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Abstract

We study the converse and achievability for the degreeseefdiom of the multicellular multiple-input multiple-
output (MIMO) multiple access channel (MAC) with constahaionel coefficients. We assunie> 1 homogeneous
cells with K > 1 users per cell where the users h@eantennas and the base stations are equipped\Vvihtennas.
The degrees of freedom outer bound for thigell and K -user MIMO MAC is formulated. The characterized outer
bound uses insight from a limit on the total degrees of freedor the L-cell heterogeneous MIMO network.
We also show through an example that a scheme selecting simitéer and performing partial message sharing
outperforms a multiple distributed transmission strat@gyerms of the total degrees of freedom. Simple linear
schemes attaining the outer bound (i.e., those achieviagftiimal degrees of freedom) are explores for a few
cases. The conditions for the required spatial dimensittaghang the optimal degrees of freedom are characterized
in terms of K, L, and the number of transmit streams. The optimal degreeseetiém for the two-cell MIMO
MAC are examined by using transmit zero forcing and null spiaterference alignment and subsequently, simple
receive zero forcing is shown to provide the optimal deg@fefseedom forZ > 1. Interestingly, it can be shown
that the developed linear schemes characterize the optieggees of freedom with the minimum possible numbers
of transmit and receive antennas when assuming a singknstper user. By the uplink and downlink duality, the
degrees of freedom results in this paper are also applitalitee downlink. In the downlink scenario, we study the
degrees of freedom af-cell MIMO interference channel exploring multiuser disi#y. Strong convergence modes
of the instantaneous degrees of freedom as the number of ieeeases are characterized.

. INTRODUCTION

Over the past few years, a significant amount of research dvae igto making various techniques for enhancing
spectrum reusability reality. Spatial techniques such a#ipte-input multiple-output (MIMO) wireless systems
have been widely studied to improve the spectrum reusaligécently, the scope of spatial transmission has been
extended to MIMO network wireless systems such as the gremte network, relay network, and multicellular
network. Network MIMO systems are now an emphasis of IMT-&ased and beyond systems. In these networks,
out-of-cell (or cross cell) interference is a major drawbaBefore network MIMO can be deployed and used to
its full potential, there are a large number of challengsgues. Many of these deal with interference management

and joint processing between nodes to suppress out-ointeiference (e.g., see the references in [1]).

A. Overview

Understanding the information-theoretic capacity of gaheetwork MIMO is still challenging even under full
cooperation assumptions. Alternatively, there are varigpproaches to approximate the capacity in the high SNR
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regime (some of which can be practically achieved in smaélliscenarios [1]) by analyzing the number of resolvable
interference-free signal dimensions in terms of the degoddreedoms of the network. Initial works include the
degrees of freedom and/or capacity region characterizédinthe MIMO multiple access channel (MAC) [2] and

MIMO broadcast channel [3]-[6]. While the general capaod#gion of the interference channel is not known, there
are some known capacity results witkry strong[7] and strong[8], [9] interference. The capacity outer bounds
[10], [11] and degrees of freedom outer bounds [12], [13]tfer multiple nodes interference channel with single
antenna nodes have been characterized. Recently, theedexjrieeedom have been studied for the two node MIMO
X channel [14], [15] and the two user MIMO interference chalrfi6]. The key innovation used to prove the inner
bound on the degrees of freedom is interference alignmexjt [16].

Interference alignment aims to allow coordinated transimisand reception in order to increase the total degrees
of freedom of the network. Interference alignment generaterlapping user signal spaces occupied by undesired
interference while keeping the desired signal spacesdtstiWhen an achievable scheme achieves the degrees of
freedom of the converse, we say that the scheme attainsptir@al degrees of freedom

The fundamental idea of interference alignment in [15]] [$6extended to the multiple node X channel in [17],
K-user interference channel in [18], [19], and more geneellllar networks in [20] under a time or frequency
varying channel assumption. For the X channel with singleerama users, interference alignment achieves the
optimal degrees of freedom for th€ by L.=2 (or K =2 by L) X channel with finite symbol extension, but for
K > 2 andL > 2, it requires infinite symbol extension [17]. TH€-user interference channel with single antenna
nodes [18] and multiple antenna nodes [19] also needs iafgsymbol extension.Various aspects of interference
alignment for cellular networks are investigated in [20¢liding the effect of a multi-path channel and channel
with propagation delay. The work in [20] shows that a singtgrée of freedom can be achieved per user as the
number of users grows large with symbol extension.

In the case of constant channel coefficients, the spatialkedsgof freedom have mainly been investigated. For
the two by two MIMO X channel, the exact optimal degrees otditem of%M is achievable when each node
has M > 1 antennas [14], [15]. The optimal degrees of freedom of the twer MIMO interference channel is
shown to bemin (2M, 2N, max(M, N)) in [16], whereM and N denote the number antennas at the transmitter
and receiver, respectively. Remarkably, simple zero fgrés sufficient to provide the optimal degrees of freedom
[15], [16]. Interference alignment in a three-user integfece channel withi/ = N antennas at each node yields
the optimal degrees of freedom éﬁi when M is even (when)M is odd a two symbol extension is required to
achieve%) [18]. Compared to the prototypical examples of the tworddEMO interference channel or two by
two MIMO X channel, the general characterization of the mjali degrees of freedom for the multicell multiuser
MIMO networks (that works for an arbitrary numbers of usersl @ells) with constant channel coefficients is

still an open problem. When studying the achievable scheiitte e@nstants channel coefficients, the number of



requiredM and N must be determined as a function of the number of cél)sand users ) or vice versa. Thus,
taking into consideration all of these dependencies oftaka® the characterization overconstrained. Recently, an
achievable scheme where each user obtains one degreeddrfrder the two cell and<-user MIMO network with
constant channel coefficients is proposed #o.= M = K + 1 in [21]. In an L-cell and K-user MIMO network,

a necessary zero interference conditionMnand N (as a function ofK and L) to provide one interference free
dimension to each of users is investigated in [22].

The conventional interference alignments and other lisehemes in [15]-[20] require global notion of CSI at all
nodes, and the optimal degrees of freedom is particulatdyrestd by extending signals over large space/time/frecquen
dimensions. To overcome these challenges, efficient eremte alignment schemes that only utilize local CSI
feedback are considered in [21], [23]. An efficient way tovide additional degrees of freedom gain without a
global notion of CSI and, at the same time, with a reduced amofifeedback is to exploit multiuser diversity
as in [24], [25]. The basic notion of the multiuser diversitith multiple antennas in [24], [25] has been recently
extended to interference networks, namely through oppistia interference alignment, such as for the case of a
cognitive network [26], cellular uplink [27], and celluldownlink [28]-[30]. The common idea is to schedule users
(or dimensions in [26]) so that the interference caused kystiiected users to the other receivers are aligned or
minimized with the aid of power allocation [26], [29] and apfunistic transmit or receive filter design [26]-[28],
[30]. The performance of the multiuser diversity is evadwbhor analyzed in terms of the average throughput [26],

[28], [29] and average degrees of freedom [27], [30].

B. Contributions

First, a simple characterization of the optimal degreesreédom with constant channel coefficient for the
multicell MIMO MAC is provided. Then, a scenario when the ddink system exploits the multiuser diversity is
considered and the degrees of freedom by employing usedslihg is characterized.

In the uplink, we assumé& homogeneous cells with users per cell. We do not consider time or frequency
domain extensions with a time or frequency varying chansslimption. Alternatively, spatial resources are utilized
with constant channel coefficients. Although our focus istlom scenario where the transmitter and receiver have
M and N antennas, we show a spatial degrees of freedom outer boutttefé-cell and K -user MIMO MAC that
includes the case when each node has a different numberesfraadt. For the two-cell case, two linear schemes that
achieve the degrees of freedom outer bound are characefibe first scheme is a simple transmit zero forcing
with M = K+ 8 and N = Kf3, and the second one is a null space interference alignmehtiMi= K5 and
N = Kg3+ 3, where > 0 is a positive integer. Fof. > 1 (including the two-cell case), it is verified that receive
zero forcing withM = 8 and N = K L precisely achieves the optimal degrees of freedomifor 1. Moreover,
it can be shown that the developed linear schemes attainptivaal degrees of freedom with the minimum possible

numbers ofM and N under the zero-interference constraint when assuminggesgtream per user.



The main ingredients of the degrees of freedom outer boumalpgous to [12], [17]-[19], are to split whole
messages into small subsets so that the outer bound caablyabe formulated for each of message subsets. We
define the message subset for theell heterogeneous networks whete— 1 cells form anL — 1-user MIMO
interference channel and a single cell form#&auser MIMO MAC. We also investigate through an example that
selecting a subset of transmitters and allowing them to asgap message sharing (through perfect links) achieves
a higher degrees of freedom than distributed MIMO transionss

Null space interference alignment for the two-cell caseasetbped for the uplink scenario with' > M to
show the achievability of the converse. It relies on eactelstation using a carefully chosen null space plane.
The null space planes are designed to project the out-bfrdelference to a lower dimensional subspace than its
original dimension so that the null space plane can jointliigaite the degrees of freedom loss coming from the
out-of-cell interference. The dimensions of the intenfiee free signal at each base station after projection depend
on the “size” of the overlapped out-of-cell interferencdl space, which is referred to as tigeometric multiplicity
of the out-of-cell interference null space (the definitioill e clearer in Section V). We generalize the null space
interference alignment framework for various kinds of amt@ dimensions. Though it does not necessarily achieve
the optimal degrees of freedom, it resolvgés- 0 interference free dimensions per user. Notice that by thiakip
and downlink duality the degrees of freedom results obthiioe the uplink are also applicable to the downlink.

Next, we study the degrees of freedom of thecell downlink interference channel by exploiting muléus
diversity. One of the key aspects for the interference atignt in [17]—[20] is in its almost sure (a.s.) convergence
argument on the instantaneous degrees of freedom withtanBgimbol extension across time and frequency. In line
with the convergence argument made in interference aligitsneve show that this strong convergence argument
on the instantaneous degrees of freedom still holds whédiing many users in the network. We quantify the
additional degrees of freedom achievable through the werdsiling where the user scheduling only uses the local
CSI. This exhibits clear comparison on the instantaneogeegés of freedom between the multiuser diversity system
and interference alignment in [17]-[20]. We show in pafcuhat if the number of candidate users that participate
in scheduling in a cell increases faster than linearly witRSthe instantaneous degrees of freedom convergés to
in both mean-square (m.s.) sense and almost sure (a.se feerthe L-cell downlink MIMO interference channel
with M =1andN =L — 1.

The rest of the paper is outlined as follows. Section Il dessrthe system model. In Section I, the degrees of
freedom outer bound fok-cell and K-user MIMO MAC is formulated. The conditions for the optind#grees of
freedom are characterized in Section IV. In Section V, galfeameworks for the null space interference alignment
for various kinds of spatial dimension conditions are itiggged. Section VI discusses the instantaneous degrees
of freedom with multiuser diversity for thé-cell downlink MIMO interference channel. The paper is daded

in Section VII.



II. SYSTEM MODEL

We first define the uplink channel model. The downlink chammetlel is simply described by the uplink and

downlink duality.

A. Uplink Channel Model

Consider a network that consists 6f homogeneous cells. In each cell, there &e> 1 users and one base
station, where each user has > 1 antennas and the base station is equipped With 1 antennas. We introduce
an index(k to correspond to uset in cell ¢ for £ € £ andk € K wherel = {1,...,L} andK = {1,..., K},
respectively. For instance,3acell MIMO MAC is shown in Fig. 1 where each cell consistsofisers (i.e.L = 3
and K = 2). Note that though our focus, in this paper, is Bnhomogeneous cells where the transmitter and
receiver havelM and N antennas, respectively, we generalize the degrees ofdineexliter bound when usék
has M, antenna and base statiérhas N, antennas in Section IlI-A.

The channel input-output relation at thi discrete time slot is described as

L K
Ym() =Y HygXen(t) + zm(t), m € L (1)
(=1 k=1

wherey,,(t) € C¥*! andz,,(t) € CV*! denote the received signal vector and additive noise veatttine base
stationm, respectively. Each entry of,,(¢) is independent and identically distributed (i.i.d.) wiV (0,1). The
vectorxy(t) € CM*1in (1) represents the usék’s transmit vector atth channel use. The channel input is subject

to an individual power constraint
B {Ilxan(®)]1?] = tr (B xae(Oxiu(0) < p, ke KL e L 2)

wherep represents SNR. The mati,,, ;. € CV*M in (1) denotes the channel with constant coefficients froer us
Zk to base statiom. Moreover,{Hmmk}keK represent the desired data channels at base statighile the matrices
{Hm,fk}geﬁ\m7kelc carry out-of-cell interference to base station All the channel matrices are sampled from
continuous distributions, and each entrykdf, ¢ is i.i.d. (i.e., we basically assume a rich scattering emmment).
This channel model almost surely ensures all channel reatti@ave full rank, i.e.} rank(H,, ) = min(M, N)
for m,¢ € £ andk € K. The channel gains from different users are mutually inddpat. This channel condition
where all channel matrices with i.i.d. are full rank is reéer to asnondegenerat@ this paper.

Define Wy(p) as a message from usék to the destined base statidhat SNR p. The messagély.(p) is
uniformly distributed in a(n, 2*%+()) codebookZ (p)={C1(p), . . ., omrumw (p)}, and messages at different users
are independent of each other. In order to approach the itgthe data rate of the coding scheme increases with

respect to (w.r.tp. This includes a codingchemewhere the codebook is chosen from a sequence of codebooks

Throughout the paper, themk(A) for A € CV*M extracts a dimension of the range spaceAgfi.e., rank(A) = dim(ran(A)),
where the range space is definedrasi(A) = {y € CV*! : y = Ax,x € CM*'} anddim(A) extracts the number of basis of the
subspaced. Null space ofA is defined aswull(A) = {x € C**! : Ax = 0}.



{W(p)} for each level ofp. The messagéV.(p) is mapped tox.(¢) in (1) overn channel uses. Then, the
information transfer rateR,;(p) of messagdVy.(p) is said to be achievable if the probability of decoding error
can be made arbitrarily small by choosing an appropriat&msiablock lengthn. The capacity regioi(p) is the

set of all achievable rate tupldst(p) }rer ke -

B. Degrees of Freedom

We define the spatial degrees of freedom of the multicell MIMBAC as

%, = lim 3 Ru(p) -
pree log(p)
{Rer(p)}ecc,kex €C(P)

A network hasX¥,; degrees of freedom if the sum capacity is expresses geg(p)-+o(log(p)). This implies that
the degrees of freedoli, is equivalent to the total number of interference free digiraensions (i.e., the number
of effective single-input single-output (SISO) data stneathat can be supported).

The degrees of freedom measg in (3) ignores any fixed (or vanishing) quantities in the aghble sum rate

expression ap increases. Notice that the quantiy in (3) is characterized as a convergence of random variables

{ %gk((tf)) }zec,keic

(a.s.) sense. When we refer the degrees of freedom in SddtidW, and V, that impliesX,; characterized with

asp — oo. The degrees of freedom results in [15]-[20] show this coyeece as almost sure

instantaneous achievable ratg3, (p) }rec rexc. While, when we explore the multiuser diversity in Sectioh We
need to distinguish between tiestantaneouslegrees of freedom and tlaweragedegrees of freedom in order to
capture the detailed difference in user scaling laws. Natiat the former includes the mode of the convergence in
random sequenc sRL(p))

log(p }Zeﬁ,kzelc
In what follows, we will omit thep attached tolW,(p) and Ry (p). In addition, with an abuse of notation,

asp, K — oo, while the later does not include detailed convergenceraeg.

Ym(t), zm(t), andxy(t) in (1) are simplified toy,,, z,,, andx.

C. Downlink Channel Model

The uplink scenario is converted to the downlink scenariatgnging the role of the transmitter and receiver and
defining the reciprocal channel for the downlink as showr2i|[[22], [23] (i.e., uplink and downlink duality). By
L-cell andK-user MIMO downlink, we mean the network in which there araltd transmitters and( distributed
receivers in each of cells. In the downlink, we use the indéxo correspond to usek in cell ¢ for k € K and
te L.

The received vector at usérin cell m is expressed by

L

Yim = Y Him eX¢ + Dy 4
=

where y.,, and ng,, are the N x 1 received vector and additive white Gaussian noise vectstrifgited as

CN(0,1y)), respectively, at usekm. In (4), Hy,,, € CV*M denotes the channel matrix from transmitteto



userkm. Thenondegeneratehannel condition, channel input power constraint, andéimg scheme are similarly
defined as in uplink channel model. We will use this downlin&d®l in Section VI to investigate the degrees of

freedom with multiuser diversity.

[1l. DEGREES OFFREEDOM OUTER BOUND OF THE L-CELL AND K-USERMIMO MAC
A. Degrees of Freedom Outer Bound

Given the channel model in (1), we now formulate the degréésedom outer bound for the-cell and K -user
MIMO MAC when transmitter/k has My, antennas and receivérhas N, antennas. The following is the main
result of this section.

Theorem 1:The total degrees of freedom of tliecell and K-user MIMO MAC with L > 1 and K > 1, whose

channel matrices are nondegenerate, is bounded by

g<min | > My, Y Nen(W) (6)
LeL ke lel
where
> min (Z Mg+ > My, Y, Np,max (Z My, > Np> , Max ( > Mpk,Ng>>
77(W) . el kel qeK pEL\L peL qell pEL\L pEL\L (6)

K+L-1
with £={1,...,L}, K= {1,..., K}, andW = {Wu}pc p erc-

Proof: The approach taken to derive the outer bound in (5) is to g@itvhole message st = {Wfk}za:,ke/c
into subsets, derive the outer bound associated with eatheo$ubsets, and combine all of the outer bounds to
gain the total degrees of freedom outer bound. In additiam,assume perfect channel knowledge of all links at
all nodes.

Suppose we reduce tHecell and K-user MIMO MAC to anL-cell heterogenous MIMO uplink channel where

the L — 1 cells (amongL cells) constitute & L — 1)-user MIMO interference channel (IC) and the remaining
single cell forms aK-user MIMO MAC. We refer to this network as th@, L — 1) MAC-IC uplink HetNetFig.
2 represents thél, 2) MAC-IC uplink HetNetcomposed of a single ceuser MIMO MAC and2-user MIMO
interference channel. Thig, L — 1) MAC-IC uplink HetNet is formed from thd.-cell and K-user MIMO MAC
by eliminating messages W that do not constitute the information flow in tiie, L — 1) MAC-IC uplink HetNet
channel.

Let the /th cell amongL cells is designated as thig-user MIMO MAC. Then, the rest of thé — 1 cells forms
an (L — 1)-user MIMO interference channel by picking tii¢h user in each of the cells ig\/, i.e., the index
set for theL — 1 users is{1k,...,({ —1) k, (¢ + 1) k,... Lk}. Message sets associated with #ieuser MIMO
MAC and (L —1)-user MIMO interference channel are then given{B¥,} and{ka}peﬁ\z, respectively. We

define these two disjoint message sets as

Wék = {Wéq}qeic U {ka}peﬁ\g . (7)



The degrees of freedom outer bound is first argued for eadheaf & Sets{wék}eec,ke/@ and LK outer bounds
are combined by accounting the overlapped messages.

Assume perfect cooperations betwelnusers in celll and between. — 1 users and the correspondifig— 1
receivers in the(L — 1)-user MIMO interference channel. Then, tie, L — 1) MAC-IC uplink HetNet with

W' becomes a two-user interference channel with transmit andive antenna pairg > Myy, Ny | for the
qell

first link and | > My, > . N, | for the second link. It is well known that the spatial degredsfree-
dom of an(Ml,p]fff;f (Mg,pjffg;étwo—user MIMO interference channel is characterizednas(M; + My, Ny +
Ny, max (M, Na),max(Mo, N1)) [15]. Thus, the degrees of freedom outer bound associatéd message set
W is characterized by

min Zng—k Z Mpk,ZNp,maX Zng, Z N, | ,max Z My, Ny . (8)

qeK pEL\L peL qe pEL\L peL\L

In the same manner, the outer bound associated with the guassa/v’f_"C with ¢ # ¢ or k # k is also determined
by (8). Since there are totdt L message subsets and each message refieatd. — 1 times overK L message

subsets (following from the splitting approach in (7)),nfrd8) the total degrees of freedom associated withs

bounded by

< leLkeK qek pEL\L peL qeK peL\L peL\!
ds
K+L-1

> min <Z M+ > My, Y Np,max <Z Mg, > Np> ,max ( > Mpk,Ng>>
SN )

Meanwhile, a trivial bound is obtained by allowing perfecbperation amond< L transmitters and full coop-

eration corresponding receivers of thel-cell and K-user MIMO MAC as

Tg<min | Y My, Ne|. (10)
teL kel teL
Combining two bounds in (9) and (10) yields the outer boursdiltein (5). [ |

The characterized bound is general, in that it includes o’dsvwith X > 1 and L > 1 for arbitrary numbers of
transmit and receive antennas.
The converse result in (5) can be further relaxed and siraglifiy upper bounding()V) in (6) as

KL-Y>N, X min(max <Z Mg, > N,,) ,maX< > Mpk,Nz>>
(11)

Z pG[, ZE;C,ICGIC (]E’C peﬁ\f pGE\Z

My, ;
tee ek K+L-1 K+L-1

n(W) < min

where in (11) the summation )  is taken for operands inside afin(-) in (6) and we use the facts that
teL kek

Z MZq"’ Z Mpk

qeK pEL\L
=
Z K+L—-1 Z Mu,
LeLl kel lel kek




and
> Ny KLY N,
Z peEL _ peEL
Zeﬁ,kelCK+L_1 K+L-1

Since 72f— ;Np > e;c N, for K, L > 1, combining the two bounds in (11) and (10) yields
p

> min <max <Z Mg, > Np> ,max( > Mpk,Ng>>
Z Mék,zNé, Lel kel qell peEL\L peL\L ' (12)

K+L-1

>4 < min
teLkek teL
As mentioned earlier, our focus is mainly on an homogeneatenaa distribution. The next corollary presents the
required outer bound.
Corollary 1: The total spatial degrees of freedom of thecell and K-user MIMO MAC with M transmit
antennas andV receive antennas is bounded by

KL KL

g <min| KLM,LN, —— KM, (L-1)N), — L—-—1)M,N) |. 13
o < i (KEM, LN, g mox (KDL (L= DN g mox (D= DMV ). (1)

Proof: The bound can be obtained by substitutibg;, = My, = M,, = M and N, = N, = N in (12) and

taking all the summations. |

B. (1,L — 1) MAC-IC Uplink HetNet

The characterized outer bound utilizes insight from a liwifitthe total degrees of freedom for aircell
heterogeneous network, i.€1, L — 1) MAC-IC uplink HetNet. DenotelM, and N as the numbers of antennas
at userq and the base station in th€-user MIMO MAC, respectively, and represeif, and N,, as the number
antennas at user and the corresponding receiver in the — 1)-user MIMO interference channel, respectively.

Corollary 2: DenoteX;_; ; as the total degrees of freedom of the— 1,1) MAC-IC uplink HetNetThen,

K L—1 L K L—1 L—1
Ypogp<min (Y Mg+ My, Y Npmax [ Y Mg, > N, | ,max (Y M,N (14)
q=1 p=1 p=1 q=1 p=1 p=1

Proof: Omit ¢ andk attached taM,,, N, and M, in (8). Then, the formula in (8) verifies the corollary
Interestingly, the collocatetl. — 1)-user MIMO interference channel and single c&luser MIMO MAC can
be viewed as a two-tier cell deployment where the networksists of . — 1 femtocells (or picocells) each with
a single user and one macrocell with users. Notice that in the two-tier networks, single usendmaission at
the lower-tier cell is shown to provide significantly impeal/throughput and coverage than multiuser transmission

[31].
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C. Virtual MIMO Transmission vs. Selected and Shared Trasson

Now we are interested in an equivalent channel model tolteell and K-user MIMO MAC. Consider groups
of L distinct users among thBK users (i.e., a total of{ user groups) such that thieh user group is formed by
grouping thekth user in each of the cells, i.e., tih¢h user group is the index séik, 2k, ..., Lk}. For example,
Fig. 3 shows the user grouping for tie= 3 and K’ = 2 MIMO MAC where the first user group is represented
as the index se{11,21,31}, and the second user group consists of indi&3, 22,32}. Then, the network is
converted to a distributed” x L homogenous MIMO X channel (see Fig. 4). Here, the equivalbannel of the
L-cell and K-user MIMO MAC is referred to as thdistributed X' x L homogenous MIMO X channel because
perfect cooperation among users within each user grouptiassumet|

The equivalency between the-cell and K-user MIMO MAC and distributedX” x L homogeneous MIMO
X channel provides an interesting insight into the follogviguestion: When using spatial dimensions to transmit
message$Wox - xex» IS it better to employnultiple distributed transmissiowhere transmitteé, equipped with
M antennas, transmits its own messafg. or to employselected and shared transmissiwhere one transmitter,
say 1k in the kth user group{1k,2k, ..., Lk}, equipped with)M antennas, is selected and transmits all of the
message§ Wik, Wax, ..., Wik} while other transmitters in the group keep quiet? Given @8I at all nodes,
multiple distributed transmissiodelivers message§Wis }c, rcxc through distributed transmitters with the use
of total LK M dimensions (e.g., virtual MIMO transmission), whiéelected and shared transmissioses K M
dimensions with the use of partial message sharing throhgtpérfect links between transmitters. We can show
the later strategy is better in terms of the degrees of freeth@n the former strategy fat = 2 and K = 2 (see
Fig. 5 (a) and Fig. 5 (b)) as follows.

Corollary 3: Let X4 7x and Xg,,.qrx denote the total degrees of freedom of thaltiple distributed trans-

missionand selected and shared transmissioaspectively, wherl. = 2 and K = 2 with M = N. Then,

Yaisttx < BshrdTx -
Proof: Since themultiple distributed transmissiowith . = 2 and K = 2 in Fig. 5 (a) is equivalent t@-cell
and2-user MIMO MAC, from Corollary 1

YiistTx = X4

4 4 4
< min (4M,2M, gmax(2M,M), gmax(M,M)> = §M

The selected and shared transmissittmough perfect link with = 2 and K = 2 is the2 x 2 MIMO X channel

with M antennas at each node. Hence,
4
YshrdTX = gM

2Notice that to meet the original definition of the X channel[14], [15], [17], the users within théth user group must be perfectly
connected, i.e., in this case, the channel becom&s>aL MIMO X channel with LM antennas at the transmitter and antennas at the
receiver.



11

where the last equality follows from the optimal degreesreefiom result in [16] where the achievable scheme
utilizes the simple zero forcing. [ |
In what follows, we will quote the results in this section teacacterize the optimal degrees of freedomfecell

and K-user MIMO MAC.

IV. ACHIEVING THE OPTIMAL DEGREES OFFREEDOM
In the homogenoud.-cell and K-user MIMO MAC, independently encodedl > 0 streams are transmitted as
Xmk = TmirSme from usermk to base stationn, wheres,,; = [Smk.1 - ..smk,ﬁ]T is the g x 1 symbol vector
carrying messag®/,,,, andT,,, € CM*# denotes a linear precoder which will be chosen to providerietence
free signal dimensions to userk. The N-dimensional signal received at base stations expressed as

K I K
Ym=> M TosSme+ Y Y Ho ok ToxSer+Zom. (15)
k=1 (Fm k=1

The achievable schemes must deal wit{Z — 1) out-of-cell interference sources and additionally — 1)/
inner cell interference sources. This implies that the ireguspatial antenna dimensiodg and N for the zero
interference condition with constant channel coefficiantst be determined as a function &f L, and .

Our base line algorithm is to explore the feasibility of tiehr schemes utilizing the spatial dimensions under
zero interference constraints. Given (15), our base ligeridhm utilizes linear postprocessing matky, € CKA*N
at receiverm to produceg interference free dimensions for each of users. The twoMBO MAC scenario,

which is instructive, is first considered, and a general iteiltcase is characterized later.

A. Two-Cell MIMO MAC { = 2)

The degrees of freedom outer bound in (13) and zero forcasgd linear schemes allow the following theorem
to be proven.

Theorem 2:The two-cell andK-user MIMO MAC with the nondegenerate channels, where tesmitter and
receiver have\l = K3 and N = K+ or M = K8+ and N = K 8 antennas, respectively, has the optimal degrees
of freedom of2K 3 where > 0 is a positive integer.

Converse of Theorem 20vhen M = K3+ 8 and N = K3, the outer bound in (13) returns
2K max(K M, N) 2K max(M, N)>

Y, <min|2KM,2N
d—mm< Y K+1 ’ K+1

= min (2K(K+ 1)8,2K 5, 2]{2[({[{7;;1)5 2KB> = 2K8. (16)
WhenM = K and N = K3 + 3, we have
>, < min (2}(25, 2(K 4+ 1), ;“(le, 2K/3> = 2K 0. (17)

Combining two quantities in (16) and (17) verifies the copseer [
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Achievability of Theorem 2The achievability is argued by showing thainterference free dimensions per user
are resolvable at each of base stations. For simplicity, efenem asm=L\m where £ = {1,2} for two-cell
case.

1) M=Kpg+pBand N = KB3: WhenM =Kpg+ and N = K3, usermk picks the precoding matrisf

such that
span (Tr) C null (Hy, mi), k€ K. (18)

SinceH,,, ;,,cCKA*(KBH) is drawn from an i.i.d. continuous distributio,;;,cCM*# with rank(T;,;) = can
be found almost surely such thHl,, ,,, T, = 0 for all £ € K. In this way, usermk precludes interference to
base stationn. Applying precodery T },cx e d€Signed by (18) to (15) yields

Ym = Z Hm,kamkSmk + Zpm,.
kel

The decodability ofK 5 dimensions fromy,,, requires
Gm = [Hm,mlel tee Hm,mKTmK] S (CKBXKB (19)

to be a full rank. Sincd’,,,;, in (18) is based oM, ,,i, T, is mutually independent di,, ;... Then, by Lemma
2 in Appendix A, H,;, ;,,x Thoi € CKP*8 is a full rank and spans A-dimensional subspace with probability one.
Since {Hmkamk}ke/c are independently realized by continuous distributiond aachH,, ,,,; T, spansg-
dimensional subspace, the aggregated cha@ngle CX5*K8 spansk 3-dimensional space almost surely. This
ensures achievability dfK 5 degrees of freedom whel = K5+ 1 and N = K§.

2) M = Kpand N = K+ 3: WhenM = Kp and N = K{ + 3, an achievable scheme employs the
postprocessing matri®,,, € CKA*(K5H) designed at base station.

Suppose a set of matricé$H,,, . Nop.mkl beex Where matrix[H,, mix Ny i) € CHEBHHXEKEH6) s formed
by concatenating two matric@,, ;€ CEATAXES and N, 7p, € CEATEXE such thalH,, mx N mr] is full

rank matrix fork € K, i.e., N7 _ Hy i = 0. Then,P,,cCEAx(KB+8) is designed such that

span (P},) = span ([Npm1 Nimmz -+ Nmmk]) , (20)

i.e., the column subspace Bf;, spans the same column subspacs 71 Ny ma - Nyymr] € CHEIHHXKS,

By (20), P,, is constructed by
Pm:H [Nm,ml Nm,m2 ce Nm,mK]* , M€ L (21)

whereII € CKP*KB is any full rank matrix. Notice the construction in (21) WIfIN,,, 7. } ek @lways ensures

rank(P,,)=Kp and

dim (null (PpHy, k) = B (22)
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for all k € K.
Given {P,,}, ... in (21), we find the precoder ;. € CKBxB under the zero out-of-cell interference constraint

such that
span (Tyx) C null(PpHy, k), k€K, me L,

where sucHl;;, with rank (T;7x) = 5 exists almost surely because of (22). Then, the projectadre output at

the base statiom is given by

K
Pmymzz PmHm,kamkSmk +szm:Pmesm +im (23)
k=1
where G,, = [Hymi Tt - HymkTonr] € CEBHAXES 5 — Pz, and§,, = [sI,---sL |7, For

decodability, we need to check thRt, G,, has linearly independent columns. Analogous to (€®), in (23) spans
a K g-dimensional subspace almost surely. Note #at in (21) andG,,, are based on a continuous distribution
and are mutually independent. Thud; ( det (P,,,G,,) = 0) = 0 (by Lemma 2 in Appendix A) implying the
decodability of K 5 interference free streams per cell. [
WhenM = K andN = K+, the achievable scheme aligns the null spaces of the outerference channel
{H:n,mk}kelc to the row subspace dP,,, which is referred to asull space interference alignmerin the null
space interference alignment, the post processing mBifixcompressed< 3-dimensional out-of-cell interference
channels to K — 1)3-dimensional signal subspace becauseitdmensional row subspace #,, always lies in
”U”(anmk) for all £ € K. In fact, since the condition in (22) describes the requireddition about the right
matrix null space ofP,,H,, 5, omitting the full rank matrixII € CKBxKB on the left side ofP,, does not

change the dimension condition in (22), i.e.,
dim (null (TP Hy k) ) = dim (null (P Hyp, k) = B, k € K. (24)

We have discussed the achievability of the optimal degrédseedom for the two cell case by using transmit
zero forcing (withM = Kp + g and N = Kf) and null space interference alignment (with = K3 and
N = Kp + p) for arbitrary K > 0 and 5 > 0. As will be seen in Section V, the basic idea of the null space
interference alignment can be generalized for 2 with N > M. The generalized scheme does not necessarily
achieve the optimal degrees of freedom, but it resolveseaabies > 0 interference free dimensions for each of

users with various antenna dimensional conditions.

B. Multicell MIMO MAC (€ > 2)

In the uplink, the scenario aV > M is realistic because the system dimension at the user safeerslimited. In
this scenario, one of the extreme choicesférand N is when the user has antennas fo3 stream multiplexing,

i.e., M = 3, and interference cancellation is mainly accomplishedhatltase station. As will be seen in the next
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theorem, employing the minimum number of transmit antergeaserally achieves the optimal degrees of freedom
for L-cell and K-user MIMO MAC.

Theorem 3:Given M = [ transmit antennas any = LK 3 receive antennas, the-cell and K-user MIMO
MAC with nondegenerate channel matrices has the optimaiedsgf freedom of. K 3.

Proof: See Appendix B. |

The inner bound of the theorem is shown by using simple recaavo forcing. The theorem suggests that given
full CSI at the base stations, other than allowing some lef’ebordinated transmit and receive filtering, employing
base station-centric interference nulling scheme is piatignsimple and reliable in the high SNR regime in the
multicell multiuser MIMO uplink scenario (some of which cae practically achieved in small cell scenarios).

Analogous to [15], [16], Theorem 2 and Theorem 3 show thasthwmle zero forcing is indeed optimal in terms

of the achievable degrees of freedom forcell and K-user MIMO MAC.

V. GENERAL FRAMEWORK FOR THENULL SPACE INTERFERENCEALIGNMENT

Complete characterization of the optimal spatial degrddseedom with constant channel coefficients for the
L-cell and K-user MIMO networks is still unknown and often overconsteal. However, this difficulty does not
preclude the existence of a general linear scheme thatvess®l> 0 interference free dimensions per user. In this
section, the basic idea of the null space interference @i (with N > M) in Section IV-A is extended to a
general framework.

Throughout the section, we will use following two definitioto measure the size of overlapping of the out-of-cell
interference null space.

Suppose there ar& i.i.d. full rank matrices (i.e., nondegenerate)A;, B, K =1{1,2,...,K}, where

I rerc
[A; B;] is square and invertible with;, € C**™ and By, € C™* (=) (n > m).

Definition 1: A set {Ak}kzelc is referred to as having a null space wgkometric multiplicity~, if all v-tuple

combinations of the matricefB,,,..., B, } with {m}., C K, m # =; if ¢ # j, have nonempty intersection,
ie.,

.

(ran(Bs,) # ¢

i=1

and at the same time is the maximumpossible value.
Definition 2: Given v > 1 in Definition 1, the intersection null space éfA;}, , is referred to as having
algebraic multiplicity 1 if

.
p=dim <ﬂ ran(Bm)> .

=1
The quantitiesy and i in Definition 1 and 2, respectively, can be formulated as im fitilowing lemma that

elucidates the linear algebraic relation betweeand ..
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Theorem 4:Given a set of nondegenerate full rank matri¢eA;, By]}, o with £ = {1,..., K} whereA;, €

C"*™ (n > m) and By, € C**("~™)  respectively, the geometric multiplicity of {A} ek is characterized by

s[5 1

and the algebraic multiplicity: (1 < p < m) satisfies
n=mn—ym.

Proof: See Appendix C. [ |
The scheme requires different pairsaf and N depending on the size of the overlapped interference nattesp
dimension in order to preserykinterference free dimensions per user. We elaborate thesfrark for the two-cell
case and the scheme is directly extended tolthe 2 cell case, which is provided in Appendix D.
For the two-cell case, giverk out-of-cell interference channel@Hmmk}kelC with H,,, . € CV*M and

corresponding null SpacEN,, i}, WhereNy, iy, € CV*N=M) such thatH,, e Nonmi] is full rank, v of

o ([£52]

by Theorem 4. SinceV > M, ~ is bound byl < v < K. The generalized null space interference alignment

{Hm,mk}kelC is given by

scheme is described by determining requifddand N for a given value ofy (1 <~ < K) such that the scheme
can resolves interference free dimensions per users.

Under the zero out-of-cell interference constraint, gip < CEBxN the precodefl ;. € CM*B must lie
in the null space ofP,,,H,, sk, i.€., span(Tyi) C null(P,,Hy, 5x) for k& € K. The conditionspan(Ty,) C

null (P, H,, 1) is accomplished if

dim (null(PpHy, i) > B, k € K. (25)
With the equalitydim (null (P, H,p, mk)) = M — rank (P, H,, i) for k € K, we have

M > rank (P,,H,, i) + 3, k € K. (26)

The formula (26) implies that in order to accomplish the zemtof-cell interference, we neednk (P,,,H,;, 1) <

M, k € K with N > M, while rank (P,,,H,,, s»x) < min(Kj, M), implying
rank (P, H,, ) < Kf. (27)

Given they, the feasibleP,, € CX*N and the antennas dimensiaNsand M that satisfies (26) can be designed
by assigningy-overlapped intersection null spaces of some groups obbuaell interference channels to the row

subspace oP,,.
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Stepl: Let us definekth y-tuple index set asl;, = {m;}7™" for k € K with
mi=((i — 1) mod K)+1. (28)

For instance, wher = 2, K = 3, and L = 2, index group{l‘[k}iz1 is composed ofl; = {1,2}, I, = {2, 3},
andIl; = {3,1}. The defined index grou@Hk}ff:l ensures that every index G appearsy times throughoutx
distinct sets.

Step2: Define the intersection null space associated with chaindées inIly, asNgﬁ,)m € CVxu e,
y+k—1
span (Nﬁfj)m> C ﬂ ran (Np, mr,) -
i=k

For {H,, i }ict,, the u-dimensional intersection null spabéff?m is efficiently found by using the iterative formula
in (66) in Appendix C.
Step3: Whenl <~ < K — 1, N,(ff)m is found such thaj, = 8 and the row subspace @&,, € CKA*N s

constructed by
P, =TT [N{), NO, - NGO (29)

whereII € CK8*KPB js a full rank matrix. From Theorem 4, the existencel\a’)ﬁf?m with 1 = 8 is guaranteed
if N=~M+p. Wheny = K, there exists only one intersection null spd‘déll?m such thatspan(NSL?m) -

K
N ran (N, mk). In this casep of Nﬁ,?m is set toy = K3 and
k=1

p,, = INW" (30)

m,m

The result in (30) is possible wheN = vM + K.
Step4: Given N formulated inStep3, we now formulate the required dimensidn. The P, in (29) and (30)
always containg/3-dimensional subspace that is lying in the null spacklgf ;. for all £ € K. Thus, the projected

out-of-cell interference channe{stHmm;f}ke,C satisfies
rank (P, H,, 7)) = (K — )6, k€ K. (31)
Plugging (31) in (26), theé\/ ensuring the zero out-of-cell interference constraint2h)(yields
M= (K —-v)8+8. (32)

WhenL > 2, the generalized null space interference alignment isgpitesl in Appendix D which utilizes channel
aggregation. The same decodability argument used in $ebfié\ can be applied forl, > 2. To avoid repetition
we omit this part.

Now, given~ and s, the requiredM for L > 2 is

M = (K —7)B+8. (33)
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Then, the dimensioV to resolves interference free dimensions is given by
N=(L-1)yM+g if 1<y<K-1 (34)
and
N=(L-1)yM+ Kp if vy=K. (35)

It can now be observed that the developed generalized frankeiwcludes the achievable schemes in Theorem
2 and Theorem 3, i.e., whepn = 1, the generalized null space interference alignment &ttéia optimal degrees
of freedom for two-cell case and when= K, the scheme shows the optimal degrees of freedond for2. For
2 <~y < K—1, it does not necessarily achieve the optimal degrees oddémerather it provideg interference-free
dimensions per user, i.e., it provides a tokalL s degrees of freedom.

Recently, a necessary condition for a linear achievablersehproviding one interference free dimension per

user (i.e.,s = 1) for L-cell and K-user MIMO network is characterized as [22]
M+ N > LK + 1. (36)

This condition indicates that no linear scheme can proviga ®ne interference free dimension per uset/it N <
LK +1. In addition, the crucial metrid/ + N in (36) measures the redundancylifiand N to provide thes = 1
interference free dimension per user.

Theorem 5:Generalized null space interference alignment vdth- 1 always satisfies the necessary condition
M + N > LK + 1. Moreover, the linear schemes in Theorem 2 and Theorem 2wlihe optimal degrees of
freedom with the minimum possiblgé/ + N = LK + 1.

Proof: Given M in (33) andN in (34) and (35), the quantity/ + N of the generalized null space interference
alignment (withg = 1) is formulated as\/ + N = ¢(y) + 1 with

w(v):{ (L(II;—1)7+1)(K+1—W) :Hi’;(SK_l

When1l <y < K — 1, the second order derivative gf(y) w.r.t. v verifies thaty(v) is a concave function of
~. Then, the minimum ofp(~) occurs at one of the boundary valuges {1, K — 1}. With L > 2, we can show

that (K — 1) > ¢(1) as
oK —1)=2((L—1)(K —1)+1) = 2L
> 2L

implying the minimum ofp(v) within 1 <~ < K — 1 is ¢(1). The factsp(1) = ¢(K) = KL and concavity of

() verify that

M+ N=p(y)+1>LK+1. (37)
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Moreover, wheny € {1, K}, the condition in (37) holds as an equality. This reveald #r@enna dimensions
for the optimal degrees of freedom in Theorem 2, i@4,N) = (K + 1,K) and (M,N) = (K,K + 1), and
Theorem3, i.e.(M, N) = (1, K L), attain the optimal degrees of freedom with the minimdfr4- V. [ |

VI. LEVERAGING MULTIUSER DIVERSITY FOR L-CELL DOWNLINK MIMO | NTERFERENCECHANNEL

We have argued the optimal spatial degrees of freedom andéheralized null space interference alignment
scheme with constant channel coefficients. Allocating iapaésources across multiple users in the network is
another dimension that has the potential to provide aduitispatial degrees of freedom with only a small amount
of CSI feedback.

In this section, the degrees of freedom of thecell single-input multiple-output (SIMO) downlink MIMO
system by exploiting multiuser diversity is studied. Thwg, consider the downlink channel model in (4). We are
particularly interested in a downlink receive beamform@ygtem using? = 1 stream transmission.

We look at an example where each transmitter Was- 1 antennas and each receiver is equipped With- L—1
antennas. There is a total &f users in each cell. In order to exploit multiuser diversibe user having the best
channel is selected in the cell. Notice that after the uskcgen, the network is reduced to ancell SIMO
interference channel. We first introduce the user seledtmategy and characterize the instantaneous degrees of

freedom and average degrees of freedom as introduced ilo®&eB and II-C.

A. User Scheduling Framework

Initially, L basestations simultaneously transmit training symbgJs. ., s;, to all users in the network where

sy € C™1. Then, the channel output vector at uger is expressed by

L

Yiem = hkm,msm + Z hkm,ZSZ +ngm, (38)
l#m

whereyy,,, andnyg,, are the(L — 1) x 1 received vector and noise vector.

We assume that channel VeCtorS{lmkm7é}g’m€£’k€]C are mutually independent and realized so that each entry of
hy,,.¢ is an i.i.d. zero mean complex Gaussian random variable withvariance, i.e.CA(0,I;_1). The training
symbol (or data symbol after the training phase) satisfiesatferage power constraift|s,,|?] = p. The symbols
are independently generated with[s,,,s;] = p for m = ¢ and zero otherwise.

The addressed user scheduling scheme does not assumedjlabaél knowledge at all nodes; in contract, user

km only has knowledge about its own channsgl,, ,,, and the covariance matrix of the out-of-cell interference

defined as
L L * L
ED himese | Y himese]| | =p Y Db (39)
{#m {#m l#m

Thus, the scheme only requires local CSl, which signifigatiéicreases the amount of CSI compared to conventional

interference alignment [15]-[20].
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Denote the out-of-cell interference covariance matrixsgrém (i.e., the matrix in (39)) apWy,,, meaning that
L
PWim =p > hy ey, - Then, userkm selects a receive beamforming vectsy,, € CL~V*1 to maximize

l#£m
the signal to noise plus interference ratio (SINR) accaydin

Pim = argmax P[P Bt m| (40)

2 B :
pect:-vx1 [|p[l3 + pp*Wimp
The solution to (40) i9km = Vmazkm Wherevy,q. 1 is the eigenvector associated with the largest eigenvalue

of (Ix + pWim) ™ phmmhs,, ,, meaning that

)\ma:v,km = )\max ((IN + Pka)_l phkm,mhzm,m)

X 2
P ‘pkmhkm,m‘
2 *
Hpkm”2 + ppkmwkmpkm
where .. (A) returns the dominant eigenvalue of matax

(41)

Users associated with transmitter feed back{\, .. xm }rex through the feedback link to transmitter. Then,

transmitterm selects the best user such that

km = argmax A\pmag, km- (42)
kel

After the user selection, data symbols are transmitted teesthe selected. users{km}c from each base
station in a cell. Overall, the system reduces tolacell SIMO interference channel.

Passing the received signal vector at the selected isethrough the receive processing filtpy, . yields

L
p};mykm = p};mhkm,msm + Z p};mhifmfsé—i_I)Zmniﬂm’ (43)
L#£m
and the instantaneous rate at uger is written as
2
p|p; hg ‘
Ry (p)=log |1+ 5 hm *mm (44)
le;‘mH2 + pp];mwl;mpffm
Notice that
Ry, (p) = max Ri(p)- (45)

kek
B. Instantaneous Degrees of Freedom Analysis

The approach taken to analyze the instantaneous degreesedom is to derive a tractable inner bound and
outer bound of the instantaneous degrees of freedom and thladviwwo bounds converge to the same quantity. For
this purpose, we first consider the inner bound scheme.

Given (L — 1)-dimensional channel output vector, ugen of the inner bound scheme selects receive processing

vector py,,, € CE=Dx1 only to minimize the out-of-cell interference power suchtth

Pim = argmin p"Wy,,p. (46)
peCE-1nx1
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The minimizer in (46) iy = Whnin, km Whereu,,;, . is the eigenvector associated with the smallest eigenvalue

of Wy,,, i.e.,
Okm = Amin (ka) . (47)

Users registered to transmitter feed back interference statisti¢sy,, } .. through the feedback link to transmitter

m. Then, transmittefn picks the best user such that

km = argmin oy, (48)
ke

where the scheduler in (48) is namely the minimum interfeeepower scheduler. After post processing with

in (46) at the receiver, the achievable rate of the inner daoheme is

2

(49)

B N o I o, Wi
L L
Obviously, the sum rate) R; (p) obtained by the inner bound scheme is a lower boundofR; (p) in
(44) which is based on thzzrlnaximum SINR scheduling in (42 fdllowing lemma establisheént:hle convergence
law for the interference power in (47) which will play a keylador showing the main result of this section.

Lemma 1:If p, K — oo while maintainingK’ o p® with ¢ > 1 anda € R, then

PP WimPhm = POl 5 (50)
in mean-square (m.s.) and almost sure (a.s.) sense.

Proof: First, notice that random variabilgi’g okm N (48) is the minimum order statistic of i.i.d{ minimum
eigenvalues of Wishart matricé®y,,, ..., Wk, where Wy, = Y, Y} with (L—1) x (L—1) dimensional
Yim = Dem1 - Demomet Demomp - - Wy, ). It was shown in [32] the probability density function (PDé)the
minimum eigenvalue of Wishart matrix wittL—1) x (L—1) dimensionalY ,, is given byf(c) = (L—1)e~ (=17,
Thus, the PDF opoy,, is

L—1 _r=
e o 7. (51)
P

From (51), the complementary cumulative distribution time (CCDF) of poy,, is derived asPr (po > x) =

f(po) =

¢~ ®. Then, CCDF ofpo,,  is
_(L=DK

Pr(po; >x)=(Pr(po > ) =e" 0 (52)

We first show the almost sure (a.s.) convergence and the erguor the mean-square (m.s.) convergence follows.
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1) Almost Sure Convergencé&or Ve > 0, asp, K — oo in such a way tha#{ « p® with ¢ > 1, we have from

(52)

Pr( 1 lim e o
T 1m o; >€]l= lm e P
p,K—)oop km p,K—00

= lim e (LDP" ey,
p,K—00

Since this holds for arbitrarily smadl > 0, this implies

Pr< lim pakm:0>:1—limPr< lim pakm>e>:1

p,K—00 e—0 p,K—00
with probability one.

2) Mean-square Convergenc&o show (50) in mean-square sense, we need to first calculatgites }ém E [po']%m]
Py 48— 00

and lim E [p2al%m}. The expectation ooy, is simplified by

p,K—00

E [poy,.] = /000 (Pr (po > z))X dx

_ 4
i (53)

Then, E [(pa,%m)ﬂ is formulated as

E|(poy,,)’| = E [/Op% 2xd4

2
_ P
- (7 25z) .
where (54) is obtained by integration by parts.

Consequently, from (53) and (54), asK — oo while maintainingK o p* with a > 1, the variance opo;, ,

i.e., lim (E{pzazm}—E[pal;m]z) converges

p,K—00
1—a\ 2
: p
| =0.
p Koo (L—1> 0

This establishes

lim E [|poy,, — B [poy,,][*] =0 (55)

p,K—00
implying po;, ™% 0. [
Lemma 1 readily characterize the convergence of the toigileds of freedom as follows.
Theorem 6:1f the number of userd( in a cell increases faster than linearly withi.e., p, K — oo in such a

way thatK o p® for a > 1 anda € R, the instantaneous degrees of freedom?®) Converges as

im —— = [ 56
pK—o0 log(p) (50)

whereM =1 and N = L—1.
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Proof: The inner bound of the instantaneous degrees of freedomeobétected usekm (by maximizing

SINR) yields
. R;
lim bm_ > ljm A
p.K—o00 log(p) p,K—oc log(p)
= 2
ms.  log (1+P B | >
proo log(p)
@s (57)

where we use the facts that; <> 0 (i.e., Lemma 1) forR,%m in (49) and the quantity(ﬁ,;m/uf),%mHg)*h,%m’myz

is independent op and K. Notice thatp;,  andh;  are mutually independent ansl,, . /||Pg,,|l2 is isotrop-
ically distributed on the unit sphere. Thuﬁ(pém/uf),;mﬂg)*hﬁm,m|2 is exponentially distributed and ensures
Pr (|(f’1;m/||f’1;m”2)*h1;m,m|2 = 0) = 0 with probability one. This fact leads to (57).

Summing up the result in (57) fromm = 1 to L yields the achievable instantaneous degrees of freedom of
L. Recalling thatL is the maximum possible number of parallel streamd igell SIMO interference channel
concludes the proof. |

The result in (56) is strong in the sense that the mode of egewee falls in the intersection of the two modes
(i.e., almost sure (a.s.) convergence and mean-squarg frarsergence).

Multiuser Diversity vs. Interference AlignmenEor the L-cell SIMO interference channel with/ = 1 and
N > 1, the optimal degrees of freedom achieved by the interfereignment (without user scheduling) can be

formulated as [19]

 Rynnlp)
Xg= lim Y T S pin(L,N) (58)
4= log(p)

£,N—>00
wheren denotes the symbol extension index ddd ,,(p) denotes the instantaneous rate at the channet usetice
that this characterizes the maximum instantaneous degfeigsedom obtained by the interference alignment in
[19] without multiuser diversity.

When N = L — 1, the optimal instantaneous degrees of freedom in (58) yield
2,2 L1,

while the multiuser diversity system attains

instantaneous degrees of freedom in both of a.s. and m.se s€his strong mode of convergence is benefited by
the user scheduling gain. Notice that the interferencenalignt is based on the global notion of CSI at all nodes,
while the multiuser diversity system relies only on locall@&h one real number feedback from the receiver to the
transmitter. The former utilizes infinite symbol extensiartime or frequency domain with time-varying channel

assumption, while the later deals with infinite number userhe network with the constant channel coefficients.
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Consequently, from Theorem 6 and (58), wh®n= L — 1 we make following crucial statement.
Remark 1: Utilizing multiuser diversity with local CSI pides at least additiona% instantaneous degrees of

freedom to each of the users in tliecell downlink interference channel withf =1 and N =L — 1.

C. Average Degrees of Freedom Analysis

The averagedegrees of freedom without the notion of the convergenceaimdom sequences can now be
formulated without difficulty. By taking expectation ovell possible channel realizations, the achievable average

rate at usekm with the maximum SINR user scheduling is denoted by

R, =FE|[R; | (59)
whereR;  is given in (44). As can be seen from the theorem below, the se#ing law can be relaxed when the
average throughput is considered.

Theorem 7:1f K is linearly proportional top or faster than linear withp, i.e., p, K — oo while maintaining
K o p* for a > 1 (a € R), the average degrees of freedom of the maximum SINR usedsér with M = 1
andN =L—-1is

L _
lim & = L. (60)
pK—o0  log(p)
Proof: The quantity in (59) is lower bounded by
Ry, > E | Ry,

[T e -

>F |log (61)
-2
B||[Bgyall5] + B [0,
where in the second step we use; > 0 and Jansen’s inequality.
Plugging the result in (53) in (61) yields
-2 sx T
_ Pi|la T21PF, Dl
R > By llo +£1P7, B, 2

E|[84,ll5] + %%
Then, asp, K tends to infinity, the average degrees of freedom of the. 1dfi.62) converges to
tog (B [[|Byula] + #=5)

1— i =1
p,Iégloo log(p)

as long asy > 1.

On the other hand, the outer bound]égm is obtained by ignoring interference term in (44), i.e.,

2

*
Pl

S B N v

p—00

/log(p)| = 1.
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L

R X B
ool = 1 and subsequentI);,Jl}]glOOW _

Thus, lim [ ]

Theorgﬁ_;oostates that in order to achieve the average degfdemedom of L for the L selected users, it is
sufficient to increasés like K « p asp — oo. We observe the user scaling law is relaxed compared to the ca
in Theorem 6 so that it allows the linear increase. However,donvergence in (60) does not include modes of
the convergence in random sequences, thereby, the arguisnguiet much weaker than (56). Theorem 6 implies

Theorem 7, while Theorem 7 does not guarantee Theorem 6.

VIlI. CONCLUSIONS

We characterized the degrees of freedom for the multiceM®IMAC consisting ofL cells andK users per cell
with constant channel coefficients. We presented a degffefeseslom outer bound and linear achievable schemes
for a few cases that obtain the optimal degrees of freedora.ddgrees of freedom outer bound showed that for
virtual MIMO systems selecting transmitters with partisd$sage sharing (through perfect link) sometimes provided
more degrees of freedom than employing multiple distridlMMO transmitters. The characterized outer bound
also provides insight into the degrees of freedom limit far two-tier heterogeneous network where the network is
composed of L—1) lower-tier cells each with single user and one macrocehiitusers. By simply characterizing
the linear inner bound schemes, it was shown that the trarremo forcing and null space interference alignment
achieve the optimal degrees of freedom for the two-cell dasarbitrary number of users. We also verified that
receive zero forcing achieves the optimal degrees of freefby L > 1 and K > 1 without transmit and receive
coordination. The generalized null space interferengmalent scheme was developed for various spatial dimension
conditions to provides interference free dimensions to each of users. We also agrifiat the developed linear
schemes indeed achieve the optimal degrees of freedom th&mginimum possiblé/ + N when assuming a single
stream per user. Exploiting multiuser diversity, we showrett the instantaneous degrees of freedom converges to
L in both almost sure (a.s.) and mean-square (m.s.) sensk-¢eil SIMO downlink interference channel with
M =1andN = L — 1. This exhibited clear comparison on the instantaneousedsgof freedom between the

multiuser diversity system and conventional interferealignment.

APPENDIX A
LEMMA 2

Lemma 2:Given A € C™*" andB € C™*! with n > max(m,l) where A and B with i.i.d. are full rank and
are mutually independenAB hasrank(AB)=min(m,[) with probability one.

Proof: First, we assumenin(m, ) =m and decomposB = [ﬁ B'} whereB € C"™ is formed by taking the

first m columns ofB andB’ € C™*(-™) js composed of columns from+1 to [ columns ofB. Then, regarding

rank(AB) we have

rank (Aﬁ) < rank (AB: AB AB’]) < min(m, 1) =m. (63)
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Note that whemmin(m,[)=1, we only need to consider the matd*A*, and it is handled similarly to the case
min(m,l)=m. Thus, we omit the casmin(m,!)=1[ and focus onmin(m,l)=m.

We further decomposé = [A K} and B* = [B ]~3} where A ¢ C™*™ andB € C™*™ are formed by
taking the firstm columns of A and B*, respectively, andA € C™*("™) and B € C™*("™) are submatrices
corresponding to columns from+1 to n of A and B*, respectively.

We claimPr (| det (AB)| > 0) =1. The claim is verified by providing the converse, iRr,( det (AB) =0) =0.
SinceA andB are drawn from i.i.d. continuous distributions, their gijval submatriced andB* (square matrices)

are full rank matricesrénk(A)=m andrank(B*)=m) almost surely. Now, we have
Pr (det (AB)=0) = Pr (det (AB* + AB*) =0)
—Pr (det (AB*) det (T,,+ (AB*) ' AB*) =0)
—Pr ({det (AB*) =0} U {det (T,,+ (AB*) ' AB*) =0} ). (64)
By using the fact that bottAB* and I,,EJF(A]?*)_1 AB* are invertiblem x m matrices, from (64) we obtain
Pr (det (AB)=0) < Pr (det (AB*) =0) +Pr (det (L, +(AB*) ' AB*)=0) =0
Consequently, we gétr ( det (Aﬁ) =0) =0 implying that the left hand side (l.h.s.) of (63) isnk (A]§) =m.
This concludes the proof. [ |

APPENDIX B
PROOF OFTHEOREM 3

The converse is checked by plugging = 6 and N= LK in (13), which in turn yields

(KL)*(L—1)8 (KL)25>
K+L-1 'K+L-1

3, < min <KLB, KL*3,

KL

= min (Kmm

KLﬁ) — KLB.

The last equality follows from the fact th& L > K + L — 1 for K, L > 1.
Inner bound is argued by using receive zero forcing. Whes- LK 3 and M = 3, base stationn chooses a

null space plan@®,, € CEP*LKB sych that
span (PL) C null <[H[m,1fcl I (m=DK] gl (m+DK] ..H[m,uc]]T> (65)

where H[m,l/ﬂ — [Hm FRER Hm lK] c (CLKBXK@ Since [H[m,llq . H[m,(m—l)lﬂ H[m,(m+1)l€] ... H[m,LIC}]T c
CU-DEBXLKS p_ that satisfies (65) withank(P?) = K can be found with probability one. Postprocessing
¥m in (15) with P,,, returns

K

Ym= Z PrHp ik TrkSmk +Prmzm = P GrSm + 2.
k=1
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where G, = [Hyp, 1 Ton - - Hyp i Tonc] € CEKBXKB 5 = Pz, ands,, = [s7,---sT . ]". Here, Ty, €
CP*B can be arbitrary withrank (T,,,) = 5. Without loss of generalityT,,, can be taken to be,,, = Is. As
observed in the proof of Theorem B,,, and G,,, are mutually independent arl®,,, G,,, spans aK -dimensional

space with probability one. This ensures the achievalifity X' 5 degrees of freedom fak-cell and K -user MIMO

MAC.
APPENDIXC
PROOF OFTHEOREM 4
Assume{Ay,..., Ak} hasy null space multiplicity. Since the matric§$A;, B;]}, . are nondegenerate, the

~ andu do not depend on the choice ¢ftuple matrix set. Thus, without loss of generality, we asswa~-tuple
combination{A;}7_,. SetT'; = B;. Then, it is clear thah;T'; =0. Let Zy € C»~")*("=2m) pe an orthonormal
basis ofnull(A3T) and denotd’y = I'1Zs. SinceAiTy = 0 and A3’y = 0, T’y is in null(A7}) Nnull(A3). In

the same mannel}; for i > 2 is designed with the recursion
I'i =T'1Z; (66)

whereZ; is an orthonormal basis ofull(A T, ). Then, aftery times of recursions, we hae, = I' ., Z, €
crnx(n=1m) and sinceA* T, =0 and A*T', =0, we have
v
T, C () null(A;). (67)
i=1
The existence of’,, in (67) (i.e., the existence d,) is therefore ensured if —ym > 1, i.e.,y < "T‘l which is

equivalent to

n—1 n—m
== -1 6
m m
Notice that the result does not depend on the choice-afple matrix set. Sincey can not exceedy, ~ is
characterized ag = min({wLK). Note thaty is the maximum possible integer such that- ym > 1

m

implying p = rank(T',) is given by
and1 < p < m. This concludes the proof.

APPENDIXD
EXTENSION TOL > 2 CASE

WhenL > 2, there are totalL — 1) K3 out-of-cell interference streams. We need to align- 1) K5 interference
streams to the lower dimensional subspace thi@hdimensional subspace to providenterference free dimensions

for each of users. Since the dimension of the out-of-cefirfietence streams is larger than the dimension available
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at the reciever (i.e.K < (L — 1)K 3), direct extension of the framework fdr = 2 case seems not to work. To
solve this problem, we consider to aggregate out-of-cédirfarence channels.

Given{ngk}eeﬁ\m wei» channel aggregation is performed by collectiig-1) out-of-cell interference channels

such that

Hmk = [tk o ne1ys Homg g+ Hin, L]

where H,, -, € CN*(L=DM_ This aggregation results in totdl aggregated out-of-cell interference channels
{Hm’mk}ke/c' Then, the geometric multiplicityy of {Hm’mk}kelc is expressed as

 [N—(L-1)M
In (70), we make the assumption thait> (L — 1)M (i.e.,1 <~y < K).

Now consider full rank matrice{ {f{m’mk Nmmk} }k . whereN,, p € CV*(V=(=DM) ynder the same
€

definition for the index sell;, = {m}]:,f‘l as in (28), the intersection null space is denotedﬁ'z{ﬁ?m € CNxm,
i.e.,
y+Ek—1
~ (k) ~
span | N,,,"5 ) C ﬂ ran( Ny, r, ). (71)
() < ) ron()

Then, following the same framework for designilg, as . = 2 case, when <~ < K — 1, P,, is formed by

P, =T [N, N, - NGO (72)

m, ,m

with N = (L — 1)yM + 3. Wheny = K, we haveN,(ﬁb?m € CN*KB and
P,, =TIN{, (73)

which is possible ifN = (L —1)yM + K 5. Now, givenP,,, in (72) and (73), the projected out-of-cell interference
channelP,,H,, 5, satisfiesrank(P,,H,, 7,1) = (K —)p for k € K, m € £\m. Now, under the zero out-of-cell

interference constrainpan(W ) C null(P,H,, mx), we must have
M= (K—-v)B+8. (74)
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Fig. 4. Conversion to distribute?l x 3 homogeneous MIMO X channel
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