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Abstract: We propose a simple model of attitude dynamics in which an agent tends to ignore the features which 
contradict its views. For instance, having received a first very negative feature, the agent may stop to consider 
any moderately positive feature. We call this phenomenon “first impression bias” (FIB). We consider a 
population of agents which are all in contact with a media, communicating randomly chosen features of an 
object. In some cases, we observe on simulations that FIB is significantly more frequent when the agents interact 
with each other than when they are only in contact with the media. We design an analytical aggregated model of 
the global agent-based model behaviour which helps to explain the higher number of FIB due to the interactions. 

1 Introduction 

“One never gets a second chance to make a first impression.” This saying illustrates the likely irreversibility of a 
judgement process. We have all witnessed or experienced that a strong first impression prevents from further 
considering the features which could change it. Closely related are more general phenomena of information 
filtering which have been identified long ago, for instance in rumour diffusion (Allport et al. 1947). To simplify, 
we shall call “First Impression Bias” (FIB) these phenomena of irreversibility or information filtering.  

The idea of impression is close to the concept of attitude as defined in Eagly and Chaiken (1998): “Attitude is a 
psychological tendency that is expressed by evaluating a particular entity with some degree of favour or 
disfavour”. Many researchers assume that attitudes are formed and modified as people gain information. 
Moreover, attitudes have been postulated to motivate behaviour and to exert selective effects at various stages of 
information processing (Eagly and Chaiken 1998): information may be filtered by the individuals, i.e. they 
ignore it.  Festinger in his theory of cognitive dissonance (1957) proposes some mechanisms for this selection: 
people seek out information that supports their attitudes (or decisions) and avoid information that challenges 
their attitudes (or decisions), in order to minimise their cognitive dissonance. Following this theory, even if they 
assimilate information which contradicts their global attitude, people are reluctant to talk about it, because they 
avoid expressing express their dissonance.  

Several researches in social modelling include some effect of attitude on information transmission and vice-
versa. Rumour diffusion models take into account information relevance or availability (Allport and Postman 
1947; Lawson and Butts 2004; Galam 2003). Variants of epidemics models can be interpreted as representing 
rumour or information diffusion (Huet and Deffuant 2006; Tsimring and Huerta 2003). The bounded confidence 
models (see Urbig 2003 for a review) implement reception and emissions filters on attitudes or opinions. In the 
model of innovation diffusion of Deffuant et al. (2005), this opinion dynamics is coupled with an information 
propagation. However, none of these models focuses specifically on FIB. 

We propose a simple agent based model (ABM) of FIB, which abstracts from the cited researches in social 
psychology. We consider an object defined by several features (for instance price, functionality, impact on 
health…). Each feature has a utility (negative or positive) and we suppose that agents are told about a randomly 
chosen object’s features by a media, at a given frequency. Thus some agents get the positive features first, 
others, the negative ones. The agents tend to ignore incongruent features (i.e. features which contradict the agent 
global impression). Moreover, agents talk to their neighbours about congruent features they retained.  

We particularly focus on the following question: do the interactions between agents modify the likelihood of FIB 
in the population ? With the simple model we consider, the answer is clearly positive. In some cases, the number 
of agents which show FIB is significantly higher when agents interact. In order to explain this observation, we 
propose an analytical aggregated model of the agent-based model global behaviour. We follow a general 
approach of “double-modelling” (Deffuant G., 2004) which aims at providing  explanations of the collective 
effects observed in ABM simulations, using aggregated models of the ABM behaviour. This is the major novelty 
of this paper, compared to earlier versions (Huet and Deffuant 2006, Deffuant and Huet 2006). 



The paper is organised as follows. First we show that, in some cases, the FIB is reinforced by the interactions 
among agents. Then we design an aggregated model which fits these results, and gives some explanation of the 
FIB reinforcement due to the interactions. The final section is a brief discussion about the model and these 
results. 

2 The collective reinforcement of FIB in agent-based simulations 

First, we describe the model: the considered object, and then the process for a single agent. The analysis of this 
models allows us to derive the results in the case of a population of isolated agents, and we compare them with 
the results obtained with interacting agents, with various network topologies.  

2.1 A 3-feature neutral object with a highly negative feature 

In general, we consider an object described by a set of features F. Each feature j is associated with utility uj, 
which is supposed immediately perceived by agents.  

In this paper, to simplify the study, we consider an object described by 3 features ( )3,2,1=F :  

• one feature with a highly negative utility:  u1 =U (later on the major feature), 

• two features with moderately positive utility: u2 = u3 = u (later on the minor features). 

We suppose that U + 2u = 0, therefore, the object is globally neutral. Our FIB model should yield a different 
global attitude to the object when the agent receives the negative feature first than when it receives the positive 
first. We choose the signs of the features to fix the ideas. The behaviour of the model would be equivalent with 
U > 0 and u < 0. 

2.2 The agent model 

An agent i is described by: 

• An initial global attitude toward the object g; 

• Li : a subset of  F containing the features currently retained by the agent; this list is initially empty. 

• : the global attitude about the object. ∑
∈

+=
iLj

ji ugG

When , the feature j is said congruent for agent i, and incongruent otherwise. 0. ≥ji uG

The dynamics of filtering are determined by a positive number Θ , the incongruence threshold. We suppose that 
|U| > Θ and  u < Θ. Being told about feature j, an agent will react as follows : 

• If j is congruent  “retain the feature”. 

• If j is incongruent: if Θ>ju  “retain the feature”, otherwise “ignore the feature” . 

Here, “retain the feature” means that j is added to Li (if Li does not include j yet), and the global attitude is 
updated; “ignore the feature” means that j is not added to Li , and the global attitude is unchanged. 

Moreover, an agent diffuses the congruent features in Li to its neighbours (see 2.4 for more details). 

2.3 The FIB for isolated agents receiving features in random order 

Consider now a single agent which receives messages about the features of our 3 feature object, in a random 
order. There are 3 possible cases: the agent is told about the major feature first (symbol: Uuu), in second position 
(symbol: uUu), in third position (symbol: uuU). A rational agent would yield the same final global attitude in the 
three cases, equal to his initial attitude g, because the object is neutral. Because U > Θ and  u < Θ, the agent can 
yield a different final attitude, as shown in table 1, which breaks down all possible cases.  

Let us consider a few examples to understand how the results are obtained. Consider column 0 < g < u, and 
suppose to fix ideas that for instance g = 0.5u: 

• If the agent is told about the major feature first (Uuu order), the major feature is incongruent (it is 
negative and g is positive), but because U > Θ, it is retained. The global attitude becomes g – U = -1.5u, 
which is negative (remember that U = 2u). Then the minor features become incongruent (the global 



attitude is negative and they are positive). Because u < Θ, they are not retained, and the global attitude 
remains g – U, a negative value.  

• Suppose now that the agent is told about the features in the uuU order. The two minor features are 
congruent, therefore they are retained. The global attitude becomes g + 2u = 2.5u. Then the major 
feature is  received. It is incongruent but retained because U > Θ, therefore the final global attitude is g 
+ 2u – U = g, a positive value (in fact the rational result). 

 g < 0 0 < g < u u < g < 2u g > 2u 
 Final att. Sign  Final att. Sign  Final att. Sign Final att. Sign  

Uuu g – U - g – U  - g – U  - g + 
uUu g – U - g – u  - g  + g + 
uuU g – U - g + g + g + 

Table 1: Final attitude and its sign according to the position of the major feature in the FIB model, for the values 
of g where the order matters, when U > Θ and  u < Θ. 

Several features of table 1 are noticeable: 

• If g < 0, in any order of reception, the final attitude is much more negative than the rational one (which 
yields g). This is a case of FIB, in which the first impression is the initial global attitude g. However, 
the sign of the final attitude is the same as the one obtained with a rational agent. 

• If 0 < g < u, if the major feature is received in first or second position, then the final attitude is negative. 
Therefore in this case, even the second impression can fix the global attitude. In this case the sign of the 
final global attitude depends on the reception order. 

• If u < g < 2u, then the global attitude is finally negative only if the major feature is received first. In this 
case also, the sign of the final global attitude depends on the reception order. 

• If g < 2u, then the final attitude is the rational one, whatever the reception order.  

Consider now a population of N isolated agents with all the same initial attitude g, and which receive the features 
in a random order. Because the  orders (Uuu, uUu, uuU) have the same probability (1/3), the proportion of 
agents with final negative attitudes are given by table 2. These results are confirmed by our experiments. 

 g < 0 0 < g < u u < g < 2u g > 2u 

Theoretical prop. of neg. final att. 1 2/3 1/3 0 

Experimental prop. of neg. final att. 1.0 (0.0) 0.66 (0.05) 0.33 (0.04) 0.0 (0.0) 
Table 2: Theoretical and experimental proportion of negative final attitudes for isolated agents. The rational 
result is 1 for g < 0, and 0 for g > 0 (because the object is neutral). The experiments were carried out with 1000 
agents and 1000 replicas. The standard deviations are in parenthesis. 

2.4 Interacting agents 

Now, we suppose that the agents are connected by a given network: each agent has a set of neighbours to which 
it is linked. Each agent retains and transmits features following the rules previously defined (cf. 2.2). Again, all 
agents have the same initial global attitude g. The only difference with the “isolated” case is that agents can 
transmit features to their neighbours and can receive features from them. At each time step:  

• We choose an agent at random, and with a probability f it receives a randomly chosen feature of the 
object (this represents the communication by the media), 

• We choose an agent at random, and one of its neighbours at random, and then the first agent transmits 
to the other a randomly chosen retained congruent feature.  

We focus on the cases where the FIB model provides final attitudes of signs that can be different from the 
rational result (0 < g < u and u < g < 2u). The main experimental results are the following: 

• For u < g < 2u, the number of final negative attitudes is similar to the one obtained with isolated agents. 

• For 0 < g < u, we observe a significantly higher number of final negative attitudes than the one obtained 
with isolated agents (see figure 1). The effect decreases when the number of links decreases, but it is 
still significant for networks with an 2 links per node on average (see figure 2). Here we use random 
networks with a given average of links per node (Erdos and Renyi 1960), random networks with a 



constant number of links per node, or scale free networks (Barabasi and Reka 1999). We note that these 
networks give very similar results when they have the same average number of links. Moreover, when 
this average number reaches 6 or 8, the reinforcement of the FIB is very close to the one observed in a 
totally connected population.  

These observations show that the reinforcement of FIB due to the interactions takes place because the major 
feature changes the attitude when it is in second position as well as when it is in first position. In order to better 
understand this phenomenon, we design aggregated models of the AB model. 
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Figure 1: Comparison of the final proportion of 
negative attitudes between interacting agents (totally 
connected), and isolated agents. The data  are mean 
standard deviations on 1000 replicas. When 0 < g < 
u, there is a significantly higher proportion of final 
negative attitudes. The FIB is reinforced by the 
interactions. 
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Figure 2: Final proportion of negative attitudes for 0 
< g < u, and various network topologies. The 
reinforcement of the FIB is significant for all the 
topologies, although it decreases when the network is 
less connected. Each result is the mean of 100 
replicas on a population of 1000 agents. 

3 Analysis of the result using aggregated models 

3.1 Groups and transition graphs 

The general idea to build the aggregated model is to consider groups of agents in the population and to define the 
transfer equations which rule the flows of probability densities between the groups. First, we need to determine 
the groups, and the possible flows between them. The natural approach to define the groups is to consider the list 
of retained features. 

Figure 3 shows the possible states of this list and the possible transitions between them for 0 < g < u, and figure 
4 for u < g < 2u. On the right of each figure, the graph is simplified by aggregating the groups from which there 
is no more bifurcations, or in which all groups have the same sign of attitude. Indeed, our objective is to model 
the evolution of the number of final negative attitudes, therefore to distinguish between groups in which the 
attitude is of the same sign is not necessary. 
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Figure 3: The graph of transitions between the groups for 0 < g < u, defined by the set of retained features. On 
the right, the simplified version where the groups from which there is no bifurcation are merged. Groups in grey 
have a negative attitude. 
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Figure 4: The graph of transitions between the groups for u < g < 2u, defined by the set of retained features. On 
the right, the simplified version, where the groups from which there is no bifurcation or give the same sign of 
final attitude are merged. The groups with a negative attitude are in grey. 

3.2 Transfer equations  

The second stage of the process is to determine the flows in each transition. This requires to evaluate the 
probability that the agents in each group retains a feature which makes them change their group. This probability 
is directly related to the features which are sent by each group. This is broken down in table 3 and 4. 

Group Media {U} {uU} {u} {uu*} 

Communicated features U, u U U u U 
Table 3: communicated features for each group in the case 0 < g < u. 

Group Media {U} {u*} 

Communicated features U, u U u 
Table 4: communicated features for each group in the case u < g < 2u. 

Let us call  the proportion of the population in group G, and  the flow from group G to group H by unit 
of time. The flows are written in table 5, when supposing that the probability to be in contact with a member of 
each group is directly proportional to its proportion in the population, in the case of total connection. Including 
different densities of networks would substantially modify the model, but it seems possible. 

GP HGF →

 0 < g < u  u < g < 2u 

(1.1) 

(1.2) 

(1.3) 

(1.4) 
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Table 5: Equations of the flows by unit of time between groups. Remember that f is the probability that agents 
receive a randomly chosen feature communicated by the media at each time step. 

3.3 Comparing aggregated model with agent-based model  

To check this qualitative reasoning, it is possible to simulate the evolution of the different group proportions 
from the equations of the aggregated model. To do so, we initialise the group proportions and iteratively modify 
them according to the flows, for a small time interval dt (for instance we chose dt = 0.01). More precisely: 

• For t = 0, , and all the other groups G, { } 1=P 0=GP . 

• Repeat until convergence: 
o For each group G initialise a variable 0=∆ GP , 
o For each flux , do: HGF → dtFPP HGGG .: →−∆=∆  and dtFPP HGHH .: →+∆=∆  
o For each group G do: GGG PPP ∆+=: , 

Therefore, at each time interval dt, we get new values for  for all groups G. We can compare these evolutions 
with the ones provided by the agent-based model.  

GP



 
We can observe on figure 4 that the aggregated model fits with good accuracy the agent-based model. In this 
case (0 < g < u, probability of media communication f = 0.1), in the end of the simulation, (not visible on the 
figure), the aggregated model predicts a proportion of 0.859 negative attitudes, to compare with 0.862, the mean 
result on 1000 replicates of the ABM. Moreover, figure 4 illustrates our qualitative analysis that groups {U} and 
{uU} feed each other, the last one at the expense of group {uu*}. Both groups {U} and {uU} have proportions 
higher than 1/3, as expected. 
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Figure 4. Comparison of evolutions of group proportions between one run of the agent based model (ABM) in 
total connection, and the aggregated model (Agg), for groups {u}, {U}, {uU} and {uu*}. The vertical axis is the 
proportion of the group. ABM curves are dotted lines, aggregated model curves are solid. 0 < g < u.  f = 0.1. 
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Figure 5. Comparison of the final proportion of 
negative attitudes for 0 <g < u, between the ABM 
(grey) and the aggregated model for different values 
of f (black). 
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Figure 6. Distribution of the final proportion of 
negative global attitudes for f = 0.001 

In order to evaluate the robustness of the approximation provided by the aggregated model, we tested it on 
several values of the frequency of media communication f. Figure 5 compares the final number of negative 
attitudes between aggregated and agent-based models when the probability of media communication f varies 
from 0.001 to 0.9, in total connection. The models significantly differ only in the case of f = 0.001. From 



previous work on the ABM (Deffuant and Huet 2006), we know that for weak frequency of diffusion (0.001 and 
less), the model tends to yield replicas in which either all final attitudes are positive, or all are negative. 

Figure 6 shows a distribution of the results where this phenomenon is beginning to appear: the highest 
proportions of replicas are either all positive or all negative attitudes. Indeed, the agents which are the first in 
contact with the media have a determinant impact on the final result, because they have time to propagate the 
feature they received to almost the whole population. The mean-field type of approximation which is implicit in 
the aggregated model does not work anymore in such conditions. An other type of aggregated model, taking into 
account the probability of different replicas is necessary in this case. 

3.4 Explaining from the aggregated model analyze the difference between isolated and interacting 
agents 

The flow-equations provide valuable information about the behaviour of the system. Consider equations (2.1) 
and (2.2). At the first time step, among the set of agents leaving group {}, one third goes to group {U}, and two 
thirds to group {u*}. If this is true at the first time step, this remains true afterwards, because we then always 
have: 

 { } { } { } { }*2
1

uU FF →→ =   which implies : { } { }( )PPU −= 1
3
1   and { } { }( )PPu −= 1

3
2

* . 

Because in the end , we finally get: { } 0=P

 { } 3
1

=UP  and { } 3
2

* =uP . 

This corresponds to the results obtained by simulations. 

In the case  0 < g < u, suppose we had the following equations: 

(1.1)’ { } { } }{ { } 





 +=→ UU PfPF

3
   instead of (1.1),   

(1.3)’ } { }{ }{ { } 





 +=→ uUuuUu PfPF

3
 instead of (1.3). 

Then, applying the same reasoning as previously implies: 

{ } { }( )PPU −= 1
3
1 , { } { }( )PPu −= 1

3
2  and { } { } { }( )uuU PPP −−= 1

3
1 . 

The additional terms  in (1.1) compared with (1.1)’, and  in (1.3) compared with (1.3)’, imply: { }uUP { }UP

{ } { }( )PPU −> 1
3
1    and { } { } { }( )uuU PPP −−> 1

3
1 . 

Because in the end  and , we get: { } 0=P { } 0=uP

 { } 3
1

>UP  and { } 3
1

>uUP . 

The additional term  in (1.1) compared to (1.1)’ expresses that group {uU} generates new members of 
group {U}, by sending feature U to members of group {}, and the additional term in (1.3) compared to 
(1.3)’ expresses that group {U} generates new members of group {uU}, by sending feature U to members of 
group {u}. These new members are generated by the interactions among agents. 

{ }uUP

{ }UP

This qualitative analysis of the equations explains that in the case 0 < g < u, the interactions between agents 
increase the propagation of the major feature into groups {} and {u} compared to the simulations of isolated 
agents, or with the case u < g < 2u. 

 



4 Discussion 

The analytical aggregated model explains why the collective effect of FIB reinforcement takes place only when 
0 < g < u. The equations show that, in this case, the communication of U by agents of group {U} to agents of 
group {u}, and by agents of group {uU} to agents of group {}, increases the growth of groups {uU} and{U}, 
compared to the case of isolated individuals. The simulations of the aggregated model show a quite good 
accuracy in predicting the agent-based model in the case of a completely connected network, and a reasonable 
one for different network topologies. From this reasoning, one can expect that the reinforcement will be higher 
for neutral objects with a single initially incongruent major feature and more minor features, because we can 
have more contributing groups ({uU}, {uuU}, {uuuU}…). We observed that below a threshold of frequency of 
media communication, the “mean-field” type approximation done for the aggregated model is not valid. Other 
approaches representing different groups of replicates should be considered to predict the final distribution of 
results. Adapting the approach to networks of different densities is also an interesting challenge. 

The model remains simplistic, because we privilege an incremental approach, in which the model properties are 
precisely studied and understood (Deffuant et al. 2003). Despite this simplicity, there is still some work to 
understand it fully, for instance in the case of objects including several major features.  

Moreover, we shall try to improve the model by relating it more closely to a set of psycho-sociology theories and 
observations. We shall particularly consider the minority influence theory (Moscovici 1979, Mugny & Pérez 
1998 ; Moscovici S., 2000), in which the assimilation of incongruent information seems without effect for a 
while, and suddenly triggers a complete change of attitude.  
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