
Dynamic Algorithms for Graph Spanners

Surender Baswana

Max-Planck Institute for Computer Science,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany.

Email : sbaswana@mpi-sb.mpg.de

Abstract. Let G = (V, E) be an undirected weighted graph on |V | = n

vertices and |E| = m edges. For the graph G, A spanner with stretch
t ∈ N is a subgraph (V, ES), ES ⊆ E, such that the distance between any
pair of vertices in this subgraph is at most t times the distance between
them in the graph G. We present simple and efficient dynamic algorithms
for maintaining spanners with essentially optimal (expected) size versus
stretch trade-off for any given unweighted graph. The main result is a
decremental algorithm that takes expected O(polylog n) time per edge
deletion for maintaining a spanner with arbitrary stretch. This algorithm
easily leads to a fully dynamic algorithm with sublinear (in n) time per
edge insertion or deletion. Quite interestingly, this paper also reports
that for stretch at most 6, it is possible to maintain a spanner fully dy-
namically with expected constant time per update. All these algorithms
use simple randomization techniques on the top of an existing static al-
gorithm [6] for computing spanners, and achieve drastic improvement
over the previous best deterministic dynamic algorithms for spanners.

1 Introduction

A spanner is a (sparse) subgraph of a given graph that preserves approximate
distance between each pair of vertices. More precisely, a t-spanner of a graph
G = (V, E), for any t ≥ 1 is a subgraph (V, ES), ES ⊆ E such that, for any
pair of vertices, their distance in the subgraph is at most t times their distance
in the original graph. The parameter t is called the stretch factor associated
with the t-spanner. The concept of spanners was defined formally by Peleg and
Schäffer [15] though the associated notion was used implicitly by Awerbuch [3]
in the context of network synchronizers. Since then, spanner has found numerous
applications in the area of distributed systems, communication networks and all
pairs approximate shortest paths [3, 7, 16, 17].

Each application of spanners requires, for a specified t ∈ N, a t-spanner of
smallest possible size (the number of edges). Based on the famous girth con-
jecture by Erdős [11], Bollobás [8], and Bondy and Simonovits [9], it follows
that for any k ∈ N, there are graphs on n vertices whose (2k − 1)-spanner or
a 2k-spanner will require Ω(n1+1/k) edges. (The conjecture has been proved for
k = 1, 2, 3 and 5). Note that the conjectured lower bound is the same for stretch
2k and (2k − 1), and by definition, a (2k − 1)-spanner is also a 2k-spanner,

Therefore, from perspective of an algorithmist, the aim would be to design a
static (or dynamic) algorithm to compute (or maintain) a (2k − 1)-spanner of
(n1+1/k) size for a given graph. For unweighted graphs, Halperin and Zwick [13]
designed a deterministic O(m) time algorithm to compute a (2k − 1)-spanner
of O(n1+1/k) size. However, for weighted graphs, it took a series of improve-
ments [1, 4, 10, 20, 6, 5] till an expected O(m) time algorithm for computing a
(2k − 1)-spanner could be designed. This linear time randomized algorithm [6,
5] computes a (2k − 1)-spanner of size O(kn1+1/k) for a given weighted graph.
Recently Roditty et al. [18] derandomized this algorithm.

In this paper, we consider the problem of efficiently maintaining a (2k − 1)-
spanner in a dynamic environment : Given a graph G = (V, E), we receive an
online sequence of updates which could be insertions or deletions of edges, the
aim is to maintain a data structure which stores a (2k−1)-spanner for the graph
at each moment and is very efficient to handle these updates. It is also desirable
that the algorithm ensures O(n1+1/k) size of the (2k − 1)-spanner after each
update.
Previous work :
Ausiello et al. [2] are the first to design dynamic algorithms for spanners. They
present dynamic algorithms for maintaining spanners with stretch at most 6 only.
They first design an O(n) time decremental algorithm, and then employ the idea
of handling insertions in a lazy fashion to design a fully dynamic algorithm with
O(n) time per update. The spanners maintained are of optimal size. However,
the worst case space requirement of the associated data structure is θ(n2). They
extend their algorithm to weighted graphs with at most d different weights by
maintaining separate spanner for the set of edges with the same weight. This
leads to an increase in the size of the spanner and the update time by a factor
of d.
New results :

1. Decremental algorithm
We present a partial dynamic algorithm for maintaining a (2k − 1)-spanner
under deletion of edges for any k ∈ N. Our algorithm ensures an expected
O(kn1+1/k) size for the (2k − 1)-spanner and the expected update time re-
quired is O(polylog n) per edge deletion. We employ the static algorithm [6],
and overcome a few subtle problems in dynamizing it by introducing a new
clustering of vertices. Our algorithm also leads to an efficient decremental
algorithm for all-pairs approximate shortest paths (see Corollary 1).

2. Fully dynamic algorithms
We make our decremental algorithm fully dynamic by handling the edge in-
sertions in a lazy fashion and rebuilding the entire data structure after a pe-
riod of kn1+1/k edge insertions. This leads to a fully dynamic algorithm for a
(2k−1)-spanner with amortized Õ(m

n1+1/k) time per edge insertion/deletion.
The expected size of the (2k − 1)-spanner maintained by the algorithm is
O(kn1+1/k).
We also show that a fully dynamic algorithm for stretch at most 6, can
be maintained with expected constant update time and expected optimal
size. This algorithm follows by adding additional randomization to the static

algorithm of [6], followed by dynamizing it. However, there are some potential
difficulties in extending the algorithm for arbitrary stretch. Nevertheless, it
is worth exploring whether the result can be extended for arbitrary stretch.

Our algorithms can be extended to weighted graphs with d different weights in
the same way as done by Ausiello et al. [2]. For these graphs, the bounds on the
spanner size and the update time of our algorithm will increase by a factor of
d. All our algorithms require θ(m) space, which is much better than the θ(n2)
space requirement of [2].

2 Preliminaries

Throughout the paper, we deal with graphs which are undirected and unweighted.
We assume that the vertices are numbered from 1 to n. We shall maintain the
set of edges of the graph using a dynamic hash table (see [14]). Using this hash
table, it requires O(1) worst-case time for lookup and O(1) expected time for
any insertion and deletion. The space occupied by the hash table at any moment
will be of the order of the number of edges present in the graph at that moment.
Each edge of the graph will have a field to denote whether or not it is a spanner
edge at that moment of time. We also assume without loss of generality that
m = Ω(kn1+1/k), since otherwise for maintaining a (2k − 1)-spanner we just
keep all the edges in the (2k − 1)-spanner and just update the hash table for
edge insertion or deletion. The distance between any two vertices in not merely
a function of the edges in their local neighborhood. However, the task of main-
taining a spanner - a sparse set of edges that approximates all pairs distances -
can be achieved by ensuring the following somewhat local proposition for each
non-spanner edge (x, y).

Pt(x, y) : the vertices x and y are connected in the subgraph (V, ES) by a path
consisting of at most t edges

In order to maintain a t-spanner in dynamic scenario, it suffices to maintain
Pt for each non-spanner edge. This will be achieved by a careful partitioning of
vertices, called clustering [6].

Definition 1. A cluster is a subset of vertices. A clustering C, is a union of
disjoint clusters. Each cluster will have a unique vertex which will be called its
center. A clustering can be represented by an array C[] such that C[v] for any
v ∈ V is the center of cluster to which v belongs, and C[v] = 0 if v is unclustered
(does not belong to any cluster).

The following notations will be used throughout the paper in the context of a
given graph G = (V, E), and S, Y ⊆ V .

– Su : the set of vertices from S neighboring to u.
– δ(u, v) : distance between u and v in the graph G.
– δ(u, Y) : min{δ(u, v) | v ∈ Y }.

3 A decremental O(polylog n) time algorithm

3.1 New clustering

Definition 2. Given a permutation σ of some set S ⊆ V , and i ∈ N, clustering
C(σ, i) can be defined as follows.
A vertex u ∈ V with distance δ(u, S) ≤ i is assigned to the cluster centered at the
vertex in S nearest to u. In case of a tie, i.e., if there are multiple vertices at dis-
tance δ(u, S) from u, it is the nearest vertex that appears first in the permutation
σ.

Note that the clustering C(σ, i) partitions only those vertices of the graph that
are within distance i from S.
Efficient construction and maintenance : Given a permutation σ of some
set S ⊆ V , and i ∈ N, clustering C(σ, i) can be constructed in O(m) time by
algorithm described in Figure 1. A simple proof by induction on the distance
from S shows that C stores the clustering C(σ, i). Moreover, the forest F spans
each cluster by a tree rooted at its center such that for each vertex v ∈ C(σ, i),
there is a path in F of length δ(v, S) connecting v to C[v].

Let Q be a queue initialized to contain
elements of S in the order as defined
by σ.
Initially visited(v)=false ∀v ∈ V ,
C[s] = s ∀s ∈ S, and F ← ∅.
While not empty(Q) do
{ x← Dequeue(Q);

For all (x, y) ∈ E do
If visited(y)=false
{ visited(y) ← true;

C[y]← C[x];
F ← F ∪ {(x, y)};
ℓ(y)← ℓ(x) + 1;
If ℓ(y) < i Enqueue(y)}}

Fig. 1. Computing C(σ, i)

The clustering C(σ, i) and the forest
F can be associated with a breadth
first search (BFS) tree in an augmented
graph in the following way. If G′ is a
graph formed by adding a dummy ver-
tex g and the edges {(g, s)|s ∈ S} in G,
then F ∪ {(g, s)|s ∈ S} is a BFS tree
rooted at g in G′. This BFS tree (not
necessarily a unique one) satisfies the
following condition. Every vertex v ∈
C(σ, i) lies in the subtree rooted at C[v].
Maintaining the clustering amounts to
maintaining a BFS tree which also sat-
isfies this condition at all times. An ar-
bitrary BFS tree of depth i can be main-
tained in total O(mi) cost over any se-
quence of edge deletions [12]. The al-
gorithm involves finding new depth of
each vertex v ∈ V whose depth has in-
creased, and then hooking it to any ar-

bitrary neighbor from the level just above it. To maintain the clustering C(σ, i),
we need to maintain a BFS tree wherein we hook a vertex v to its appropriate
neighbor to satisfy the condition stated above. For this we need to maintain a
search data structure for every vertex storing the centers of the clusters to which
its neighbors belong. This will lead to O(mi log n) total update time over any
sequence of edge deletions.

Lemma 1. Given a graph G = (V, E), an integer i, a permutation σ of a set
S ⊆ V , we can maintain the clustering C(σ, i) and its spanning forest F with
amortized O(i log n) time per edge deletion.

The decremental algorithm employs a k-level hierarchy of clusterings : {C(σi, i)|i ≤
k} whose defining sets Si’s and the permutations σi’s are computed as follows.

1. Let S0 ← V , Sk = ∅. For 0 < i < k, let Si contain each element of set Si−1

independently with probability n−1/k.
2. For 0 ≤ i < k let σi be a uniformly random permutation of set Si.

3.2 Decremental Algorithm

Our decremental algorithm for (2k−1)-spanner will maintain the following struc-
tures and functions which can be initialized in Õ(m) time easily.

1. Clustering C(σi, i), i < k: Let Ci stores the clustering at level i, and Fi be
its spanning forest. We maintain arrays Ci’s and the set F = ∪iFi.

2. Highest levels of vertices: Let H [v] be the highest level l such that v is
present in C(σl, l)). We maintain H [v], ∀v ∈ V .

3. Assignment of edges to appropriate levels and endpoints: Each
edge (u, v) ∈ E is kept at level i = max(H [u], H [v]), and belongs to u if
H [u] ≤ H [v] and to v otherwise. Let Ei(u) denote the edges thus assigned
to u at level i.

4. Vertex-cluster Connectivity: Let Ei(u, o) be the set of edges from
Ei(u) which are incident from cluster centered at o ∈ Si. Keep a set E which
contains, for every v ∈ V, i < k, o ∈ Si, one edge from Ei(v, o).

Lemma 2. The set ES = E ∪F is a (2k−1)-spanner of expected size O(n1+1/k)
for the graph at any time.

Proof. We need to ensure that P2k−1 holds for every (u, v) /∈ ES . Let (u, v) ∈
Ei(u, Ci[v]) for some i < k. Vertex-cluster connectivity ensures that there must
be an edge (u, w) satisfying Ci[w] = Ci[v] which is present in E . It follows from
the clustering that v and w are connected in Fi by a path of length at most
2i, so there is a path in ES of length at most 2i + 1 < 2k − 1 joining u and
v. Hence P(2k−1)(u, v) holds. For bounding the size, we bound the expected
number of spanner edges contributed to E by any vertex v at any level i < k.
Consider any clustering C(σi, i). With respect to any arbitrary set E′ ⊆ E, let
c1, ..., cℓ be the clusters in this clustering which are neighboring to v. The vertex
v will contribute at most one edge per neighboring cluster to E , and a necessary
(though not sufficient) condition for this contribution is that v is not present in
any clustering of level i + 1 or higher. Given any clustering C(σi, i), the vertex
v would appear in the clustering at next level only if the center of at least one
of c1, ..., cℓ is sampled. Therefore, it follows by elementary probability that the
expected number of edges contributed by v at level i is at most ℓ·(1−n−1/k)ℓ+1,
which is at most n1/k for any value of ℓ. It can be observed that this upper bound
is derived for any set E′ ⊆ E.

Data structures : In addition to the hash table storing all the edges of the
graph and the usual adjacency lists for each vertex, we keep the following data
structures. For each v ∈ V and i, 0 ≤ i < k, let o1, ..., oℓ be the centers of the
cluster which are adjacent to v through edges Ei(v) allocated to v. Keep a search
tree for the set {o1, ..., oℓ} and the node associated with oj , 1 ≤ j ≤ ℓ in this tree
would store a doubly linked list storing the edges Ei(v, oj) ⊆ Ei(v) incident on v
from cluster centered at oj . Furthermore, each edge in the set Ei(v, o) will keep
a pointer to and from the entry in the hash table storing all the edges of the
graph. These data structures will help in efficient maintenance of the structures
and function mentioned above.

Deletion of an edge may cause two kinds of changes in Ci, i < k : some ver-
tices change their clusters within Ci and/or some vertices cease to belong to
the clustering Ci forever. The former change alters vertex-cluster connectivity
as follows. Let a vertex v move from cluster c to join another cluster c′. Let
w ∈ V be a neighbor of v. As a result of this movement, it might be that c is
no longer adjacent to w, and the cluster c′, which earlier might be non adjacent
to w, has become adjacent to w. Hence vertex-cluster connectivity needs to be
updated. We describe below a subroutine for handling this case. When a vertex
v ceases to belong to a clustering we will reassign all the edges present at level
i which have u as one endpoint to their new levels and endpoints, and update
the vertex-cluster connectivity accordingly.

Change-cluster(v, o, o′)
(when v moves from cluster centered at o to cluster centered at o′ in C(σi, i))
For each neighbor w of v in the graph with (v, w) ∈ Ei(w, o) do

1. Delete (v, w) from Ei(w, o). If (v, w) was in E , choose some other edge from
Ei(w, o) in E (unless Ei(w, o) = ∅ now).

2. Insert edge (v, w) to Ei(w, o′), and choose it in E if Ei(w, o′) was empty
earlier.

——————————————————————————————————–
Decremental algorithm for (2k − 1)-spanner

Deletion of an edge (u, v) is processed as follows. Let (u, v) be present at level i,
and belong to Ei(u, o) where o = Ci[v]. If (u, v) ∈ E delete it from E , and select
some other edge from Ei(u, o) in E (unless Ei(u, o) = ∅ now). The edge (u, v)
could be in F (simultaneously as well). In this case, deletion might cause change
of the clusterings at various levels, and we handle it as follows.
For i = 1 to k − 1 do

1. Update the clustering C(σi, i). Let ∆ ⊆ V be the set of vertices that changed
their clusters within Ci, and U ⊆ V be the set of vertices that ceased to be
member of Ci.

2. For each vertex x ∈ ∆ do
Let x moved from cluster centered at o to cluster centered at o′ in Ci.
Change-cluster(x, o, o′)

3. For each vertex x ∈ U , reassign all the edges present at level i which
have x as one endpoint to their new levels and endpoints, and update the
vertex-cluster connectivity accordingly.

Lemma 3. At any level i, a vertex changes its cluster expected O(i log n) times.

Proof. Consider a vertex v ∈ V . On leaving a cluster in C(σi, i) whenever v joins
the same cluster again, its distance from Si must have increased. We shall now
estimate the number of times a vertex changes its cluster within C(σi, i) while
keeping δ(v, Si) = d, for some fixed d ≤ i. Consider the first time when δ(v, Si)
becomes d. Fix any order in which the edges are being deleted. Corresponding to
this order, let o1, ...oℓ be the sequence of all the vertices of Si at distance d from v
at present, and arranged in the chronological order of their cessation from being
at distance d from v. The number of times v changes its cluster while keeping
δ(v, Si) = d is the same as the number of clusters in this sequence which v joins
during the period for which δ(v, Si) = d. The vertex v will join cluster centered
at oj if and only if oj appears first among {oj , ..., oℓ} in the permutation σi.
Since σi is a uniformly random permutation of Si, the probability of this event
is 1/(ℓ− j + 1). Hence the expected number of cluster changes for the vertex v

while remaining at a fixed distance d from Si is
∑ℓ

j=1
1

ℓ−j+1 = O(log n). Since

the vertex v may change δ(v, Si) at most i times before losing membership from
the clustering Ci, the lemma follows.

Analyzing the running time: When an edge is deleted from E , it requires
O(log n) cost to look for a replacement edge using the data structure amounting
to a total of O(m log n) cost over any sequence of edge deletions. It follows
from Lemma 1 that the total cost of maintaining clustering at any level over
any sequence of edge deletions is O(km log n). The remaining cost incurred is
for processing of the edges due to the changes in the clusterings and will be
charged to the respective edges. An edge will be processed at most 2k times
due to cessation of one of its endpoints from being member of clusterings. It
follows from Lemma 3 that an edge will be processed expected O(ki log n) times
due to change of clusters of its endpoints within any clustering since there are
total k levels of clusterings. Using the data structures each processing of an edge
costs O(log n) time. So the total expected cost charged to an edge throughout
the algorithm is of the order of

∑
i<k ik log2 n ≤ k2 log2 n = O(polylog n) since

k ≤ log n. So we can conclude the following theorem.

Theorem 1. Given a graph on n vertices undergoing edge deletions and k ∈ N,
we can maintain its (2k − 1)-spanner of expected O(kn1+1/k) size with expected
O(polylog n) time per edge deletion.

Choosing k = log n, we get the following corollary.

Corollary 1. Given a graph on n vertices undergoing edge deletions, we can
maintain all-pairs O(log n)-approximate shortest paths with O(polylog n) update
time, Õ(n) query time, and O(m) space requirement.

Roditty and Zwick [19] gave a decremental algorithm that maintains all-pairs
O(log n)-approximate shortest paths with O(1)-query time, Õ(n) update time,
and O(m) space. For the scenario, where we want to minimize the update time
at the expense of increased query time, our algorithm offers a better choice.

4 Fully dynamic algorithms

For a given graph (V, E), let D(V, E) be the data structure associated with our
decremental algorithm for maintaining a (2k − 1)-spanner. Our fully dynamic
algorithm maintains D(V, E) and handles edge insertions in a lazy fashion by
inserting the edge directly into the spanner and rebuilding the data structure D
for the new graph periodically once there are kn1+1/k insertions. In this manner,
cost of each insertion is O(1). Using Theorem 1 the total update cost (including
the initialization cost) for maintaining D is O(m polylog n) for each interval of
rebuilding. So the fully dynamic algorithm achieves an amortized Õ(m/n1+1/k)
cost per edge insertion/deletion. We can thus conclude with the following theo-
rem.

Theorem 2. Given a graph on n vertices and k ∈ N, we can maintain its
(2k− 1)-spanner of expected O(kn1+1/k) size in fully dynamic environment with
expected Õ(m

n1+1/k) update time per edge insertion or deletion.

5 A fully dynamic algorithm for small stretch spanners

We present a fully dynamic algorithm for 3-spanner. Our fully dynamic algorithm
for 5-spanner is along similar lines, and we present a sketch of it. First we state
a simple lemma whose proof follows from elementary probability.

Lemma 4. Given a set A of ℓ elements, let S be a sample formed by select-
ing each element of set A independently with some probability. The following
assertion holds :

∀a ∈ A, Pr[a ∈ S | |S| = i] =
i

ℓ

The algorithm begins with the following preprocessing. A sample S ⊆ V is
formed by selecting each vertex independently with some probability p. During
the whole algorithm, the set S serves as the set of the centers of clusters, and the
clustering is essentially grouping each vertex v ∈ V satisfying Sv 6= ∅ to some
vertex from Sv. We now relabel the vertices of the graph so that the vertices of
set S get labels which are a permutation of 1..S. (This relabeling takes O(m)
time and is required as a minor technicality for sake of clarity of exposition of
the algorithm).
The algorithm will maintain the following three invariants at each moment.

– I1 : Each vertex v ∈ V \S, with Sv 6= ∅, belongs to the the cluster centered
at any of the vertex from Sv with equal probability.

– I2 : Each vertex v ∈ V \S contributes all its edge to the spanner.
– I3 : Each clustered vertex v has the edge (v, C[v]) and one edge to

each of its neighboring clusters in the spanner.

The invariants I2 and I3 will ensure that the spanner has stretch 3 and expected
size O(n3/2), whereas the invariant I1 will play a key role in achieving expected
constant time for handling any edge insertion/deletion.

u v

w

o

cluster c′

Fig. 2. For a non span-
ner edge, a stretch of 3.

Note that all the edges incident on an unclustered
vertex are included in the spanner. So let us consider
an edge (u, v) which is not a spanner edge. In this
case both u and v must be clustered. It follows from
invariant I2 that a clustered vertex is connected to the
center of its cluster by a spanner edge. If both u and
v belong to the same cluster, there is a path between
them consisting of two edges, both from the spanner.
So consider the case when u and v belong to different
clusters, say c and c′ respectively (see Figure 5). The
existence of the edge (u, v) in E shows that the cluster
c′ is neighboring to u, so I3 ensures that there must

be some edge (u, w), w ∈ c′ in the spanner. This implies a path of three spanner
edges between u and v (see Figure 5). Hence the spanner is surely a 3-spanner.

Now let us analyze the expected size of this 3-spanner. An unclustered vertex
will contribute all its edges, whereas a clustered vertex will contribute one edge
per incident cluster. Hence the expected number of edges contributed by a vertex
will be at most deg(v) · (1− p)deg(v) + np, which is at most 1/p + np. Hence the
expected size of the 3-spanner is O(n/p + n2p), which for p = 1/

√
n, is O(n3/2).

Hence we can conclude that

Lemma 5. Maintaining invariants I2 and I3 for a dynamic graph ensures that
the spanner is a 3-spanner of expected size O(n3/2) at each stage.

5.1 Data structure

In order to efficiently maintain the invariants, we shall use the following data
structures, which will require O(m + n3/2) space, which is O(m) since we have
assumed that m = Ω(n3/2) (see Preliminaries).

– Let C be the array representing the clustering.

– Each vertex v ∈ V keeps an array Nv of size |S| such that Nv[i] is (or points
to) the head of a doubly linked list storing all those edges incident on v from
a cluster centered at i. A node storing the edge (v, w) in this doubly linked
list will also keep a pointer to (and from) the entry for the same edge in the
hash table storing all the edges.

– Each vertex v maintains the set Sv of all the sampled vertices that are
adjacent to it using a doubly linked list. A node storing w in this list will
have a pointer to (and from) the node storing edge (v, w) in the list (pointed
by) Nv[C[w]]. This will facilitate insertion/deletion of a vertex w from set
Sv in O(1) time whenever the corresponding edge (v, w) is inserted/deleted
from the graph.

We shall employ the subroutine Change-cluster that we designed for our
decremental algorithm. In addition, we shall use the following two subroutines.

Join-clustering(v, i) : (an unclustered vertex v joins a cluster centered at i)
C[v]← i.
Process each clustered neighbor w of v as follows.
j ← C[w].

Insert edge (v, w) to the lists Nw[i] and Nv[j].
Make (v, w) a non-spanner edge unless it is the only spanner edge present
in either of Nw[i] and Nv[j].

Leave-clustering(v, i) : (a vertex v clustered at i becomes unclustered)
Process each clustered neighbor w of v as follows.

j ← C[w].
Delete (v, w) from the lists Nw[i] and Nv[j], and make (v, w) a spanner edge.

——————————————————————————————————–
Fully dynamic algorithm for 3-spanner

– Deletion of an edge (u, v) :
If the edge (u, v) does not belong to the current spanner, it suffices to delete
the edge from the data structures of u as well as v. So let us consider the
situation when (u, v) is a spanner edge. If either u or v is an unclustered ver-
tex, it also suffices to just delete the edge. Otherwise let u and v belong to
clusters centered at i and j respectively. We process the vertex u as follows
(the vertex v is processed in a similar manner).
If C[u] = v
{ Su ← Su\{v};

If Su = ∅ { C[v]← 0 ; Leave-clustering(u, v)}
Else
{ let s be uniformly selected vertex from Su;

Make (u, s) a spanner edge;
C[u]← s ; Change-cluster(u, i, s)}}

Else delete the edge (u, v) from Nu[j], choose another edge from Nu[j] (un-
less Nu[j] = ∅ now), and make that a spanner edge.

– Insertion of an edge (u, v) :
We process the vertex u as follows (the vertex v is processed similarly).
If u is unclustered
{ Make (u, v) a spanner edge;

If v ∈ S { C[u]← v ; Join-clustering(u, v)}}
Else
{ If v is clustered
{ i← C[u]; j ← C[v]; Insert the edge (u, v) to Nu[j];

If (i 6= j and |Nu[j]| = 1) make (u, v) a spanner edge;
If v ∈ S
{ Su ← Su ∪ {v};

With probability 1/|Su| do
{ C[u]← v ; Change-cluster(u, i, j)}}}}.

It is easy to verify that the fully dynamic algorithm described above maintains
the invariants I1, I2 and I3. The invariant I1 combined with Lemma 4 would
imply the following crucial lemma whose proof follows by elementary probability.

Lemma 6. For the graph G undergoing deletion and insertion of edges in any
arbitrary order, our algorithm ensures the following equality at all times.

∀(u, v) ∈ E Pr[C[u] = v | u is clustered] =
1

deg(u)

Analyzing the complexity of the algorithm :
Consider deletion of an edge (u, v). It follows from the description of the algo-
rithm that the processing of vertex u will take O(1) time for all the cases except
for the case when C[u] = v, in which case the update time is O(deg(u)). Now
applying Lemma 6 prior to deletion of edge (u, v), it follows that the probability
of the latter case is 1/ deg(u). Hence the expected processing time for vertex
u is O(1) when an edge (u, v) is deleted. Similarly analyzing the vertex v, we
conclude that an edge deletion can be processed in expected O(1) time.

Now consider insertion of edge (u, v). It follows from the description of the
algorithm that the update time is O(1) for all the cases except when u gets
assigned to cluster centered at v, in which case the update time is O(deg(u)).
Applying Lemma 6 just after the insertion (u, v), it follows that the probability
of the latter case is 1/ deg(u). Hence the expected update time for maintaining
a 3-spanner on inserting an edge (u, v) is constant. Combined with Lemma 5,

Theorem 3. Given a graph on n vertices, we can maintain its 3-spanner of
expected size O(n3/2) with expected O(1) time per edge insertion/deletion.

5.2 Fully dynamic algorithm for stretch 5 (or 6)

The algorithm is the same as the algorithm for 3-spanner except with the fol-
lowing modifications.

1. The sampling probability is p = 1/n1/3.
2. The data structure : The data structure is identical to that of 3-spanner

except that each cluster (instead of each vertex) c keeps an array Nc such
that Nc[c

′] is a doubly linked list storing the edges incident on c from c′.
3. The invariants : The fully dynamic algorithm will maintain the three in-

variants : The first two are just identical to I1 and I2 for the 3-spanner,
while the invariant I3 is defined as : Each clustered vertex v has the edge
(v, C[v]) in the spanner and each cluster has one spanner edge to each of its
neighboring clusters.

With the slight difference in the data structure and the invariant I3 as described
above, our fully dynamic algorithm for 5-spanner is identical to our fully dynamic
algorithm for 3-spanner which we have described and analyzed in complete de-
tails earlier. Hence, we can state the following theorem.

Theorem 4. Given a graph on n vertices, we can maintain its 5-spanner of
expected size O(n4/3) with expected O(1) time per edge insertion/deletion.

Acknowledgement. The author is grateful to Sandeep Sen and anonymous
referees for their useful comments.

References

1. I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners
of weighted graphs. Discrete and Computational Geometry, 9:81–100, 1993.

2. G. Ausiello, P. G. Franciosa, and G. F. Italiano. Small stretch spanners on dynamic
graphs. In Proceedings of 13th Annual European Symposium on Algorithms, volume
3669 of LNCS, pages 532–543. Springer, 2005.

3. B. Awerbuch. Complexity of network synchronization. Journal of Ass. Compt.
Mach., pages 804–823, 1985.

4. B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear time construction
of sparse neighborhod covers. SIAM Journal on Computing, 28:263–277, 1998.

5. S. Baswana and S. Sen. A simple linear time randomized algorithm for comput-
ing sparse spanners in weighted graphs. Random Structures and Algorithms (to
appear).

6. S. Baswana and S. Sen. A simple linear time algorithm for computing a (2k − 1)-
spanner of O(n1+1/k) size in weighted graphs. In Proceedings of the 30th Inter-
national Colloquium on Automata, Languages and Programming (ICALP), pages
384–396, 2003.

7. S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in
Õ(n2) time. In Proceedings of the 15th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 271–280, 2004.

8. B. Bollobás. Extremal Graph Theory. Academic Press, 1978.
9. J. A. Bondy and M. Simonovits. Cycles of even length in graphs. Journal of

Combinatorial Theory, Series B, 16:97–105, 1974.
10. E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch t.

SIAM Journal on Computing, 28:210–236, 1998.
11. P. Erdős. Extremal problems in graph theory. In Theory of Graphs and its Appli-

cations (Proc. Sympos. Smolenice,1963), pages 29–36, Publ. House Czechoslovak
Acad. Sci., Prague, 1964.

12. S. Even and Y. Shiloach. An on-line edge-deletion problem. Journal of association
for computing machinery, 28:1–4, 1981.

13. S. Halperin and U. Zwick. Linear time deterministic algorithm for computing
spanners for unweighted graphs. unpublished manuscript, 1996.

14. R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51:122–144,
2004.

15. D. Peleg and A. Schäffer. Graph spanners. Journal of Graph Theory, 13:99–116,
1989.

16. D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM
Journal on Computing, 18:740–747, 1989.

17. D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables.
Journal of Assoc. Comp. Mach., 36(3):510–530, 1989.

18. L. Roditty, M. Thorup, and U. Zwick. Deterministic construction of approximate
distance oracles and spanners. In Proceedings of 32nd International Colloquim on
Automata, Languagaes and Programming (ICALP), volume 3580 of LNCS, pages
261–272. Springer, 2005.

19. L. Roditty and U. Zwick. On dynamic shortest paths problems. In Proceedings of
12th Annual European Symposium on Algorithms (ESA), volume 3221 of LNCS,
pages 580–591. Springer, 2004.

20. M. Thorup and U. Zwick. Approximate distance oracles. Journal of Association
of Computing Machinery, 52:1–24, 2005.

