¢ of the la-
tent sources vector x¢, from the microphone array
time series vectors y;, in y; = M.x;.

ICA can be performed with as few microphones
as there are sources, but gives improved results as
the number of microphones increases. Beamform-
ing [Trees, 2002] seeks a similar output, but makes
stronger physical assumptions, including known
microphone and source locations. It then uses ex-
pected sound wave propagation and interference
patterns to infer the source waves from the array
data. Beamforming is a high-precision activity,
requiring sample-synchronous accuracy between
recorded channels, and often using up to 64 chan-
nels of simultaneous audio in microphone arrays.
[THOMAS: can you check/improve this please?]

Reverberation removal has been performed in
various ways, using single and multi-channel data.
In multi-channel settings, sample-synchronous
audio is again used to find temporal correlations
which can be used to separate the original sound
from the echos. In the iPhone4 this is performed
with two microphones but performance may in-
crease with larger arrays [Watts, 2009).

Speaker localisation and tracking uses SLAM
techniques from robotics, coupled with acoustic
observation models, to infer the positions of mov-
ing speakers in a room. This can be used in con-
junction with beamforming to attempt retrieval
of individual speaker channels from natural meet-
ing environments, and again relies on large mi-
crophone arrays and sample-accurate recording.

For training and testing such systems it is useful
to build a database with known speaker position
sequences, which need to be synchronised to the
audio. Speaker positions change at the order of
seconds so it is wasteful to use audio channels to
record them — however we note that JACK is able
to record MIDI information alongside audio, and
one possible setup would be to encode position
data from our Ubisense active badges as MIDI
messages, synchronous with the audio, and record
them together for example in Ardour3.

The ultimate goal of natural speech research
is to obtain a transcription of what was said in
natural environments. Traditionally, source sepa-
ration and denoising techniques such as the above
have been treated as a separate preprocessing
step, before the cleaned audio is passed to a sep-
arate recogniser such as HTK. However for chal-
lenging environments this is suboptimal, as it re-
ports only a single estimate of the denoised signal
rather than Bayesian information about its un-
certainty. Future integrated systems should seek
to fuse the predictions from the transcription lan-
guage model with inference and reporting of low-
level audio data, for example by passing real-time
probabilistic messages between HTK’s transcrip-
tion inference (which typically runs on a Linux
computing cluster) and low-level audio processing
(which typically runs on or close to the recording
machines.)

In summary, the main requirements of natu-
ral speech research for Linux audio are support
for sample-synchronous, many (e.g. 128 or more)
channel recording, and communication with clus-
ter computing and speech tools such as HTK. As
natural speech technology makes closer contact
with signal processing research, we expect to see
more speech researchers moving to Linux audio
in the near future, and we hope that this paper
has provided some guidance for those who wish to
make this move, as well as a guide for the Linux
audio community about what technologies are im-
portant to this field.

Acknowledgements

Funded by UK EPSRC Natural Speech Technol-
ogy Programme Grant, EP/1031022/1.

References

T. Hain, L. Burget, J. Dines, P. N. Garner,
A. el Hannani, M. Huijbregts, M. Karafiat,
M. Lincoln, and V. Wan. 2009. The amida 2009
meeting transcription system. In Proc. Inter-
speech, pages 358-361.

H. Hermansky. 1990. Perceptual linear predic-
tive analysis for speech. J. Acoustic Society of
America, pages 1738-1752.

J. Mooney. 2005. Sound Diffusion Systems for
the Live Performance of Electroacoustic Music.
Ph.D. thesis, University of Sheffield.

S. Roberts and R. Everson, editors. 2001. Inde-
pendent Components Analysis: Principles and
Practice. Cambridge.

H. L. Van Trees. 2002. Optimum array process-
ing. Wiley.

L. Watts. 2009. Reverberation removal. In
United States Patent Number 7,508,948.

M. Wolfel and J. McDonough. 2009. Distant
Speech Recognition. Wiley.

S. Young, G. Evermann, M. Gales, T. Hain,
D. Kershaw, XA Liu, G. Moore, J. Odell, D. Ol-
lason, D. Povey, et al. 2006. The HTK book.

