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Computational Investigation of Glare with Several Cracks
and Delaminations under Monotonic and Cyclic Loads
of Constant Amplitude
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A residually stressed aluminum fiber metal laminate (Glare) with delaminations, caused by co-existence of normal cracks in aluminum
layers and transverse interfacial cracks between aluminum and fiber layers, is theoretically and numerically investigated under
monotonic and cyclic loads of constant amplitude. Double and multiple delaminations, governed by various types of debonding
curves, are modeled with the help of cohesive elements. Role of fibers in load or fiber bridging over the cracks leading to enhanced
fracture and fatigue properties of the laminate is demonstrated and validated. Magnitude of shielding effect at normal crack tip is
quantified by stress intensity parameter and J integral values. Influence of delamination growth parameters on fiber bridging and
stress state in aluminum layers is also examined. Theoretical and numerical results support each other well.

Keywords: cohesive element, delamination, fatigue, Glare, J integral, residual stress

Nomenclature

b = delamination height at laminate edge
c = crack length
c′ = starter notch length
c0 = composite layer (resin impregnated fiber)

with fiber in y direction
c90 = composite layer with fiber in x direction
C1, C2, and C3 = cohesive element data
ds = incremental path length
E = modulus of elasticity
Elc = longitudinal modulus of elasticity of

composite (along fiber)
Etc = transverse modulus of elasticity of com-

posite (perpendicular to fiber)
Ell = longitudinal modulus of elasticity of

laminate (y direction)
Etl = transverse modulus of elasticity of lami-

nate (x direction)
G = energy release rate at delamination tip
J = J integral
K = stress intensity parameter

Address correspondence to Sunil Bhat, School of Mechanical
and Building Sciences, Vellore Institute of Technology, Katpadi
Road, Vellore, Tamil Nadu, 632014, India. E-mail: sbhat 789@
rediffmail.com
Color versions of one or more of the figures in the article can be
found online at www.tandfonline.com/umcm.

m′, m′′ = Ramberg-Osgood constants
n = number of layers
P = path length
t = thickness of layer
T = traction
T′ = temperature
u∗ = load line crack opening displacement
un = nodal displacement in x direction
vn = nodal displacement in y direction
v = volume fraction of component in com-

posite layer
v′ = volume fraction of component in lami-

nate
V = volume of material
w = width of laminate
We = strain energy density
Y = yield strength
� = shear modulus
� = Poisson’s ratio
�c = Prepreg. deformation
�ad = shear/adhesive deformation
�al = deformation in aluminum
�majc = major Poisson’s ratio of composite

(along the fiber w.r.t. perpendicular to
fiber)

�min c = minor Poisson’s ratio of composite (per-
pendicular to fiber w.r.t. along the fiber)

�majl = major Poisson’s ratio of laminate (y di-
rection w.r.t. x direction)

� = coefficient of thermal expansion
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608 S. Bhat and R. Patibandla

�lc = longitudinal coefficient of thermal ex-
pansion of composite (along fiber)

�tc = transverse coefficient of thermal expan-
sion of composite (perpendicular to
fiber)

�ll = longitudinal coefficient of thermal ex-
pansion of laminate (y direction)

�tl = transverse coefficient of thermal expan-
sion of laminate (x and z directions)

{M} = stiffness matrix
� = normal stress
� = shear stress
ε = normal strain
� = shear strain
� = parameter under cyclic load
� = average of total stresses in all layers

Subscripts

al = an aluminum layer
ambient = ambient temperature
applied = applied value
av = average value
br = effect due to load bridging in delami-

nated zone
crack = effect due to crack
curing = curing temperature
c0 = composite c0
c90 = composite c90
f = a fiber layer
i, j = summation constants
induced = induced value
lam = laminate
r = a resin layer
rs = residual strain
tip = crack tip
total = total value in delaminated zone
total∗ = total value in entire layer
x, y, z = co-ordinate system
1, 2, 3 = c0, c90 and aluminum layers
1′′ to 6′′ = fiber layers in the laminate

1. Introduction

Fiber metal laminate (FML) is an advanced hybrid compos-
ite that consists of layers of thin and light metallic sheets
bonded alternatively by heat and pressure in an auto-clave cy-
cle with composite prepreg. units, each unit comprising resin
impregnated fiber layers laid in the same or different orienta-
tions. One such aluminum alloy and glass fiber FML, commer-
cially known as Glare, is reported to exhibit excellent fatigue
crack growth resistance. Parent crack in the loaded laminate
nucleates and propagates in weak aluminum layers, whereas
stronger sandwiched fibers do not fracture and remain in-
tact thereby resulting in load or fiber bridging over the crack.
Bridging diverts load towards fibers (in form of fiber bridging

stress), that diminishes stress field around the crack, or shields
the crack tip thereby reducing crack tip stress intensity param-
eter and fatigue crack growth rate. At the same time, transverse
or interfacial crack can develop between aluminum and fiber
layers due to the presence of cyclic shear stresses at the inter-
faces. Interfacial crack along with the parent crack constitute a
delamination, the size of which influences the bridging stress.
Delaminations of different shapes can develop in the lami-
nate. The contour of delamination edge or debonding curve
between aluminum and fiber is decided by the difference in
growth rates of parent and interfacial cracks that, in turn, de-
pends upon the material properties, strength of the adhesive
bond between aluminum and fiber layers, and applied load
parameters. Also, several cracks can exist in the laminate at a
time leading to multiple delaminations.

Hitherto, several fatigue and fracture studies of theoret-
ical and numerical types have been reported on FMLs un-
der constant amplitude load in an ambient environment. Lin
et al. [1] discussed the fatigue behavior in Care (carbon and
aluminum based FML) followed by Lin and Kao investigat-
ing the effect of fiber bridging [2] and delamination growth
[3] on crack propagation in similar laminates. Guo and Wu
[4–6] presented theoretical and phenomenological models for
predicting fatigue crack growths and bridging stress distribu-
tion in FML. Brown and Young [7] investigated crack and
delamination growth in Arall (Kevlar and aluminum-based
FML) and Glare of different thickness under constant am-
plitude loads at different stress levels and R ratios. Wu and
Guo [8] obtained the distribution of bridging stress along
the crack line and identified the factors affecting the bridg-
ing stress. A test method for determining the delamination
growth rates was also presented by them. Takamatsu et al. [9]
used a compliance method to analyze fatigue crack growth in
FML. Homan [10] found that fatigue crack initiation in FML
depends upon stress cycles in metal. He also investigated the
effect of residual stress in fibers and aluminum layers over
the crack tip. Alderliesten and Homan [11] discussed fatigue
and damage tolerance issues of Glare in aircraft structures.
Suiker and Fleck [12] presented a relation between fatigue
crack growth rate and remote cyclic stress with and without
the delaminations. Alderliesten [13] examined propagation of
fatigue cracks in aluminum layers under the effect of delam-
inations. He observed stress intensity parameter at the crack
tip as the function of far-field opening stress and closing bridg-
ing stress in aluminum layers. Wu et al. [14] evaluated residual
strength of a notched FML. Alderliesten et al. [15] determined
crack opening distribution as the result of shear deformation
and validated the results with finite element analysis. Plokker
et al. [16] investigated crack closure aspects in FML. Alder-
liesten [17] reviewed phenomenological, analytical, and finite
element models for fatigue crack propagation prediction in
Glare. Chang and Yang [18] studied crack tip characteristics
in FML with the help of theoretical and numerical models.
Khan et al. [19] investigated post-stretching stress redistribu-
tion in FML. Alderliesten and Rans [20] reported concepts
of fatigue threshold in FML. Abdullah et al. [21] presented a
numerical program for fatigue crack growth model and vali-
dated it with experiments. Recently, Rodi et al. [22] investigated
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Cracked Glare under Monotonic and Cyclic Loads 609

Fig. 1. Glare laminate.

applicability of crack tip opening angle (CTOA) in FML. They
inferred that CTOA criterion could be successfully used for
predicting the residual strength of FML.

Literature survey supports the need for a detailed study
of the effect of the number and shape of delaminations over
fatigue and fracture characteristics of a FML. The scope to
numerically validate the theoretical model developed for de-
termining bridging stresses in such a case also exists. The aim
of this article, therefore, is to numerically model a cracked
FML (Glare), with double and multiple delaminations of var-
ious shapes (triangular, cosine, parabolic and elliptical type
debonding curves assumed for the purpose of computation)
to assess the following in the laminate subjected to constant
amplitude monotonic and cyclic load in ambient environment:
(i) Change in stress fields in fibers and aluminum layers due to
fiber bridging; (ii) Magnitude of bridging and its effect over
normal crack tip; and (iii) Stress intensity parameter at normal
crack tip post bridging. Influence of delamination growth pa-
rameters on fiber bridging and stress state in aluminum layers
is also examined. The numerical results are finally compared
with the theoretical ones. Since residual stresses of different
magnitudes develop in the constituent materials during lam-
inate curing due to their varying stiffness and coefficients of

thermal expansion, these stresses play an important role in the
mechanics of a FML and are included in the investigation.

2. Characterisation of Glare

Refer to Figure 1. Glare is assumed to comprise three 0.4-mm
thick 2024-T3 aerospace aluminum alloy sheets bonded and
cured alternatively with two pre-pregs., with each pre-preg.
built up of three composite layers in the sequence, c0-c90-c0.
A composite layer consists of 4 mil or 0.1-mm thick unidirec-
tional E-glass fiber coated with epoxy resin. Composite c0 has
fibers laid in y direction, i.e., along the direction of the load,
whereas composite c90 has fibers laid in x direction, i.e., per-
pendicular to the direction of load. The laminate is 200 mm
long, 50 mm wide, and 2 mm thick. Material properties [23]
are presented in Table 1. Fundamental equations governing
the properties of composite layers and of the overall lami-
nate are available in Appendix A. Pertinent laminate data are
provided in Table 2.

Refer to Figure 2. Two types of laminates, cured at 90 deg.
and 120 deg. temperatures, are investigated under constant

Table 1. Material properties

Property Al. 2024-T3, al (isotropic) E-Glass, f (isotropic) Epoxy resin, r (isotropic)

(i) Mod. of elasticity (E), MPa 72,000.0 71,000.0 3500.0
(ii) Shear modulus (�), MPa 27,060.0 29,710.0 1250.0
(iii) Poisson’s ratio (�) 0.33 0.22 0.33
(iv) Yield strength (Y ), MPa 345.0 — —
(v) Ultimate tensile strength, MPa 485.0 3450.0 60.0
(vi) Percent elongation at break 18.0 (4.7 at 420 MPa) 4.8 4.0
(vii) Coeff. of thermal expansion (�), C−1 23 × 10−6 5.0 × 10−6 57.5 × 10−6

(viii) Plane strain fracture toughness (MPa
√

m) 40.0–50.0 4.0–5.0 0.5–0.7
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610 S. Bhat and R. Patibandla

Table 2. Laminate data

v f = 0.751; vr = 0.249; v′
al = 0.6; v′

c0 = 0.266; v′
c90 = 0.134;

Elc = 54190MPa;
Etc = 12200MPa; �c0 = �c90 = 4450MPa; Ell = 59240MPa;

Etl = 41278MPa;
�majc = 0.2473; �min c = 0.054; �majl = 0.28; �lc = 4.69 × 10−6;

�tc = 22.3 × 10−6;
�ll = 18.62 × 10−6; �tl = 17.25 × 10−6.

far field monotonic tensile stress, �y,applied, of 150 MPa and
tension–tension fatigue cycles with maximum and minimum
stress values of 150 MPa and 15 MPa, respectively. Classical
theory is employed to obtain stress distribution in various lay-
ers of the loaded laminate. Effect of curing is incorporated by
superimposing residual curing strain with the applied strain.
Refer to Appendix B for stress-strain constitutive equations
in plane stress conditions—Part A for equations in aluminum
and pre-pregs. and Part B for equations in aluminum, fiber, and

Fig. 2. Cracked and delaminated Glare.

resin layers separately. Induced stress values, �induced, in vari-
ous layers, without and with the effect of residual stresses in
un-cracked laminate, are available in Table 3. Through Mode
I, normal edge cracks in aluminum layers and different types
of delaminations are considered for fatigue and fracture anal-
ysis. Two aluminum layers are cracked in the case of double
delamination (first external layer is full cracked and middle
layer is half cracked), whereas all three layers are cracked in
the case of multiple delaminations. Thin external resin lay-
ers of pre-pregs. are also assumed to be cracked along with
aluminum layers.

3. Theoretical Treatment

3.1. Review of Damage Mechanism

Crack under cyclic load originates and grows in the soft alu-
minum layer of the laminate. In comparison with the crack in
the monolithic aluminum panel, nucleation of the crack in the

Fig. 3. Theoretical fiber bridging stresses, �br, f , for different de-
lamination shapes, in delaminated fiber zone of laminate with
double delamination.
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Cracked Glare under Monotonic and Cyclic Loads 611

Table 3. Stress-strain values

(A) Aluminum and Pre-preg.

{M}al =

⎡
⎢⎣

80.79 26.66 0

26.66 80.79 0

0 0 27.06

⎤
⎥⎦ GPa; {M}c0 =

⎡
⎢⎣

12.37 3.05 0

2.96 54.95 0

0 0 4.45

⎤
⎥⎦ GPa; {M}c90 =

⎡
⎢⎣

54.95 2.96 0

3.05 12.37 0

0 0 4.45

⎤
⎥⎦ GPa;

{M}lam =

⎡
⎢⎣

59.06 17.20 0

17.18 64.725 0

0 0 18.01

⎤
⎥⎦ GPa; {M}−1

lam =

⎡
⎢⎣

0.018 −0.00482 0

−0.0048 0.0166 0

0 0 0.055

⎤
⎥⎦.

For �applied =

⎧⎪⎨
⎪⎩

0

150

0

⎫⎪⎬
⎪⎭ MPa; εlam =

⎧⎪⎨
⎪⎩

−0.723 × 10−3

2.49 × 10−3

0

⎫⎪⎬
⎪⎭.

For �applied =

⎧⎪⎨
⎪⎩

0

15

0

⎫⎪⎬
⎪⎭ MPa; εlam =

⎧⎪⎨
⎪⎩

−0.0723 × 10−3

0.249 × 10−3

0

⎫⎪⎬
⎪⎭.

Induced stresses,

⎧⎪⎨
⎪⎩

�x

�y

�xy

⎫⎪⎬
⎪⎭

induced

, for Tambient = 30 deg ., Tcuring = 90 deg ., 120 deg .are given as under:

Applied stress: 150 MPa Applied stress: 15 MPa
w/o rs 90 deg. 120 deg. w/o rs 90 deg. 120 deg.

{�}induced,al =

⎡
⎢⎣
⎧⎪⎨
⎪⎩

7.98

181.89

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

42.77

212.09

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

60.13

227.18

0

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

0.798

18.19

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

35.59

48.53

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

53.01

63.78

0

⎫⎪⎬
⎪⎭
⎤
⎥⎦ MPa.

Residual stresses at 90 deg. curing = 34.79 MPa (+ve) in x dir., 30.34 MPa (+ve) in y dir.
Residual stresses at 120 deg. curing = 52.15 MPa (+ve, tensile) in x dir., 45.29 MPa (+ve) in y dir.

w/o rs 90 deg. 120 deg. w/o rs 90 deg. 120 deg.

{�}induced,c0 =

⎡
⎢⎣
⎧⎪⎨
⎪⎩

−1.34

134.68

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

−0.162

89.40

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

0.45

67.34

0

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

−0.134

13.46

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

1.05

−31.51

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

1.67

−53.82

0

⎫⎪⎬
⎪⎭
⎤
⎥⎦ MPa.

Residual stresses at 90 deg. curing = 1.178 MPa (+ve) in x dir., 45.29 MPa (-ve) in y dir.
Residual stresses at 120 deg. curing = 1.79 MPa (+ve) in x dir., 67.34 MPa (-ve, compressive) in y dir.

w/o rs 90 deg. 120 deg. w/o rs 90 deg. 120 deg.

{�}induced,c90 =

⎡
⎢⎣
⎧⎪⎨
⎪⎩

−32.35

28.59

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

−72.75

29.03

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

−93.30

29.25

0

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

−3.235

2.859

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

−43.67

3.30

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

−64.22

3.51

0

⎫⎪⎬
⎪⎭
⎤
⎥⎦ MPa.

Residual stresses at 90 deg. curing = 40.4 MPa (-ve) in x dir., 0.44 MPa (+ve) in y dir.
Residual stresses at 120 deg. curing = 60.95 MPa (-ve) in x dir., 0.66 MPa (+ve) in y dir.

(B) Individual layers

{M}al =

⎡
⎢⎣

80.79 26.66 0

26.66 80.79 0

0 0 27.06

⎤
⎥⎦ GPa; {M}r =

⎡
⎢⎣

3.92 1.29 0

1.29 3.92 0

0 0 1.25

⎤
⎥⎦ GPa; {M} f =

⎡
⎢⎣

74.61 16.41 0

16.41 74.61 0

0 0 29.70

⎤
⎥⎦GPa;

{M}lam =

⎡
⎢⎣

71.22 21.04 0

21.04 71.22 0

0 0 25.26

⎤
⎥⎦ GPa; {M}−1

lam =

⎡
⎢⎣

0.0153 −0.0045 0

−0.0045 0.0153 0

0 0 0.0395

⎤
⎥⎦.

For �applied =

⎧⎪⎨
⎪⎩

0

150

0

⎫⎪⎬
⎪⎭ MPa; εlam =

⎧⎪⎨
⎪⎩

−6.75 × 10−4

2.29 × 10−3

0

⎫⎪⎬
⎪⎭.

(Continued on next page)
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612 S. Bhat and R. Patibandla

Table 3. Stress-strain values (Continued)

For �applied =

⎧⎪⎨
⎪⎩

0

15

0

⎫⎪⎬
⎪⎭ MPa; εlam =

⎧⎪⎨
⎪⎩

−0.675 × 10−4

0.229 × 10−3

0

⎫⎪⎬
⎪⎭.

Induced stresses:

⎧⎪⎨
⎪⎩

�x

�y

�xy

⎫⎪⎬
⎪⎭

induced

for Tambient = 30 deg ., Tcuring = 90 deg ., 120 deg . are as follows:

Applied stress: 150 MPa Applied stress: 15 MPa
w/o rs 90 deg. 120 deg. w/o rs 90 deg. 120 deg.

{�}induced,al =

⎡
⎢⎣
⎧⎪⎨
⎪⎩

6.50

167.0

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

41.32

197.14

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

58.79

212.6

0

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

0.650

16.70

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

35.46

47.05

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

52.88

62.30

0

⎫⎪⎬
⎪⎭
⎤
⎥⎦ MPa.

Residual stresses at 90 deg. curing = 34.82 MPa (+ve) in x dir., 30.14 MPa (+ve) in y dir.
Residual stresses at 120 deg. curing = 52.29 MPa (+ve) in x dir., 45.6 MPa (+ve) in y dir.

w/o rs 90 deg. 120 deg. w/o rs 90 deg. 120 deg.

{�}induced,r =

⎡
⎢⎣
⎧⎪⎨
⎪⎩

0.308

8.1

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

12.78

20.35

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

19.00

26.45

0

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

0.0308

0.81

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

12.46

13.01

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

18.70

19.12

0

⎫⎪⎬
⎪⎭
⎤
⎥⎦ MPa.

Residual stresses at 90 deg. curing = 12.47 MPa (+ve) in x dir., 12.25 MPa (+ve) in y dir.
Residual stresses at 120 deg. curing = 18.69 MPa (+ve) in x dir., 18.35 MPa (+ve) in y dir.

w/o rs 90 deg. 120 deg. w/o rs 90 deg. 120 deg.

{�}induced, f =

⎡
⎢⎣
⎧⎪⎨
⎪⎩

−12.78

159.78

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

−81.0

86.53

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

−114.87

50.7

0

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

−1.278

15.978

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

−69.48

−57.03

0

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

−103.33

−93.0

0

⎫⎪⎬
⎪⎭
⎤
⎥⎦ MPa.

Residual stresses at 90 deg. curing = 68.22 MPa (-ve) in x dir., 73.25 MPa (-ve) in y dir.
Residual stresses at 120 deg. curing = 102.09 MPa (-ve) in x dir., 109.08 MPa (-ve) in y dir.

laminate is faster since �y,induced,al > �y,applied, but crack prop-
agation is much slower due to the presence of fibers [24] as
discussed in the succeeding section.

The originated parent normal crack in the aluminum layer
is fully constrained and cannot open for growth due to the
resistance offered by sandwiched intact fiber layers. Opening
occurs due to development of transverse or interfacial crack
at the aluminum-fiber interface by cyclic shear stresses, gen-
erated by load transfer from aluminum to fiber layer, that
induce shear/adhesive deformations leading to adhesive fail-
ure. Consequently, the parent crack opening becomes nonzero
that generates stress intensity at the crack tip causing crack
growth. With parent crack growth, there is again fiber bridg-
ing or diversion of load over the crack towards the fibers that
triggers interfacial crack growth with consequent restraining
or shielding effect at the parent crack tip. With an increase in
interfacial crack length, the length over which the fibers are
elongated increases resulting in lower fiber stress and transfer
of the load back towards the parent crack tip that drives the
parent crack. As such, the growth of parent and interfacial
cracks, leading to the development and expansion of delam-
ination between the aluminum-fiber layer, forms a balanced
and coupled process albeit with opposite load transfer effects.

Consequently, the magnitude of stress intensity at the parent
crack tip continuously fluctuates during parent and interfacial
crack growths. Conventional crack growth principles under
cyclic loads, i.e., �K at the parent crack tip and �G at the
interfacial crack tip exceeding the respective cyclic threshold
values, hold good.

Despite an increase in delamination size with growing lam-
inate damage, the strong fiber layers in the laminate remain
intact and, as a result, a significant part of the applied load
continues to be transferred over the parent crack through
fibers thereby restricting the stress field and the opening of
the parent crack, which eventually, at all crack lengths, leads
to the enhanced fatigue properties of the laminate vis-à-vis
the monolithic aluminum panel with normal crack of similar
sizes.

3.2. Model for Stress Intensity Parameter at Normal
Crack Tip

The applied stress intensity parameter, Kapplied, over Mode I
crack of length, c, is obtained from Eq. (1) that is based upon
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Cracked Glare under Monotonic and Cyclic Loads 613

Fig. 4. Theoretical fiber bridging stresses, �br, f , for different de-
lamination shapes, in delaminated fiber zone of laminate with
multiple delaminations.

the principles of conventional linear elastic fracture mechanics
(LEFM):

Kapplied = �y,induced,al × √
	c × CF, (1)

where configuration factor, CF , for an edge crack [25] is em-
pirically given by Eq. (2):

CF =
[

1.12 − 0.23
c
w

+ 10.6
( c

w

)2
− 21.7

( c
w

)3

+ 30.4
( c

w

)4
]

, (2)

where w is the width of the laminate. For the delaminated
zone with parent normal crack length, c, and interfacial crack
height, b, at the laminate edge, the formulations [13] to deter-
mine the tensile stress transferred to fiber, �br, f , and closing
compressive stress induced in aluminum, �br,al , in the delam-
inated zone are consolidated in Appendix C. The equations
of deformation are written at several points along the crack
axis in the delamination zone. Induced load line stress values

Fig. 5. Theoretical bridging and normal crack tip stress intensity
parameters, Kbr and Kti p, in laminates with different delamina-
tions.

Fig. 6. Theoretical cyclic stress intensity parameter, �Kti p, in
laminates with different delaminations.
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614 S. Bhat and R. Patibandla

Table 4. Finite element values of normal crack tip parameter

Delamination shape

Triangular Cosine Parabolic Elliptical

Parameter (in aluminum layer) A B A B A B A B

Double delamination
Jti p (N/mm), 150 MPa 5.4 4.58 6.14 5.17 7.66 6.52 7.93 6.70
15 MPa 0.33 0.19 0.40 0.23 0.53 0.30 0.54 0.31
Kti p(MPa

√
m), 150 Mpa 19.85 18.18 21.03 19.3 23.49 21.67 23.89 21.97

15 Mpa 4.90 3.70 5.38 4.07 6.21 4.69 6.25 4.70
�Kti p(MPa

√
m) 14.95 14.48 15.65 15.23 17.28 16.98 17.64 17.27

Multiple delaminations
Jti p (N/mm), 150 MPa 4.94 3.73 6.61 5.64 6.70 5.74 7.25 6.18
15 MPa 0.25 0.10 0.37 0.21 0.46 0.26 0.48 0.28
Kti p(MPa

√
m), 150 Mpa 18.86 16.4 20.11 18.46 21.97 20.34 22.85 21.09

15 Mpa 4.24 2.68 5.18 3.89 4.37 4.37 5.90 4.44
�Kti p(MPa

√
m) 14.62 13.72 14.93 14.57 16.21 15.97 16.95 16.65

A: 120 deg. cured laminate; B: 90 deg. cured laminate.

Fig. 7. Stress-strain plots of materials.
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Cracked Glare under Monotonic and Cyclic Loads 615

Fig. 8. Meshed model and delamination shapes.
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616 S. Bhat and R. Patibandla

(in y direction) in aluminum and in composite layers that are
used in the formulations are picked up from Section A of Ta-
ble 3. The coupled equations are solved by Jacobi’s numerical
iterative scheme to obtain �br, f at the selected points while ful-
filling the boundary condition of �br, f as zero at the crack tip
line. �br,al is finally computed. Crack bridging stress intensity
parameter, Kbr , is found from Eq. (3):

Kbr = 2
n∑

i=1

�br,al (xi )dx√
	c

c√
c2 − x2

i + b2
i

×
[

1 + 1
2

(
1 + �majl

) b2
i

c2 − x2
i + b2

i

]
. (3)

Stress intensity parameter at normal crack tip, Kti p, is ob-
tained by subtracting the bridging effects from Kapplied. Kti p is
approximated as 2

3 Kapplied − 2Kbr in the laminate with double
delamination. A factor of 2 is used to account for bridging
due to two delaminations. Since there are only two cracked
aluminum layers that are restrained by a third layer at the free
end, Kapplied is reduced by a factor of 2/3 (2 representing the
number of cracked aluminum layers and 3 the total number of
aluminum layers). In the case of multiple delaminations, Kti p
is approximated as Kapplied − 4Kbr . A factor of 4 accounts for
bridging by four delaminations. As all three aluminum layers
are cracked up to free ends, no reduction factor is employed
in Kapplied.

Fig. 9. Stress plots in y direction, �y,total, f , in delaminated fiber zone of laminate with double delamination.
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Cracked Glare under Monotonic and Cyclic Loads 617

3.3. Results and Discussion

The theoretical model is first executed over double and multi-
ple cracked laminates with different residual stresses and de-
lamination shapes under far-field or applied monotonic stress
of 150 MPa and 15 MPa separately. The type of delamination
shape decides the value of delamination height, bi , at various
xi (refer to Appendix C). Values of tc0, tc90, and tal are taken
as 0.133, 0.133, and 0.4 mm, respectively. Data of the delami-
nated zone are suitably assumed, i.e., c = 25 mm, b = 4.7 mm,
and c′ = 1.5 mm [13]. Limit load of cracked aluminum layer
is 3450 N. But induced load over aluminum layer of 90 deg.
and 120 deg. cured laminates is 3942.8 N and 4252 N respec-
tively, which indicates plastic collapse conditions. However, as
already discussed, fiber bridging causes drop in load over alu-
minum layer that prevents collapse. This is also confirmed in
finite element analysis as well. As such, the selected crack con-

figuration is justified. n1 = 2, n2 = 1, and n3 = 2 in the case of
double delamination, whereas n1 = 4, n2 = 2, and n3 = 4 in
the case of multiple delaminations. �br, f is found to be tensile
(+ve), whereas �br,al is compressive (-ve) in all the cases. Val-
ues of �br, f at various locations along parent crack depth in
delaminated fiber zones of laminates, under 150 MPa stress,
with double and multiple delaminations of different shapes
are provided in Figures 3 and 4, respectively. Similar trends
are observed under 15 MPa stress. �br, f , in general, is least
at the laminate edge, increases along the crack depth, and fi-
nally drops sharply to zero at the crack tip line. The values
are maximum in the laminate with triangular delamination
and least in the laminate with elliptical delamination and are
more in 120 deg. cured laminate than in 90 deg. cured lami-
nate. Crack tip shielding is confirmed by +ve values of Kbr ,
which, for different delamination shapes, are plotted in Fig-
ure 5. As expected, they are maximum in the case of triangular

Fig. 10. Stress plots in y direction, �y,total, f , in delaminated fiber zone of laminate with multiple delaminations.
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618 S. Bhat and R. Patibandla

delamination and minimum in the case of elliptical delamina-
tion. Consequently, Kti p values are least in the former and
maximum in the latter. Although fiber bridging is more in
120 deg. cured laminate than in the 90 deg. cured one, Kti p
is found to be more in the former than in the latter. This is
due to higher �y,induced,al value in 120 deg. cured laminate that
results in increased Kapplied value and, therefore, higher value
of Kti p after subtracting the bridging effects. Bridging effects
are higher in the laminates with multiple delaminations than
with double delamination.

Results of monotonic load cases are subsequently used to
obtain cyclic values by subtracting the results of 150 MPa and
15 MPa. Laminate curing temperature/residual stresses do
not influence �Kapplied values. For a particular delamination
shape, �Kbr and �Kti p values are nearly the same in 90 deg.
and 120 deg. cured laminates and are quite close to each other
in the laminates with double and multiple delaminations as

well. �Kti p values are plotted in Figure 6. Like in mono-
tonic load cases, �Kti p values are minimum in the case of
triangular delamination and maximum in the case of elliptical
delamination.

4. Finite Element Analysis

A 3D model of a laminate is created with 8 noded, solid 185
elements in aluminum and 8 noded, layered solid shell 190
elements in fiber and resin layers. Half of the laminate is only
modeled due to symmetry. The number of nodes and elements
generated are equal to 55,827 and 53,066, respectively. Lin-
ear and nonlinear stress-strain data of materials, shown in
Figure 7, are used in the material models. Ramberg-Osgood
equation, ε = �

Eal
+ Yal m′

Eal
( �

Yal
)m′′

[26], is employed to obtain

Fig. 11. Stress plots in y direction, �y,total,al , in delaminated aluminum zone of laminate with double delamination.
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Cracked Glare under Monotonic and Cyclic Loads 619

nonlinear values. The material constants for aluminum, us-
ing stress-strain values at the break and at an intermediate
point provided in Table 1, are obtained as m′ = 1.2 and m′′ =
10. The nodes representing cracks at the bottom surface in
aluminum and resin layers of the model are unconstrained
while all the nodes of fiber layers are constrained in y direc-
tion (y = 0). Load is applied as monotonic stress at the top
edge of the laminate whereas the residual stresses, whose val-
ues in individual layers are taken from Section B of Table 3,
are introduced over respective nodes in x and y directions. A
mesh model of the laminate with various delamination shapes
is shown in Figure 8. Similar models are developed with both
double and multiple delaminations. Delaminations of triangu-
lar, cosine, parabolic, and elliptical debonding types (delami-
nation dimensions already stated in Section 3.3) are modeled

with the help of 8 noded, inter 205, cohesive elements. Val-
ues of maximum normal traction (�z), width, and maximum
equivalent shear traction of �zy and �zx at the delamination
zone are input as C1, C2, and C3, respectively, in the cohesive
element code. Since the type of de-bonding curve influences
these values, albeit marginally, the cohesive element data are
found for each of them by modeling cracked laminates without
delaminations but with the use of a chosen debonding curve to
note the maximum values developing near the curve. Sample
values of C1, C2, and C3 in the laminate, with double delam-
ination of triangular type, cured at 120 deg. temperature are
of the order of 19.5 MPa, 0.001 mm, and 15.03 MPa, respec-
tively. All of the interface layers are glued, the common nodes
are merged, and their connectivity is checked before running
the models for a solution. J integral over the cyclic path, P,

Fig. 12. Stress plots in y direction, �y,total,al , in delaminated aluminum zone of laminate with multiple delaminations.
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Fig. 13. Finite element values of fiber bridging stresses, �br, f , for different delamination shapes, in delaminated fiber zone of laminate
with double delamination.

[27] is defined in x-y plane by Eq. (4):

J =
∫

P

(
Wedy − Ty

∂vn

∂x
ds − Tx

∂un

∂x
ds
)

, (4)

where Ty = �yny + �xynx and Tx = �xnx + �xyny. With n’s in
the expressions representing unit vectors in respective direc-
tions refer to Figure 8. Jti p is found over paths near the crack
tip to numerically estimate the shielding effect due to fiber
bridging at the crack tip.

4.1. Results, Discussion, and Comparison with Theoretical
Values

Sample finite element plots of total load line or normal stress,
�y,total, f , in the delaminated zone of a fiber layer in lami-

nate, with double and multiple delaminations of triangular
and elliptical types, under 150 MPa applied stress are il-
lustrated in Figures 9 and 10. Similar plots for �y,total,al in
a delaminated aluminum zone are presented in Figures 11
and 12. Fulfillment of the conditions, �y,total, f > �y,induced, f
in fiber and �y,total,al < �y,induced,al in aluminum substan-
tiates load diversion to fiber with corresponding drop of
stresses in aluminum in all of the cases. (Effect of bridg-
ing on an entire fiber layer is discussed in Section 4.2.)
Plots with similar trends are obtained under 15 MPa stress
also. �y,total, f and �y,total,al equal (�y,induced, f + �br, f ) and
(�y,induced,al + �br,al + �y,crack), respectively, where �y,crack rep-
resents compressive stresses (-ve) due to the presence of a
crack. The values of �br, f along the crack depth are pre-
sented along with their theoretical values in Figures 13 and
14 for double and multiple delaminations of different shapes
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Cracked Glare under Monotonic and Cyclic Loads 621
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Fig. 14. Finite element values of fiber bridging stresses, �br, f , for different delamination shapes, in delaminated fiber zone of laminate
with multiple delaminations.

respectively. The values are in good agreement with each
other.

Referring to Figure 15, as expected the numerical size of
load line stress lobe developed in aluminum (stress exceed-
ing �y,induced,al ) is minimum in triangular delamination and
maximum in elliptical delamination due to maximum bridg-
ing in the former and minimum in the latter. Jtip values in all
types of laminates are presented in Table 4. The size of normal
crack tip plastic zone in the aluminum layer is found to be
quite less than the crack length, which confirms small scale
yielding regime. Therefore, the equation valid in LEFM for
plane stress condition, Ktip = √

Eal Jtip, is adopted to obtain
Ktip. Like theoretical results, Ktip is least in the case of tri-
angular delamination and maximum in the case of elliptical
delamination, lower in the case of multiple delamination than

in double delamination, and more in 120 deg. cured laminate
than in 90 deg. cured type. However, the magnitude of Kti p
is generally lower than its theoretical value in all the cases,
the difference being minimum in triangular delamination and
maximum in elliptical delamination. This is attributed to an
upward shift in stresses away from the crack tip, the shift
being minimum in triangular delamination and maximum in
elliptical delamination. For instance, J integral path near the
crack tip with elliptical delamination passes through the zone
of low stresses thereby resulting in lower numerical values of
Jti p and Kti p vis-à-vis the theoretical values, likewise in other
delamination shapes too. Effect of the stress shift could not
be captured in the theoretical model. Since the fiber bridging
effect at normal crack tip is higher in multiple delamination
than in double delamination, contrary to expectations that are
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622 S. Bhat and R. Patibandla

Fig. 15. Load line stress lobes in aluminum layer with different delaminations.

attributed to load transfer towards interfacial crack tips in-
stead of normal crack tips during fiber bridging due to dam-
age symmetry in multiple delamination case, the stress lobes
are found to be smaller in the former than in the latter. Also,
the stress lobes in both the cases are smaller at an applied
stress of 15 MPa. �Kti p displays similar trends as those by the
theoretical values.

Stresses exist along the thickness of the laminate (z direc-
tion) due to secondary bending effects. Sample lateral bending
plots, deformations, and stress distribution in laminates with
double and multiple delaminations of 120 deg. cured laminate

with triangular delamination under applied stress of 150 MPa
are illustrated in Figures 16 and 17.

4.2. Influence of Delamination Growth Parameters
on Fiber Bridging

Laminate with multiple delaminations is considered for such
an investigation because fiber bridging is higher in it than in
the laminate with double delamination. Since the size of a de-
lamination continuously changes with growth of normal and
interfacial cracks and is therefore governed by the parameters
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Cracked Glare under Monotonic and Cyclic Loads 623

Fig. 16. Secondary effects in laminate with double delamination.

c, b and the type of debonding curve, two sample discrete
cases are examined in 120 deg. cured laminate with triangular
debonding under monotonic load of 150 MPa, which are as
follows: Case (a) Incremental normal crack growth without
interfacial crack growth; Case (b) Incremental interfacial
crack growth with unchanged normal crack length. Refer
to Figure 18 for sample results in all fiber layers, f ′′

1 to f ′′
6 ,

as shown in Figure 1. In each case, the total normal stress,
�y,total∗, f , at all the nodes of a fiber layer are noted. The
average stress value, (�y,total∗, f )av, of each fiber layer is found
following which the average value of all six fiber layers, � f ,
equal to

∑
(�y,total∗, f )av/6, is computed. The same process

is undertaken for all three aluminum layers. �al is written as

∑
(�y,total∗,al )av/3. In case (a) at fixed b of 4.7 mm and normal

crack lengths of 24.9, 25, and 25.1 mm, the respective values
of � f are 88.02, 88.09, and 88.46 MPa, and the respective
values of �al are 200.35, 200.34, and 200.13 MPa. Likewise,
the values in case (b) at fixed c of 25 mm and interfacial crack
lengths of 4.6, 4.7, and 4.8 mm, the respective values of � f
are 88.32, 88.09, and 87.85 MPa, and the respective values of
�al are 200.22, 200.34, and 200.47 MPa. The results clearly
demonstrate increase in fiber bridging with drop is stress state
in aluminum layers as the normal crack grows and reduction
in fiber bridging with increase in stress state in aluminum lay-
ers when the interfacial crack advances. Accordingly, Kti p and
�Kti p values also fluctuate as the delamination size changes
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624 S. Bhat and R. Patibandla

Fig. 17. Secondary effects in laminate with multiple delaminations.

longitudinally and laterally with increasing damage in the lam-
inate. Load transfer effects are again convincingly proved since
� f > �y,induced, f and �al < �y,induced,al in both the cases.

5. Conclusions

Residually stressed, cracked, and delaminated, Glare compris-
ing three thin 2024-T3 aerospace aluminum alloy sheets alter-
natively bonded with two pre-pregs., each pre-preg. stacked
with three epoxy resin impregnated E-glass fiber layers laid
in 0, 90, and 0 deg. orientations, is theoretically and numeri-
cally investigated for fracture and fatigue characteristics. Lam-
inates cured at temperatures of 90 deg. and 120 deg., sub-
jected to constant monotonic tensile stress (150 MPa) and
tension–tension (150 MPa–15 MPa) fatigue cycles, are con-

sidered for investigation. Double and multiple delaminations
between aluminum and fiber layers, with triangular, cosine,
parabolic, and elliptical debonding curves, are examined. A
theoretical model is used to obtain stress intensity parameter
at normal crack tip, Ktip, in aluminum layer under the influence
of fiber bridging. Results of monotonic cases are extended to
a cyclic regime.

Stress fields in delaminated zones of aluminum and fiber
layers are obtained by finite element analysis. Fiber bridging
resulting in load diversion to fibers with consequent shield-
ing effect at normal crack tip is clearly noticed with all the
types of delaminations. The effect is more in laminates with
multiple delaminations than with double delamination. Jtip is
found over the path near normal crack tip to determine Ktip
numerically. Theoretical and numerical results support each
other well and confirm the following:
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Cracked Glare under Monotonic and Cyclic Loads 625

Fig. 18. Stress plots of entire fiber layers in y direction, �y,total∗, f , in laminate with multiple delaminations.
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626 S. Bhat and R. Patibandla

Fig. 18. (Continued)

(i) Fiber bridging is maximum in the laminate with trian-
gular delamination and minimum in the laminate with
elliptical delamination type, is more in 120 deg. cured
laminate than in 90 deg. cured laminate, and is higher in
laminate with multiple delaminations than with double
delamination.

(ii) Ktip values are minimum in the case of triangular delam-
ination and maximum in elliptical delamination, are less
in laminate with multiple delamination than with dou-
ble delamination. Although bridging is more in 120 deg.
cured laminate than in 90 deg. cured laminate, Ktip is
more in the former than in the latter.

(iii) With a particular delamination shape, �Ktip values are
nearly the same in 90 deg. and 120 deg. cured laminates
and are close to each other in laminates with double and
multiple delaminations as well. As in monotonic load
cases, �Ktip values are minimum in the case of triangu-
lar delamination and maximum in the case of elliptical
delamination.

(iv) Delamination size parameters influence fiber bridging.
Increase in delamination height by growth of interfacial
crack reduces bridging and increases the stress state in
the aluminum layer whereas an increase in delamination
length by growth of a normal crack increases bridging
and reduces the stress state in the aluminum layer.

Value of Kapplied for a thorough, Mode I, edge crack of
25 mm length in monolithic aluminum panel, of dimensions
similar to Glare under investigation, is 118.86 MPa

√
m when

subjected to monotonic far field stress of 150 MPa. Kti p shall
be equal to Kapplied since there is no shielding effect in ho-
mogenous aluminum. In comparison, theoretical Kti p values
in Glare laminate are found to be much less, the maximum
being 68.26 MPa

√
m in 120 deg. cured laminate with ellip-

tical delamination. Likewise, cyclic �Kapplied or �Kti p values
in aluminum panel under chosen load is 106.9 MPa

√
m. But

maximum value of �Kti p is of the order of 55.5 MPa
√

m in
the laminate with elliptical delamination. Values from finite
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Cracked Glare under Monotonic and Cyclic Loads 627

element analysis are even less. A substantial drop in Kti p and
�Kti p values in Glare, vis-a-vis monolithic aluminum panel,
under all possible conditions, convincingly confirms improved
fatigue and fracture properties of the laminate.
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Appendix A

Fundamental Equations

v f = Vf

Vf + Vr
, (A1)

vr = Vr

Vf + Vr
= 1 − v f , (A2)

v′
al = 3Val

4Vc0 + 2Vc90 + 3Val
, (A3)

v′
c0 = 4Vc0

4Vc0 + 2Vc90 + 3Val
, (A4)

v′
c90 = 2Vc90

4Vc0 + 2Vc90 + 3Val
, (A5)

Elc = E f v f + Ervr , (A6)

Etc = E f Er

v f Er + vr E f
, (A7)

�c0 = �c90 = �xy = �yz = � f �r

v f �r + vr � f
, (A8)

Ell = Elcv
′
c0 + Ealv

′
al + Etcv

′
c90, (A9)
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628 S. Bhat and R. Patibandla

Etl = 1
v′

al
Eal

+ v′
c90

Etc
+ v′

c0
Elc

, (A10)

�majc = � f v f + �rvr , (A11)

�min c = �majc
Etc

Elc
, (A12)

�majl = �majcv
′
c0 + �alv

′
al + �mincv

′
c90, (A13)

�lc = E f � f v f + Er �rvr

E f v f + Ervr
, (A14)

�tc = � f v f (1 + � f ) + �rvr (1 + �r ) − �majc�lc, (A15)

�ll = Elc�lcv
′
c0 + Etc�tcv

′
c90 + Eal�alv

′
al

Elcv′
co + Etcv

′
c90 + Ealv

′
al

, (A16)

�tl = �lcv
′
c0(1 + �majc) + �alv

′
al (1 + �al )

+ �tcv
′
c90(1 + �minc) − �majl�ll . (A17)

Appendix B

Constitutive Equations (Plane Stress)

(A) Aluminum and Pre-preg.
(i) Aluminum:

�x = Eal

1 − �2
al

{εx + �alεy}

�y = Eal

1 − �2
al

{
�alεx + εy

}
;

�xy = �al�xy

Stiffness matrix,

{M}al =

⎡
⎢⎢⎢⎢⎢⎢⎣

Eal

1 − �2
al

Eal

1 − �2
al

�al 0

Eal

1 − �2
al

�al
Eal

1 − �2
al

0 0 �al

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(ii) Composite, c0:

�x = Etc

(1 − �majc�minc)

{
εx + �majcεy

}
�y = Elc

(1 − �majc�minc)

{
�mincεx + εy

}
;

�xy = �c0�xy

Stiffness matrix, {M}c0

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Etc

(1 − �majc�minc)
Etc

(1 − �majc�minc)
�majc 0

Elc

(1 − �majc�minc)
�minc

Elc

(1 − �majc�minc)
0

0 0 �c0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(iii) Composite, c90:

�x = Elc

(1 − �majc�minc)

{
εx + �min cεy

}
�y = Etc

(1 − �majc�minc)

{
�majcεx + εy

}
;

�xy = �c90�xy

Stiffness matrix, {M}c90

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Elc

(1 − �majc�minc)
Elc

(1 − �majc�minc)
�minc 0

Etc

(1 − �majc�minc)
�majc

Etc

(1 − �majc�minc)
0

0 0 �c90

⎤
⎥⎥⎥⎥⎥⎥⎦

;

Stiffness matrix of laminate,

{M}lam = {M}al × 0.4 × 3
2.0

+ {M}c0 × 0.133 × 4
2.0

+ {M}c90
0.133 × 2

2.0
;

Applied stress over laminate,

�applied =

⎧⎪⎨
⎪⎩

�x

�y

�xy

⎫⎪⎬
⎪⎭

applied

;

Strain in laminate,

εlam =

⎧⎪⎨
⎪⎩

εx

εy

�xy

⎫⎪⎬
⎪⎭

lam

= {M}−1
lam �applied;

Induced stress in each laminate layer,

�induced =

⎧⎪⎨
⎪⎩

�x

�y

�xy

⎫⎪⎬
⎪⎭

induced

;

Without residual stresses:
In aluminum, {�}induced,al = {M}al × εlam;
In composite c0, {�}induced,c0 = {M}c0 × εlam;
In composite c90, {�}induced,c90 = {M}c90 × εlam.
With residual stresses:
Residual strain:

Aluminum, {ε}al,rs =

⎡
⎢⎣
⎧⎪⎨
⎪⎩

�x

�y

0

⎫⎪⎬
⎪⎭

al

−

⎧⎪⎨
⎪⎩

�tl

�ll

0

⎫⎪⎬
⎪⎭
⎤
⎥⎦

× (
T′

curing − T′
ambient

)
;

D
ow

nl
oa

de
d 

by
 [

Su
ni

l B
ha

t]
 a

t 0
1:

19
 1

6 
M

ay
 2

01
4 



Cracked Glare under Monotonic and Cyclic Loads 629

Composite c0, {ε}c0,rs =

⎡
⎢⎣
⎧⎪⎨
⎪⎩

�tc

�lc

0

⎫⎪⎬
⎪⎭−

⎧⎪⎨
⎪⎩

�tl

�ll

0

⎫⎪⎬
⎪⎭
⎤
⎥⎦

× (
T′

curing − T′
ambient

)
;

Composite c90, {ε}c90,rs =

⎡
⎢⎣
⎧⎪⎨
⎪⎩

�lc

�tc

0

⎫⎪⎬
⎪⎭−

⎧⎪⎨
⎪⎩

�tl

�ll

0

⎫⎪⎬
⎪⎭
⎤
⎥⎦

× (
T′

curing − T′
ambient

)
;

{�}induced,al = {M}al × [
εlam + {ε}al,rs

]
;

{�}induced,c0 = {M}c0 × [
εlam + {ε}c0,rs

]
;

{�}induced,c90 = {M}c90 × [
εlam + {ε}c90,rs

]
.

(B) Individual Layers
(i) Aluminum:

�x = Eal(
1 − �2

al

) {εx + �alεy
}

�y = Eal(
1 − �2

al

) {�alεx + εy
}
.

�xy = �al�xy

(ii) Resin:

�x = Er(
1 − �2

r

) {εx + �r εy
}

�y = Er(
1 − �2

r

) {�r εx + εy
}
.

�xy = �r �xy

(iii) Fiber:

�x = E f(
1 − �2

f

) {εx + � f εy
}

�y = E f(
1 − �2

f

) {� f εx + εy
}
.

�xy = � f �xy

{M}al , {M} f , and {M}r are obtained in a similar manner
as discussed earlier.
Stiffness matrix of laminate:

{M}lam = {M}al × 0.4 × 3
2.0

+ {M} f × 0.1 × 6
2.0

+ {M}r

× 0.0165 × 12
2.0

;

Residual strain:

Aluminum, {ε}al,rs =

⎡
⎢⎣
⎧⎪⎨
⎪⎩

�x

�y

0

⎫⎪⎬
⎪⎭

al

−
⎧⎨
⎩

�tl
�ll
0

⎫⎬
⎭
⎤
⎥⎦

× (
T′

curing − T′
ambient

)
;

Resin, {ε}r,rs =

⎡
⎢⎣
⎧⎪⎨
⎪⎩

�x

�y

0

⎫⎪⎬
⎪⎭

r

−

⎧⎪⎨
⎪⎩

�tl

�ll

0

⎫⎪⎬
⎪⎭
⎤
⎥⎦

× (
T′

curing − T′
ambient

)
;

Fibre, {ε} f,rs =

⎡
⎢⎣
⎧⎪⎨
⎪⎩

�x

�y

0

⎫⎪⎬
⎪⎭

f

−

⎧⎪⎨
⎪⎩

�tl

�ll

0

⎫⎪⎬
⎪⎭
⎤
⎥⎦

× (
T′

curing − T′
ambient

)
.

Induced stresses, with and without residual stresses, are
found in a similar manner as discussed in Part A.

Appendix C

The equation of deformation at x = xi in the delamination
zone is written as:

�c(xi ) + �ad (xi ) = u∗
induced(xi ) − u∗

br (xi ) + �al , (C1)

�c(xi ) =
(

2
[
�y,induced,c0 + �br, f (xi )

]
Elc

+
[
�y,induced,c90 + �br, f (xi )

]
Etc

)
bi , (C2)

�ad (xi ) = (Nb)i �y,induced,al tal
tc0

�c0√(
n1

�c0

tc0
+ n2

�c90

tc90

)
×
(

1
n3tal Eal

+ 1
n1 Elctc0 + n2 Etctc90

)
,

(C3)

where (Nb)i = 1 − [cosh
√

�udbi − tanh
√

�udbi sinh
√

�udbi ],
bi = b. f (c, c′, xi ) and

�ud = 2

[
n1

1
tc0 Elc

+ n2
1

tc90 Etc

n1
tc0
�c0

+ n2
tc90
�c90

]
.

u∗
induced(xi ) = 2�y,induced,al

Eal

√
c2 − x2

i , (C4)

u∗
br (xi ) =

∫ c

0
u∗ (xi , xj

)
dxj , (C5)
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where displacement at a point due to bridging is given as
follows:

u∗ (xi , xj
) = 4

	Ell

⎛
⎝tanh−1

√√√√ c2 − x2
j

c2 − x2
i + b2

j

+
1
2 (1 + �majl )b2

j

x2
j − x2

i + b2
j

×
√√√√ c2 − x2

j

c2 − x2
i + b2

j

⎞
⎠�br, f (xj ). (C6)

(If xi > xj , replace xi by xj and xj by xi .)
�al is the deformation in aluminum layer which is negligible

and is not considered. Bridging stresses (compressive, -ve) in
aluminum are given by:

�br,al (xj ) = −�br, f (xj )
n1tc0 + n2tc90

n3tal
. (C7)

Normal crack tip 

x = 0ix

c'

c

b

ib

Debonding curve 

Delaminated  
      zone 

x

y

Laminate 
edge

bi = b c−xi
c−c′ (Triangular delamination); bi = b

√
c−xi
c−c′ (Parabolic

delamination) bi = b
√

1 − ( xi −c′
c−c′

)2
(Elliptical delamination);

bi = b cos
[

	
2

( xi −c
c−c′

)]
(Cosine delamination)
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