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Abstract

While the application of Benford’s Law (BL) to detect election fraud has
gained popularity in recent time, concerns about its validity have also been
expressed. It is known that the application of the BL-test to first digits is pro-
blematic. Concentration of precincts votes in a certain range can boost the BL
statistic. Some argue that the use of second digits instead of first digits would
solve this problem. This is, however, no solution since concentrated precincts
votes appear in certain circumstances which can affect the distribution of even
second digits. In this paper, we apply 2BL and an alternative distribution sys-
tematically to different institutional settings. More specifically, we investigate
the latest parliamentary and presidential elections of France (both 2012), with
no suspicion of fraud, and Russia (2011 and 2012), with strong suspicion of
fraud. Finally, we replicate another detection method for the purpose of cross
validation and compute simple fraud scenarios to assess the performance and
mechanisms of 2BL. We can identify a circumstance when 2BL gives mislea-
ding signals and have to conclude that 2BL is inappropriate for fraud detection.
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†Department of Politics and Public Administration, University of Konstanz
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1 Introduction

Assessing the legitimacy of elections is what all studies have in common which in-
vestigate election frauds, however, approaches of such investigation differ strongly.
In this field, digit based methods have gained popularity in recent time. This is
mostly due to their simple application, straight forward interpretation and the mi-
nimally required information (vote counts of elections). Most famous is the second
digit Benford’s Law test (2BL) which is according to Pericchi and Torres (2011, 15)
“becoming a standard tool on what has been termed by Mebane as “Election Fo-
rensics” ”. While 2BL has been increasingly utilized , concerns about its validity and
usefulness have been increasingly raised as well (Mebane, 2010; Deckert, Myagkov
and Ordeshook, 2011; Mebane, 2011; Shikano and Mack, 2011; Mebane, 2012).

Previous findings suggested that vote count distribution do not necessarily fit the
assumptions to produce 2BL like digit distributions (compare Shikano and Mack,
2011). In line with these finding, we validate the performance of the 2BL test in diffe-
rent institutional settings. More specifically, we investigate the latest parliamentary
and presidential elections of France (both 2012), with no suspicion of fraud, and
Russia (2011 and 2012), with strong suspicion of fraud. This setting also follow
up suggestions and argumentation of Deckert, Myagkov and Ordeshook (2011) and
Mebanes replay (compare Mebane, 2011). According to Deckert, Myagkov and Or-
deshook (2011), assessment of the value of BL requires its application to elections in
which we have a priori knowledge whether significant fraud occurred or not. While
they investigate actual fraudulent election, they only investigate simulated data as
fraud free election. However, as (Mebane, 2011, 270) argues: “there is no reason to
believe that the simulated data resemble the data from any actual election” . Fur-
ther, we replicate another detection method concerning election fraud in Russia for
cross validation of the BL method. We will show that neither deviation from the
native nor deviation from the simulation based alternative distribution correspond
in a satisfying way with obvious fraud indication. By focusing on specific deviating
digits and the corresponding vote count distribution we will show violations of the
BL assumption which have been neglected by most scholars. This aspect is missed
by Deckert, Myagkov and Ordeshook (2011) and Mebane who investigate only the
mean of digit distributions for reasons of simplicity. Instead, we keep focusing on
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digit distributions and get results which are in line with our previous findings in
respect to the position and homogeneity of the vote count distribution.1

The paper is structured as following: The next section will shortly summarize
the idea of digit based test and the main criticism which has been raised. The
third section will introduce the data from France and Russia and its fit to the 2BL
distribution. Subsequently we will conduct cross validations with another detection
method and simple fraud scenarios to assess the performance and mechanism of 2BL.
We will summarize and discuss the paper in the last section and suggest possible
further research topics.

2 Controversy over Benford’s Law based methods

Benford’s Law has been found in the empirical observation that leading digits of
numerical data are often not uniformly distributed (Newcomb, 1881; Benford, 1938).
The formal proof by Hill (1995, 360) stats “if probability distributions are selected at
random and random samples are then taken from each of these distributions in any
way so that the overall process is scale (or base) neutral, then the significant-digit
frequencies of the combined sample will converge to the logarithmic distribution”. If
digits of vote counts in normal or more specific fraud free election follow a Benford
like distribution, deviation of such a distribution could indicate election fraud since
the digit generating random process is interrupted by a certain artificial non-random
process. If digit deviation could detect election fraud, we would have a powerful tool
to assess the legitimacy of an election since we only need vote counts. This idea has
gained a lot of popularity within and outside of science as many scholars could show
that digits in vote count indeed seem to follow a Benford like distribution. More
specifically, most scholars analyzed the distribution of not the first, but the second
digit in vote counts. This is because of an inherent characteristic of many electoral
systems that the more or less constant precinct size produces a certain frequent digit
in the first digit of vote counts in the absence of election fraud (compare Brady, 2005;
Mebane, 2006). Mebane (2011, 269) further argues that “[i]f this is true, however,
then Benford’s Law simply does not apply to vote counts at all” which means that

1Mebane only started to investigate the mean of digit distributions in his latest work (Mebane,
2007b, 2010, 2012), however this is when doubts about the 2BL test have been raised.
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even if the second digit of vote counts has a similar probability distribution as 2BL
it can only follow a Benford-like distribution. The test statistic he suggested and
mostly applied by other scholars is based on the Pearson’s χ2 statistic:

χ2
2BL =

9∑
i=0

(di − dqi)2

dqi
, (1)

where qi denotes the expected relative frequency of i at the second digit, di is
the empirical frequency of second digit i in a constituency and d is sum of precincts
in the constituency.2 This statistic is assumed to be distributed according to a χ2

distribution with 9 degrees of freedom. Therefore, we can evaluate significance of
deviation of empirical data from the Benford Law using a critical value of 16.9 at a
significance level of 5%.

There are a series of application of 2BL(-like) to US-presidential election (Me-
bane, 2006, 2007a, 2008a), elections of Mexico, Indonesia, Russia, Iran, Germany,
Ukraine, Puerto Rico and Venezuela (Mebane, 2007a; Mebane and Kalinin, 2009;
Mebane, 2010; Shikano and Mack, 2011; Deckert, Myagkov and Ordeshook, 2011;
Pericchi and Torres, 2011).3 Further applications use variations in the investigated
digit: Roukema (2009) investigated the first digit at elections in Iran, Beber and
Scacco (2012) analyzed the last and next to last digit of election results in Sweden,
Senegal and Nigeria. Weidmann and Callen (2012) also applied the last and next to
last digit method to Afghanistan election. The mean of first digit is used to investi-
gate the Argentinean election by Cantú and Saiegh (2011) . However, they combine
this digit test with a calibration method based on simulation and they further im-
plement a training set for fraud free and fraudulent distributions. Such a variety of
different applications makes the deeper understanding of digit based tests beyond
its simple technical use crucial.

Recently, scholars started a strong dispute whether Benford’s Law is a valid and
adequate tool to detect election fraud. Deckert, Myagkov and Ordeshook (2011,
260) conclude that it’s not a “universally applicable magic box into which we plug
election statistics and out of which comes and assessment of an election’s legitimacy”.

2This formula and more specific information can be found in Mebane (2008b, 179) and Shikano
and Mack (2011).

3Some countries have been studied by different scholars and with slightly different approaches
which we did not specifically repeat here.
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In their study they first simulated fraud free and fraudulent election data and give
the Type 1 and Type 2 errors for the mean digit deviation. Subsequently they
apply 2BL to Ukraine and Russian elections for which they have prior knowledge
of fraud. For both, simulated and empirical data the law seems to perform poorly
for detecting election fraud. While Mebane (2011) agrees with Deckert, Myagkov
and Ordeshook (2011) that the mean of second digit is significantly different from
what we would expect under Benford’s Law he also points out inconsistence in their
argument and analysis as the inadequate simulation which does not necessary reflect
any real election. Both scholars only consider deviation from the mean second digit
which neglects important information, the deviation in digit pattern. In this regard,
Beber and Scacco (2012) and earlier work from Mebane (2006) attributed inflating
frequency of specific digits to human incapability to produce real random numbers.4

In contrast to such psychological interpretation we find a more simple and highly
relevant feature in terms of BL. Inflated frequency of specific digits can give informa-
tion about a specific range in which the vote count distribution has a high density.
We have to remind us of the underlying assumption for vote counts behind Ben-
ford’s Law. As Fewster (2009) pointed out, “[D]ata from any distribution will tend
to be ‘Benford’, as long as the distribution spans several integers on the log10 scale -
several orders of magnitude on the original scale - and as long as the distribution is
reasonably smooth”. This issue has only been addressed in Shikano and Mack (2011)
where we can identify a boosted 2BL statistic within a specific range of vote counts
and in combination with a certain homogeneity of the vote count distribution. As
we are, a priori, quite certain that German parliamentary election data from 2009
are not fraudulent this finding can be attributed to the violation of the assumption
to produce 2BL like digits. To make the 2BL test statistic independent from Ben-
ford’s Law and capable to handle such vote count characteristic, Shikano and Mack
(2011) suggest an alternative distribution based on simulated vote counts. The me-
thod extended an earlier approach by Mebane (2007b) by relying on the model for
multi-party elections by Katz and King (1999) (For more detailed description see
Shikano and Mack, 2011).

In the next section, we will follow up these findings by applying 2BL to different
4This implies a fraud mechanism where people specifically replace vote counts, voters or even

eligible voters by numbers fitting better their preferred electoral outcome. This should reflect only
one of many possible ways to fraud elections.
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institutional settings, fraud free and fraudulent real election data. Subsequently, we
conduct cross validation with further methods to find what is most decisive for digit
deviation and the detection of election fraud.

3 Application to election from France and Russia

3.1 Data

We investigate election data from France and Russia for multiple reasons. First,
we needed a set of election data which is a priori known for being fraud free and
another for which we have further proof of fraud. Second, we still do not fully know
whether the institutional setting may have some effect on digit distributions. Third,
it is known that homogeneity in the vote count distribution and its limited range
caused strong deviation from the expected digit distribution in German parliamen-
tary election. Thus, election data with more variation in respect to unit size and
heterogeneous vote count distribution should give more 2BL like digits distribution.

In France, there have not been any accusation of electoral fraud or anomalies
in the recent elections in 2012 nor for quite some time (compare Klimek et al.,
2012). Further, French political system enables investigation of election data within
different institutional settings, the presidential and parliamentary election, when
everything else is equal. Last but not least, electoral units vary stronger in size than
in Germany which should increase the fit of second significant digit in vote counts
with the distribution expected by 2BL. Table 1 gives some information about the
main quantities of the data.5 However, we have to point out one potential drawback
of the French election data. The data is aggregated at municipality levels; however,
this is the smallest available aggregation level we could get in France. Therefore,
vote counts of smaller municipalities will be provided at the precinct level while big
municipalities which contain different precincts only give the aggregation of their
data. As aggregated data in some communities have higher vote counts, this should
contribute to the fit of the second significant digit distribution with 2BL.6

5What we present here as mean turnout is higher than the turnout given by official election
statistics. This is because we compute turnout for each municipality which gives a not weighted
average across municipalities. This equally applies to turnout of the Russian election in Table 1 .

6Data from France are available here: http://www.interieur.gouv.fr/Elections.
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Table 1: Election from France 2012 and Russia 2011, 2012
mean mean mean range mean

Election N obs. N units unit size el. voter voters voters turnout

Fr Parl. 2012 36930 104 355 1247 714 4 - 48949 57%
Fr Pres. 2012 36785 103 357 1216 968 4 - 378905 84%
Ru Parl. 2011 95055 84 1132 1147 689 0 - 22671 66%
Ru Pres. 2012 95566 84 1138 1152 752 0 - 19711 70%

Russian elections do not appear to be controversial over the fact that there have
been strong indications of fraud since 2003 (see Shakin, 2009; Mebane and Kali-
nin, 2009; Deckert, Myagkov and Ordeshook, 2011; Kalinin and Walter R. Mebane,
2011; Kobak, Shpilkin and Pshenichnikov, 2012; Klimek et al., 2012). Scholars sho-
wed that ballot box stuffing changes the shape of turnout distribution and gives high
correlation between vote share and turnout (Shakin, 2009; Kobak, Shpilkin and Ps-
henichnikov, 2012; Klimek et al., 2012). In respect to the institutional setting Russia
matches with data from France since we can assess presidential and parliamentary
election. Further, electoral units are characterized by strong variation across units
which should also imply less violation of the 2BL assumption. Table 1 shows that
France and Russia mean eligible voters and mean voters are comparable while the
mean size of units is way higher than the mean size in France.7

3.2 Summary of 2BL statistics in France and Russia

This part presents the naive and rescaled 2BL statistic from the four different elec-
tions in France and Russia. With the naive application we refer to the simple χ2 test
statistic which was presented in section 2. The rescaled 2BL statistic is based on
the alternative distribution we obtain by simulating 1000 different sets of election
results. For each set of simulated election results we compute the 2BL statistic and
its 95% quantile (χ2

sim95%) is the alternative critical value to 16.9 based on the chi2

distribution. To make it more comparable with the naive 2BL statistic, we rescale
the empirical 2BL using the following formula:

7Russian election data from 2011 and 2012 were made available by Klimek et al. (2012) at
http://www.complex-systems.meduniwien.ac.at/elections/election.html.
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χ2
rescaled =

χ2
2BL · 16.9
χ2
sim95%

(2)

This rescaled 2BL statistic can be compared with the critical value of 16.9 just
like the naive 2BL statistic while the former is independent from the χ2 distribution
(see Shikano and Mack, 2011).8

Table 2 presents the summary results for the naive and rescaled 2BL as percen-
tage of statistics exceeding the critical value of 16.9. Emphasized values above 5%
signal that digit deviation is not by chance and therefore indicate election fraud or
anomalies (according to the original idea of the method). We give summary statistics
for each election and candidate/party except for the parliamentary election in Fran-
ce 2012. The French parliamentary election does not allow us an analogous analysis
to the other elections since each constituency is contested by multiple candidates
from different or/and the same parties which varies across constituencies. Therefore,
we compute the 2BL statistic for each candidate with a vote share more than 5%
for each constituency and assess the percentage of statistics exceeding the critical
value across all candidates. The percentage of deviation statistics is less than 5%
which makes the comparison with the alternative distribution obsolete. While the
three major candidates of the presidential election in France showed unproblematic
percentage of significantly deviating 2BL statistic, the two least relevant candidates
show the corresponding percentage higher than 5%. Comparing the statistics with
the alternative distribution does not change this fact. On the one hand, this indicates
that use of the alternative distribution does not solve the problem of misfit possibly
caused by other factors than fraud. On the other hand, it is interesting to note that
deviations from 2BL seem to increase with decreasing vote share (Candidates are
sorted by their vote share in the table).

In contrast to the French elections, Russian election results indicate higher per-
centage of significant deviation of the naive 2BL statistic. Here, the most suspect Pu-
tin/United Russia do not have the highest percentage among the candidates/parties.
This fact does not change much even if we use the alternative distribution (see res-

8If unites contained less than 10 observations (vote counts) we had to exclude them as this
number is too small to compute the 2BL statistic. This is the case for three units in French
parliamentary election and four in presidential election. In the case of Russia, we only had to
exclude one unite from the presidential election 2012.
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Table 2: Summary of 2BL statistics
naive 2BL rescaled 2BL mean 2BL

France
Parl. 2012 all candidates 3.9% - 8.91
Pres. 2012 Hollande 1.0% 1.0% 8.39

Sarkozy 1.9% 1.9% 8.20
Melenchon 4.9% 3.9% 8.49
Le Pen 7.8% 6.8% 8.96
Bayrou 9.7% 7.8% 9.45

Russia
Parl. 2011 United Russia 17.9% 8.3% 11.40

Communist Party 9.6% 4.8% 9.98
Ajust Russia 14.3% 10.7% 11.38
LDP 16.9% 13.6% 13.62

Pres. 2012 Putin 19.0% 6.0% 12.69
Zyuganov 15.5% 8.4% 10.89
Prokhorov 31.0% 21.7% 14.47
Zhirinovsky 44.0% 31.1% 20.53

caled 2BL). Interestingly we can find also in the presidential election that the can-
didates with lower vote share have higher percentage of deviation. The last column
in Table 2 displays the mean 2BL statistic for each candidate/party. If 2BL statistic
follows the χ2 distribution we should observe values around 9. This is more or less
true for French but not Russian elections. Even if we expected higher 2BL statistics
for Russia, the statistic is generally high for all parties/candidates. Especially, very
high 2BL statistics of the smallest parties are not in line with our prior knowledge
where fraud is mainly suspected at Putin/United Russia.

4 Validation 2BL by using another detection me-

thod

The results presented above provide no clear picture whether the 2BL test can de-
tect election fraud or not. To answer this question, we combine 2BL findings with
other methods which could give strong indication that both Russian parliament
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Russian presidential election 2012
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French presidential election 2012
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Figure 1: Both upper graphics display a scatter plot of the turnout rate and vote
share and the intensity of the black colour gives the density of data points. The
lower graphics display the turnout distributions for France and Russia.
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and presidential election are fraudulent. In particular, we will focus on the method
employed by Klimek et al. (2012) who assessed the latest Russian election. Accordin-
gly, fraud should be indicated in a peculiar shaped and bimodal turnout distribution
and/or extremely high turnout in combination with extremely high vote share for
the winning party (Putin/United Russia). In Figure 1(a) and Figure 1(b) we display
both measures for France presidential election 2012 and Russian presidential electi-
on 2012.9 As expected, figures for France (Figure 1(b)) indicate no election fraud,
which should serve as a good benchmark for Figure 1(a). Here, we can observe two
remarkable results: First the turnout rate has a bimodal distribution where a mo-
de is at 100%. Second, the scatterplot of the turnout rate and vote share for Putin
shows a concentration of units in the upper right corner. That is, there is a very high
correlation between turnout and the vote share for Putin. Both facts, especially the
second fact, seem to support the suspect of fraud at Putin. In the following analysis
we focus more on the second fact by using the correlation between the turnout rate
and vote share, which we will call “Klimek measure”.

We compute the Klimek measure for each unit and candidate of our empirical
and our simulated data. Since we computed the 2BL statistics at the same aggregate
level, we can directly compare both measures in the different ways.10

First, we simply tested the possibility of any linear relationship between the 2BL
statistic and Klimek measure. The result is negative. There is no linear relationship
for any candidate.

If we further consider not only high vote share for Putin but also the Klimek
measure we get the same insignificant results indicating that there is no relationship
between obvious indications of fraud and the 2BL statistics. These findings are best
summarized by Figure 2 for Russia presidential election and Figure 3 for French pre-

9Results from parliamentary election for both countries are very similar. They are available
from the authors upon request.

10Beside the Klimek measure we check further: First, if the log number of problematic observa-
tions (more than 95% votes for Putin) in each unit correlates with the 2BL statistic, which is not
the case. Second, divide the data into four quantiles according to their vote share which should
give high concentration of likely fraudulent vote counts within the quantile with the largest vote
share. This should boost the 2BL statistic and decrease across quantiles. No such pattern is re-
flected in the computed 2BL statistic. Third, if the suggested alternative distribution accounts for
characteristics of the vote count distribution, we should be able to exclude such cases and identify
relations between the rescaled 2BL statistic and the number of problematic vote counts, which we
don’t find.
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Figure 2: The red dots mark the bivariate relationship between the Klimek measure
and the 2BL statistic for empirical observation. The grey shade displays the relati-
onship between both based on the simulated data and the intensity of data points
(darker colours show higher density). The black line displays the 95%-quantile of the
2BL statistic for every 2%-quantile of the Klimek measure of the simulated data.
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Figure 3: The red dots mark the bivariate relationship between the Klimek measure
and the 2BL statistic for empirical observation. The grey shade displays the relati-
onship between both based on the simulated data and the intensity of data points
(darker colours show higher density). The black line displays the 95%-quantile of the
2BL statistic for every 2%-quantile of the Klimek measure of the simulated data.
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sidential election. The red dots mark the bivariate relationship between the Klimek
measure and the 2BL statistic for empirical observation. The grey shade displays
the relationship between both based on the simulated data and the intensity of data
points (darker colours show higher density). The black line displays the 95%-quantile
of the 2BL statistic for every 2%-quantile of the Klimek measure of the simulated
data. The Figures show no relationship between the Klimek measure and the 2BL
statistic for any candidate, neither in France nor in Russia. Outstanding is the ex-
ploded 2BL statistic for the moderate value of around .55 for the Klimek measure of
the simulated data. Those data points come from the unit 58 (the Moscow region).
If we assess the second significant digits of the simulated vote counts we find strong
deviations for digits 1, 2, 3, and slightly less strong deviations for digits 0, 4 and 5
as we would expect according to 2BL. If we focus on the vote count distribution we
find high density for vote counts between 1000 and 1500. In this range only every
additional 100 votes changes the second digit. If the distribution is concentrated in
such a critical range of numbers the assumption of vote count distribution for the
Benford’s Law is violated. This supports our previous findings of Shikano and Mack
(2011) which emphasizes the importance of the dispersion and central tendency of
the vote count distribution for the 2BL statistics.

Last but not least we test the 2BL statistic by using three hypothetical fraud
mechanisms which are plausible in respect to the Russian election. The first assumes
that falsifier know the number of voters and pretend that all of the votes have been
cased for Putin/ Hollonde. The second mechanism assumes that all eligible voters
cast votes for Putin and the third assumes that falsifier get the order that the vote
share for Putin should be between 90% and 100%. Table 3 gives the corresponding
2BL statistic for election data in unit one for Russia and France. The first row of the
Table gives the 2BL statistic for Putin and Hollonde in unit one of the Russian and
French presidential elections 2012. The second row lists the computed 2BL statistic
for all voters of unit one in Russia and France according to the first mechanism.
This is adequately applied to all eligible voters as suggested in mechanism two.
To generate votes for Putin/ Hollande according to the third mechanism, we use
random draws from a uniform distribution between 90% and 100%. Afterwards, the
random draws are multiplied by voters of unit one for both elections and the 2BL
statistics is computed. The 2BL statistic for scenario 1 and 3 with Russian data is
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Figure 4: The Figure to the left shows a histogram which gives second digits of vote
counts and the black line the expected frequency of digits according to 2BL. The
Figure to the right shows the density distribution of votes for Putin in unit 58. The
vertical line marks the numbers 1000 - 1500.

boosted but the same mechanism does not trigger significant boost in the French
data. Therefore 2BL seems not capable to detect the presented fraud mechanism.

Table 3: Possible fraud mechanisms

2BL Russia 2BL France

Putin/Hollande 10.62 10.28
scenario 1 23.5 13.44
scenario 2 6.79 8.42
scenario 3 24.86 15.01

5 Discussion

To give an answer to the controversy over the validity of 2BL test, this paper in-
vestigated presidential and parliamentary elections in countries with and without
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certain suspects of fraud. In particular, we applied 2BL test to elections in France
and Russia and validated it with another detection method suggested by Klimek
et al. (2012). According to our findings, 2BL test results are neither consistent with
our a priori suspects of fraud nor with the results of the other method. Here, some
might contest the validity of a priori suspects and/or that of the detection method
of Klimek et al. (2012). Concerning the validity of a priori suspects, we can never
certainly know where fraud occured e.g. in election results of Le Pen at the French
presidential election. However, we have at least some reasons to trust the validity
of the results based on the Klimek measure more than that of 2BL statistic. The
Klimek measure has a very simple, but comprehensible model of the fraud generati-
on process: the faker of election results replace all eligible ballots by ballots for his
candidate, independently from how many ballots were actually casted. From this
model, we can expect co-existence of an abnormally high turnout rate and a certain
candidate’s extremely high vote share if election is fraudulent. In contrast, 2BL sta-
tistic is missing such a model of the fraud generation process. Together with the fact
that the Klimek measure gives more consistent test results with a priori suspects we
would conclude that 2BL is inappropriate for fraud detection.

At the end, our conclusion that 2BL test is inappropriate for detection of election
frauds is the same as those of further studies (e.g. Deckert, Myagkov and Ordeshook,
2011). However, this paper contributed to the existing controversy at least in the
following two points: First, we systematically compared the test results based on
2BL and another method by applying it to two different political systems with
and without certain suspect of fraud. Deckert, Myagkov and Ordeshook (2011),
for example, analyzed the actual election results of Russia with certain suspects,
while they only investigate a non-empirical data set as election results without such
suspects. Second, we also identified the circumstance when 2BL gives misleading
signals: violation of distributional assumption of the underlying vote counts. This
aspect has been raised by Shikano and Mack (2011) who, however, investigated
the election results of one specific political system. In contrast, we showed that
violation of the distributional assumption can also boost the 2BL statistic under
diverse political institutions.
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