Dynamic simulator for humanoids using constraint-based method with static friction

LIRMM - JRL CNRS JRL - AIST JRL - CNRS JRL - AIST HRG - AIST LIRMM JRL - AIST

Abstract—A dynamic simulator using constraint-based method is proposed. It is the extension of the formalism previously introduced by Ruspini and Khatib by including static and dynamic friction without friction cone discretization. The main contribution of the paper is in efficiently combining the operational space formulation of the multi-body dynamics in the contact space and solving for contact forces, including friction, using an iterative Gauss-Seidel approach. Comparing to previously presented papers in this domain, our work is illustrated with complex scenarios involving humanoid in manipulation tasks while contacting with the environment and an experiment is shown to validate our simulator. Technical details that allow an efficient implementation and problems with future orientation to improve the simulator are also discussed. This work is aiming to be a potential module of the next OpenHRP simulator generation.

Index Terms—Dynamic simulator, constraint based methods, static friction, humanoids.

I. INTRODUCTION

Many humanoid robots that we can see nowadays like Toyota’s one and Honda’s robot Asimo have been presented mainly for entertainment. However, the main aim of a humanoid is to work and provide services in all kind of environments. People may request inevitably robots to perform some manipulating tasks, some of which can be hazardous for humans. Robots could thus be very helpful. The Fig. 1 shows an example of requested task.

![Fig. 1. A collaborative task involving manipulation of various objects by humanoids.](http://www.is.aist.go.jp/humanoid/openhrp/)

But robots can not perform such tasks if they do not acquire some knowledge on the environment. Haptics is one of the modality which is important to perform physical tasks, which induces physical interaction with the environments and objects, hence involving to treat contacts. These kind of capabilities will be more and more developed in the next few years as new theories and models will be presented. Nevertheless, before testing on real platforms, simulation is needed to validate such models.

In particular, simulating the dynamics of a complex system such as humanoid robots is not simple as many unknown parameters intervene in the computation such as external forces and accelerations. Without any contact forces, accelerations can be computed quite easily if we consider as known some external parameters like torques, that can be measurable. If we include contacts, the computation of dynamics becomes more complicated as we do not know a priori reaction forces at contact points, which results in a non-linear form between contact forces and accelerations. This issue can be resolved by using a penalty method, which is widely used in actual simulators like OpenHRP\(^1\) and many others. Although simple and fast, the penalty parameters of the method are difficult to tune which compromises robustness and even stability of the simulation; static friction is also difficult to implement properly. This is the reason why one need to investigate other methods.

Recently, other methods have been proposed, among them constraint-based methods, in which non-penetration constraints are explicitly integrated to the dynamic equation. They become more and more used in simulators, even in video games [1], as accuracy of these methods highly increases since constraints are included in the dynamics. Baraff [2] introduced constraint-based methods for contact force computation in rigid bodies simulation by formulating the problem as an LCP (Linear Complementarity Problem). As dynamics give accelerations, he expressed the problem in terms of acceleration, but there might be cases with no solution for friction forces. He applied impulse forces to allow discontinuity of velocities. Formulation of the dynamics as an LCP appears to be elegant for solving contact problems since a solution is guaranteed using pivoting methods like Lemke’s algorithm. This formulation is kept even if friction is introduced, provided that friction cones need to be discretized into facets inducing additional constraints for each cone’s facet. The price to pay for this benefit is the necessity of discretizing into many facets for each friction cone to obtain a decent accuracy. This arouses robustness and computation

\(^1\)http://www.is.aist.go.jp/humanoid/openhrp/
time matters, especially in matrices’ computation. Indeed, the size of the matrices relies on the desired accuracy and as a consequence, construction of these matrices and the pivoting process become computationally costly.

Anitescu [3] and Stewart [4] proposed both a method for solving friction using an LCP formulation. Both presented an implicit method for solving contact forces with friction, through the computation of estimated joint positions. The main point using implicit time stepping scheme is that there is no need to find explicitly the times of impact. However, this benefit reaches rapidly its limit as it requires small time steps to solve the problem in an acceptable way. Anitescu included joint constraints in his formulation. Implementing these proposed algorithms in the frame of poly-articulated robotics systems, such as humanoids, interacting with complex environments is not trivial. Robustness of the proposed approaches in face of high number of contacts and bilateral constraints can not be proved and the given examples are always simple case studies. Stewart showed some applications of his method implying only single bodies and Anitescu illustrated his approach with a simple 2-link system. Miller and Christensen [5] made a grasping simulator based on Anitescu’s approach. Like Anitescu, they integrated additional constraints for joint limits and joints’ constraints reinforcement. The illustrative examples show grasping virtual objects with various grippers, the simulations are made in configurations where friction constraints are not solicited and the complexity of the algorithm is not given in terms of dof and the number of contacts.

Ruspini and Khatib [6] introduced a formalism for solving contact and impact using also LCP formulation and actually implemented it realizing an impressive simulator. The only missing feature is that they did not include friction. However, the main difference vis-a-vis other methods is that they use the operational space formulation of multi-body dynamics in the contact space, which allows a more efficient dynamics computation. We are using a similar approach as the basis of the simulator we propose.

Recently, an iterative Gauss-Seidel approach has been applied by Liu and Wang [7] to robotics. The interesting point with this method is that it allows to keep exact friction cones with a guaranteed convergence and a size of the system equal to the number of contacts thus reducing considerably computation time. Liu and Wang modeled surfaces as explicit equations so that the gradient is computed. Again, the illustrative examples do not demonstrate how the method performs in complex scenarios. In the other hand, Duriez et al. [8] also used an iterative Gauss-Seidel method to compute real-time force feedback in deformable objects. They showed interesting results such as: the iterative Gauss-Seidel approach becomes much more faster than an LCP formulation for more than 10 contact points, and it is more precise since a minimum of 8 facets are required to have 10% accuracy when compared with an LCP formulation.

Many other works dealing with contact problems illustrate examples with very simple scenarios and furthermore do not prove their validity by experiments. We think that such implementations hide actual problems of robustness, complexity, and stability that may recall into question hypotheses and proposed algorithms. In the ideal case, actual purpose implementations may require to consider additional aspects of the problem. We aim at realizing an interactive simulator for complex systems like humanoid which computes in a realistic manner, contact forces with friction while handling all related aspects of collision detection, numerical integration, etc. Our work is based on Ruspini and Khatib’s approach because of its simplicity. The central contribution of this paper is in efficiently combining operational space formulation of dynamics, extending the model of contact to friction and solving it using a Gauss-Seidel approach, as in [8], illustrating complex scenarios with contact configurations using a 30-dof humanoid, and showing the effectiveness of our proposed simulator by experiments.

This paper is organized as follow: we first describe the main algorithm for solving dynamics with contact and friction. We explain the dynamic computation without contact, then we present the impact computation without friction, and then contact forces with friction and resulting joint accelerations. Finally we present the additional dynamic computation related to the presence of contacts. In the following part, we expose the implementation of the algorithm in our simulator, explaining technical details about dynamics computation. We also discuss collision detection that we chose for our purpose. Finally, we illustrate our work with some demonstration examples of our simulator applied to the HRP-2 humanoid robot, one of them has been conducted by experiment so that we compare the results with our simulator. This paper concludes on further improvements and suggestions.

II. MAIN ALGORITHM

A. Dynamic model without contact

Robots can perform tasks if one gives it desired configurations. This can be done through an interface that we propose here as a dynamic simulator. Applying to the robot some torques, it reaches the desired configuration through the forward dynamics model usually described as follow:

$$\ddot{q} = A^{-1}(q) \left[\Gamma - b(q, \dot{q}) - g(q) \right]$$ (1)

where A is the inertia matrix of whole robot, Γ is the applied torques, b is the centrifugal and Coriolis effects and g the gravity. This model gives joint accelerations. There are several formulations for dynamics such as Newton-Euler, Lagrange, etc. For this purpose, we choose Newton-Euler formulation as it is the fastest model for the systems we want to simulate (a 30 dof humanoid robot). To compute dynamics using Newton-Euler, many algorithms have been proposed, among them one of the most known algorithm for multi-body systems like humanoids is the Featherstone’s algorithm [9], [10]. Basically, forward dynamics model is computed within three recursions:

- computation of the geometric and kinematic parameters,
- computation of the inertias in the base frame and external forces (articulated-body inertias and bias forces),
• computation of the articulation accelerations.

We describe the system as a “mother-daughter-sister” tree used for example in [11] and dynamics is then computed from the mother link recursively to the daughter and sister links. This structure allows less computation time and less memory. Dynamic characteristics of links such as mass, center of mass and inertias, are given by the VRML models of the robot, so we wrote a program that parse the needed data and builds the tree.

B. Equations for solving impact forces

Impact forces are solved in terms of velocities as the impact model assumes that velocity of collision points just after collision time should be zero to avoid penetration. Considering two bodies colliding in \(m \) points with corresponding relative velocities, the impact force to be applied must be positive and its expression is:

\[
\dot{f}_I = \Lambda_I (v^+ - v^-) \tag{2}
\]

where \(v^+ \) is the normal velocity of the contact points after collision and \(v^- \) the one before collision, \(\Lambda_I \) is the operational inertia of the contact space, i.e the mass seen at all contact points:

\[
\Lambda_I^{-1} = J_I A^{-1} J_I^T \tag{3}
\]

where \(J_I \) is the Jacobian for the contact points. Note that \(J_I \) changes when contact space changes. Another condition is the Newton’s model which links \(v^+ \) and \(v^- \) by:

\[
v^+ = -\epsilon v^- \tag{4}
\]

where \(\epsilon \in [0, 1] \) is the coefficient of restitution. Using the definition of the impact force (2) and combining these two conditions, Ruspini and Khatib show that impact forces can be computed by solving the following equations:

\[
f_I^T (\Lambda_I^{-1} f_I + B_I) = 0 \quad f_I \geq 0
\]

\[
\Lambda_I^{-1} f_I + B_I \geq 0
\]

where \(B_I = (1 + \epsilon) J_I \dot{q}^- \). Joints’ velocities are updated by:

\[
\dot{q}^+ = A^{-1} J_I^T f_I + \dot{q}^- \tag{6}
\]

The system of equations (5) can be solved using Lemke’s algorithm, from where we get impact forces \(f_I \).

C. Equations for solving contact forces

From Ruspini and Khatib’s approach, new constraints appear for solving contact problems. These constraints are written in terms of accelerations: relative accelerations should be zero at contact points and positive normal force \(f \) (reaction force) should be applied. This can be computed by solving:

\[
f^T (\Lambda_c^{-1} f + B_c) = 0 \quad f \geq 0
\]

\[
\Lambda_c^{-1} f + B_c \geq 0
\]

where \(\Lambda_c^{-1} = J_c A^{-1} J_c^T \) and \(B_c = J_c A^{-1} [\Gamma_{joint} - b - g] + J_c \dot{q} \). As for impact forces, these equations are written into an LCP form and thus can also be solved with Lemke’s algorithm.

From now, we extend Ruspini and Khatib’s approach by including friction. We will denote \(f \) as the contact force considering friction. In their formalism, only normal contact forces are computed, hence:

\[
\Lambda_c^{-1} = \Lambda_I^{-1} \tag{8}
\]

We consider Coulomb’s law as the friction model. Since friction introduces a non-linear condition (\(||f|| \leq \mu f_n \)), it can not be integrated as an additional constraint to the existing LCP (as for impact forces) unless discretization of friction cones is made [3], [4].

Moreover, equations (7) has been written in terms of accelerations. They can be solved as in [2]; but, if slipping occurs at the contact, the solution might not to be found. To avoid any problems of this kind, we formulated the problem in terms of velocity (which is the most common way) by integrating equations (7) with a simple Euler integration, that is:

\[
a_c = \Lambda_c^{-1} f + B_c \tag{9}
\]

we get

\[
\dot{v}_c^{k+1} = (\Lambda_c^{-1} T_c) f + (B_c T_c + v_c^k) \tag{10}
\]

with \(T_c \) the time step and \(k \) the step. As our goal is to provide exact contact forces, we solve this problem with an iterative Gauss-Seidel approach, combined with a Newton-Coulomb method [12].

Now, considering the equation of motion of the robot (1), we can add contact forces with \(\Gamma = \Gamma_{joint} + J_c^T f \), so that we obtain:

\[
\ddot{q} = \dot{q}_{f=0} + \ddot{q}_{f \neq 0} \tag{11}
\]

where

\[
\ddot{q}_{f=0} = A^{-1} [\Gamma_{joint} - b - g] \quad \text{and} \quad \ddot{q}_{f \neq 0} = A^{-1} J_c^T f \tag{12}
\]

\(\ddot{q}_{f=0} \) is already known as it is equation (1) computed by the three recursions of Featherstone’s algorithm, without taking into account external force (except gravity). From the third recursion, we get joint accelerations, and linear and angular accelerations by:

\[
a_{f=0} = J \ddot{q}_{f=0} + \dot{J} \ddot{q}_{f=0} \tag{13}
\]

which represent the free accelerations of the bodies.

It is worth noticing that as we solve contact problems in terms of velocities, we can update the dynamics directly in a velocity formulation which is:

\[
\dot{q} = \dot{q}_{f=0} + \dot{q}_{f \neq 0} \tag{14}
\]

where \(\dot{q}_{f=0} \) is the free velocity of the bodies given by integrating \(\ddot{q}_{f=0} \) and

\[
\dot{q}_{f \neq 0} = A^{-1} J_c^T T_c f + \dot{q}^k \tag{15}
\]

with \(\dot{q}^k \) the joint velocities at one time step before. This way allows integrating just once to get joint positions.
D. Dynamic model with contact

As we do not know when a collision occurs or whether there is contact or not, we must check the contact state. On the contrary of Antisescu’s and Stewart’s approaches, we must find the collision time when a new contact is met, then apply an impulse force at this time and update the joint velocities of the system. Contact forces are solved if any contact is present. Before solving equations (5) and (7), we have several parameters to find, which are \(\Lambda^{-1} \) and relative velocities and accelerations of contact points. From equation (13), we get \(B_c \) by making a projection to the contact space with respect to the three directions (normal and tangential).

To compute \(\Lambda^{-1} \), we need \(A^{-1} J_c^T \). Let consider that there is no gravity \((g = 0) \), no torques \((\Gamma = 0) \), no joint velocities \((\dot{q} = 0) \). The free joint acceleration \(\ddot{q}_{f=0} \) becomes then zero, so that in equation (11) only the term \(A^{-1} J_c^T f \) remains. We compute again the second and the third recursion of Featherstone’s algorithm for each contact points, putting \(f \) to unit forces with respect to the normal and tangential directions in the contact space as external forces. We obtain from the third recursion unit joint accelerations:

\[
\ddot{q}_{f=1} = A^{-1} J_c^T \tag{16}
\]

and linear accelerations without forgetting the \(\dot{q} = 0 \) condition:

\[
a_{f=1} = J_c \ddot{q}_{f=1} = J_c A^{-1} J_c^T \tag{17}
\]

We obtain \(\Lambda^{-1} \). For \(\Gamma^{-1} \), as we do not consider friction for impact, we make a projection of \(\Lambda^{-1} \) to the normal direction.

\(B_f \) is obtained by integrating relative accelerations of collision (contact) points obtained from \(\ddot{q}_{f=0} \) and multiplying it by \((1 + \epsilon) \).

In the case one wants to use LCP formulation to solve contact forces, slight modifications have to be made which are the computation of unit joint accelerations with respect to the directions of the discretized friction cones, that means as many directions as facets.

Regarding algorithm complexity, Chang and Khatib [13] proposed a \(O(nm + m^2) \) algorithm for computing \(\Lambda^{-1} \) through the computation of \(\Lambda^{-2} \), with \(n \) the number of links and \(m \) the number of contacts. Actually, their algorithm for computing \(\Lambda^{-1} \) is in the worst case (which means all bodies in contact) \(O(nm + m^2) \) because they manage to avoid unnecessary computation processes, for example they update the dynamics of only bodies in contact, whereas with our method, we update the dynamics of whole system. Our method is in the best case as efficient as Chang and Khatib’s (\(O(nm + m^2) \)), but is easier to implement. In the future, we plan to thoroughly investigate this issue. The general algorithm is presented in Fig. 2.

Algorithm 1: Resolution of contact forces with friction

Data: \(\ddot{q}_{f=0} \) (or \(\ddot{q}_{f=0} = 0 \)), \(\Lambda^{-1} \), \(v_{ei} \), \(B_c \)

Result: \(f \)

begin

for each contact \(i \leftarrow 1 \) to \(m \) do

\[v_{ei}^{relative} \leftarrow B_c T_c + v_{ei} \]

while (\!\!convergence\!\!) do

for each contact \(i \leftarrow 1 \) to \(m \) do

\[v_{ei} \leftarrow GaussSeidelFormula() \]

if \(t_{normal} = 0 \) then

check \(||f_{ei}|| < \mu f_{ei} \)

\[f_i \leftarrow NewtonContact() \]

for each body \(i \leftarrow 1 \) to \(n \) do

\[\ddot{q}_i \leftarrow \ddot{q}_{f=0} + A^{-1} J_c^T f_i \]

\[\ddot{q}_i \leftarrow \ddot{q}_{f=0} + A^{-1} J_c^T T_c f_i + \ddot{q}_i \]

end

end

III. IMPLEMENTATION

In problems of contact with friction, collision detection is an important issue to avoid bodies penetrating each other. Various collision detection libraries have been proposed and for our purpose, we chose PQP\(^2\). Given the geometry of the bodies, we can either request the pairs of colliding triangles of two bodies, and the minimal distance between these two bodies. The main interesting point with this library lies in

\(^2\)http://www.cs.unc.edu/ geom/SSV/
the proximity query feature as it allows preventing bodies to penetrate each other by setting all points located in a bounded area around each body as contact points, whereas requesting the pairs of colliding triangles implies the bodies to overlap and meanwhile the computation of contact points with an appropriate algorithm such as Möller’s one [14]. It is worth noticing that the last method may result in redundant contact points implying to remove them, thus slowing down the simulation. Detecting overlapping bodies is a common feature of PQP and previously implemented Pierre Terdiman’s library, OPCODE\(^1\), which does not integrate proximity query feature. We made a comparison between these two libraries on simple objects using overlapping tests and we saw that using PQP resulted in more acceptable contact points than OPCODE, without any difference of computation time.

Dealing with impact matters, since dynamic simulation is computed in discrete domain and with a constant time step, our method requires contact states to be considered at two successive times \(t_0\) and \(t_0 + \text{step}\). As a matter of fact, collision may occur between these two times, at a time \(t_i\) that has to be determined, and so the impact force has to be applied at this time on the collision points. Since the exact trajectory of the body is unknown, the impact time may be found using an interpolation between the two positions of the body. For sufficient small time step (0.001sec) one may take the time \(t_0\) as the time of impact. In the case of real-time computation, time step may become large and thus determination of impact time becomes necessary as numerical errors may highly increase. Regarding integration methods, a fourth-order Runge-Kutta method is used.

IV. ILLUSTRATIVE EXAMPLES

To illustrate our work, two demonstration examples have been simulated and another has been conducted also by experiment. All the simulations have been performed using a bi-AMDTM 2.5Ghz processor, with a time step of 0.001sec.

We took the HRP-2 humanoid robot (30 dof) as character for our simulations and experiment.

A. Simulations

The first example consists in grasping an object on a table by reaching it. For this purpose, the robot bends forward with its chest and uses one of its hand as a support on the table so that it can reach the object without falling. We make the robot bend sufficiently so that the position of its CoM becomes outside the support area formed by the edges of its feet, involving then leaning forward. The coefficient of friction has been set to 0.4 between each object of the scene. As the snapshots in Fig. 3 show, when the robot bends forward, the hind parts of the feet start getting off the platform and slipping on it. The table retains the robot falling as the legs of the robot collide the table. The distance between the robot and the table is sufficiently small so that even if only the fore part of the feet are in contact, the feet can not slide anymore.

By using its left hand as a support on the table, the robot does not rely only on its legs for its global stability and does not tip out to the side.

The second example is a quite similar task as depicted in Fig. 1. We ask the robot to push a cart on which we put a 3kg box. The cart is pushed for some distance, then the robot lifts it up intentionally and release it so that the box falls down. In this scenario which of course may not occur for real on the robot’s will, we show that our simulator can handle dynamics computation of many objects in the environment besides the robot, toward a highly multi-contact resolution. Snapshots of the simulation are shown in Fig. 4. Note that the robot does not grasp the handle of the cart as it will be rapidly released. The box bounces a bit as the cart moves. As in the previous example, friction cones and contact forces have been illustrated.

Besides these two examples, we performed several tests involving big number of contacts (more than 50) and we made a comparison between the Gauss-Seidel approach and the LCP formulation in terms of size of matrices. In the first example, there are at most 19 contact points. Using our algorithm, we get for \(\Lambda^{-1}\) a square matrix of dimension 57, whereas if we used algorithms with LCP formulation, like for example Miller, with 8-sided friction cones and without taking into account joint constraints, we would get for a square matrix of dimension at least 378. In some simulations, we had 67 contact points which means matrices of dimension 201 with Gauss-Seidel approach and at least 1254 with LCP formulation. We can clearly see the difference in efficiency of algorithms.

In Fig. 5, we show the average CPU time obtained for our simulator from several tests involving many contact points. We can observe that the computation time grows roughly in \(m^2\), with \(m\) the number of contact, which corresponds to what we said in section II.D.

B. Experiment

In order to validate both simulations, we decided to make experiments on the real platform and compare what we get

\(^1\)http://www.codercorner.com/Opcode.htm
with the simulations. However, due to technical limitations on the real robot and for safety reasons, we could not manage to make such experiments. Nevertheless, we took an example for which we could conduct an experiment considering safety aspects. In this experiment we ask the robot to lean forward and make an object fall on a table by pushing it. As in the first example, the robot extends its arms to make it lose stability. Because the robot collides soon the table, its feet do not slide. Fig. 6 shows the comparison between the simulation and the experiment. As the snapshots show, in simulation, the robot and the object move in a similar way as in the experiment, especially the object slides while falling, the robot’s legs and feet collide the table and the platform respectively without apparent rebound. We measured the sliding distance of the object on both simulation and experiment, and we found a difference of about 2mm after sliding, which means the simulation matches well the experiment and thus our simulator can handle contact problems with friction in a realistic manner, assuming that there may be small visual errors in measurements and we did not take exactly the same parameters like coefficient of friction and model of the object. We are planning to perform exact measurements of position and forces at hand, legs and feet and compute precisely the gap between simulation and experiment. If we take exactly the same parameters and we improve dynamics computation, we expect that the gap between simulation and experiment will nearly disappear.

V. CONCLUSION

This paper presented a new dynamics simulator for humanoid robots with contact and friction and solving them by using operational space and constraint-based method. We showed that we can consider friction without cone discretization which results in an efficient algorithm. We also showed the effectiveness of our proposed algorithm by experiment.

We should have a closer look to the computation time to allow haptic interaction. We plan to improve the impact model by first computing the precise impact time so that we can take bigger time steps and aim to a real-time computation (based on the computer clock) to have interactivity, and second including friction. We should also optimize the code for dynamics computation and test other integration methods. We will devise a dedicated module for torque control.

This simulator should be integrated in the next generation of OpenHRP simulator.

REFERENCES

(a) General overview.

(b) The robot’s hand collides the object making it fall and slide.

(c) The robot’s legs collide the table without rebounding.

(d) The hind part of the feet heels up as the robot leans forward but the feet do not slide.

Fig. 6. HRP-2 leaning forward and pushing an object (top is simulation and bottom is experiment).

