I. INTRODUCTION

The naming game (NG) [1,2] is a simple multiagent model that employs mutual bipartite interactions within a population of individuals which lead to the emergence of a shared communication scheme. In each game, a randomly selected pair of agents interacts to negotiate conventions, i.e., associations between forms (names) and meanings (for example, objects in the environment, linguistic categories, etc.). The negotiation of conventions takes place as follows: one of the agents (acting as a speaker) attempts to draw the attention of the other agent (acting as the hearer) toward the external meaning (i.e., an object or a category) by the production of a conventional form. If the hearer is able to express the proper meaning of the form uttered by the speaker, the agent pair is assumed to meet a mutual consensus and the interaction is called a “success.” Consequently, both agents update their form-meaning repertoire by removing all competing forms corresponding to the meaning except the “winning” one currently uttered by the speaker. On the other hand, if the hearer produces a wrong interpretation, then she takes a lesson from the meeting by learning this new form-meaning association, and in this case the interaction is termed as a “failure.” Thus, on the basis of success and failure of the hearer in producing the meaning of the name, both interacting agents reshape their internal form-meaning association. Through successive interactions, the adjustment of such individual associations collectively leads or should lead to the emergence of a global consensus.

The naming game model is one of the simplest examples of a framework progressively leading to the establishment of humanlike languages. It was initially formulated to understand the role of self-organization in the evolution and change of human languages [3,4]. Since then, this model has acquired a paradigmatic role in the novel field of semiotic dynamics (see [1,2,5–9] for a series of references), which primarily investigates how language evolves through the invention and successive adoption of new words and grammatical constructions. NG finds wide applications in various fields, ranging from an artificial sensor network as a leader election model [7] to social media as an opinion formation model [10]. More advanced models [11,12] attempting to explain additional complex processes such as categorization have also been built on top of the basic naming game framework.

In this paper, we revisit the basic construction of this model and argue that it is too stringent in removing all the entries except the winning one from the agent repertoire after a successful interaction. Further, it has to be noted that learning is seldom unidirectional, as in the case of a failure in the original naming game; in contrast, we believe that learning is usually reciprocal [13,14]. Therefore, here we redefine the interaction rules in order to address the above limitations by having a symmetric model in which on a success both agents sort out all the common information that they have, while on a failure they enhance each of their knowledge by learning all the form-meaning associations that the other partner only knew up to that point. One can intuitively posit that this process should lead to the emergence of a faster consensus than the original naming game due to the fact that (a) the agents learn more and (b) the agreement criteria are relaxed, thereby increasing the probability of successful communication. We performed rigorous numerical simulations to obtain the scaling relations for this revised model, and we show explicitly that for a population of N agents, the time to reach a global consensus indeed scales as $N^{1.13}$ as opposed to $N^{1.5}$ for the original naming game.

II. MODEL

There are N agents in a community. Each agent i ($i = 1, \ldots, N$) has an inventory of words whose length ℓ_i may be arbitrarily long. The community evolves under a dynamical process in which a long sequence of mutual bipartite information sharings takes place that finally reaches a stable state in which all agents have the same set of common words. At the initial stage all agents have empty inventories, i.e., $\ell_i = 0$ for all i. In an interaction, a pair of distinct agents i and j of inventory lengths ℓ_i and ℓ_j, respectively, are selected randomly with uniform probability from all the agents. One of
them, say the ith agent, is randomly selected between the two and is termed the “speaker” whereas the jth agent is called the “hearer.” The time t is discrete and is measured in terms of the number of interactions. The interaction between them can take place in the following three possible ways:

(i) Invention. In this case, the inventory list of the speaker is empty. The speaker picks up a new word and keeps it at the bottom of his inventory. Since this is a new word, it cannot be present in the inventory of the jth agent. Therefore, this new word is simply added to the top of the inventory of the jth agent.

(ii) Success. In this case, the inventory length of the speaker is nonzero. The speaker and the hearer share information about their content, sort out the common content, and only the common words are retained. In other words, the inventories of lengths ℓ_i and ℓ_j of the speaker and the hearer, respectively, are compared and the number n of common words is sorted out. If $n > 0$, then this possibility is called a success. The inventories of both the speaker and the hearer are then shrunk to n entries where only the common words are kept.

(iii) Failure. If the inventories have nonzero lengths yet there is no common word between them, then the lists are merged and both agents have the same combined list.

It should be noted that in this model, the success and failure rules are symmetric with respect to the speaker and the hearer.

At any arbitrary intermediate time t, the total number of words in the community is denoted by $N_w(t)$ and the total number of distinct words is denoted by $N_d(t)$. The dynamics starts with the inventory lengths $\ell_i = 0$ for all i. At very early times, almost all interactions are of type A. During this period, both $N_w(t)$ and $N_d(t)$ grow very fast, i.e., linearly with time. As time proceeds, more and more agents have nonzero inventory lengths and therefore the chances of interactions of types B and C become increasingly likely. Consequently, $N_w(t)$ reaches a maximum at a specific time t_m and then it decreases with time [Fig. 1(a)]. On the other hand, the number of distinct words $N_d(t)$ nearly saturates around a fixed mean value. Eventually, $N_d(t)$ also decreases gradually and the community finally converges at the time t_f to a stable state which is a fixed point [Fig. 1(b)]. In this stable state, $N_w(t_f)$ takes a value gN when every inventory has the same set of g common words, g being a small positive integer. Therefore, in contrast to the naming game model where $g = 1$ [1], there could be multiple globally common words in our model, i.e., $g > 1$. Consequently, $N_d(t)$ finally reaches the value g. In addition, a third quantity $S(t)$ is also calculated which measures the success rate of an interaction at time t. In other words, $S(t)$ is the fraction of a large number of independent runs which have successful moves at time t, and its variation with time is shown in Fig. 1(c).

III. ALGORITHM

The simulation algorithm can be described as follows. Positive integer numbers starting from unity are used for representing different words. Therefore, at any arbitrary intermediate stage if N_d distinct words have already been used, to choose a new word one simply selects the number $N_d + 1$. It turns out that defining an array $b(k)$ is very useful, as $b(k)$ keeps track of the number of times the word k has occurred with all agents. In case A, $b(k)$ is increased by 2: $b(k) \rightarrow b(k) + 2$. However, to check if an interaction is a case of success or failure, one first compares the inventories of the ith and the jth agents. Therefore, every word of the list ℓ_i has to be checked in the list ℓ_j and vice versa. This is easily done by using another array $a(k)$, and for every word k in ℓ_i and ℓ_j one makes $a(k) \rightarrow a(k) + 1$. After that, the number of locations with $a(k) = 2$ is the number of common words between ℓ_i and ℓ_j. Let this number be n, and only these common words are kept in another array a_1. At the same time, we also count out of n such common words how many have $b(k)$ values greater than 2, i.e., these words have not only occurred in ℓ_i and ℓ_j but also in the inventories of other agents. Let this number be n'. If $n > 0$ it is a case of success, and if $n = 0$ it is a case of failure.

In the case of success, we first update the b array. For each entry k in ℓ_i and ℓ_j, we first make $b(k) \rightarrow b(k) - 1$. Therefore, during this updating procedure, whenever $b(k)$ becomes zero we reduce N_d by 1: $N_d \rightarrow N_d - 1$. Let there be m distinct entries in the inventories of i and j where $b(k)$ becomes zero. Then the n words in a_1 array are copied to ℓ_i and ℓ_j. N_w is updated as $N_w \rightarrow N_w - \ell_i - \ell_j + 2n$ and N_d as $N_d \rightarrow N_d - n$. The inventories of ℓ_i and ℓ_j are then added to the inventory of the jth speaker, and the inventories of ℓ_i and ℓ_j are then added to the inventory of the jth hearer. If there is a failure, then the inventories are simply added.
the total number of words $N_w(t)$ and the number of distinct words $N_d(t)$ at any arbitrary time t.

| Rule A | $N_u \rightarrow N_u + 2$;
| Rule B | $N_u \rightarrow N_u - \ell_i - \ell_j + 2n$;
| Rule C | $N_u \rightarrow N_u + \ell_i + \ell_j$; |

N_d is updated as $N_d \rightarrow N_d - m + n - n'$. This completes a successful interaction.

In the case of failure, the combined lists of ℓ_i and ℓ_j are copied to the inventory lists of i and j. For each such word, the b value is increased by unity. The total number of words N_w is increased as $N_w \rightarrow N_w + \ell_i + \ell_j$, and the number of distinct words N_d remains the same. This completes an unsuccessful interaction (see Table I).

IV. RESULTS

It is noticed that on increasing the community size N, the probability that an arbitrary configuration has the same set of g distinct words per agent in the final stable state decreases for $g > 1$ and it increases to unity for $g = 1$. We have measured the fraction $f_N(g)$ of a large sample of uncorrelated configurations that have g words in the final stable configurations. The variation of $f_N(1)$ has been shown in Fig. 2. A plot of $1 - f_N(1)$ versus N on a log-log scale gives a nice straight line for the intermediate range of N. This indicates that the growth of $f_N(1)$ to unity as N increases follows a power law like $1 - f_N(1) = AN^{-\gamma}$ and our measured value of γ is 1.13(2).

The mean maximal time $\langle t_m(N) \rangle$ and the mean convergence time $\langle t_f(N) \rangle$ have been measured for different values of N and are plotted using a log-log scale in Fig. 3. The community sizes which have been simulated varied from $N = 2^1, 2^5, \ldots, 2^{16}$, increasing by a factor of 2 in successive steps. These data fit very well to straight lines. Therefore, assuming power law variations like

$$\langle t_m(N) \rangle \sim N^{-\alpha} \quad \text{and} \quad \langle t_f(N) \rangle \sim N^{-\beta},$$

we obtained $\alpha = 1.12$ and $\beta = 1.14$.

FIG. 2. The fraction $1 - f_N(1)$ of configurations having more than one distinct word per agent in the stable state has been plotted against the community size N. A power law is observed such as $1 - f_N(1) \sim N^{-\tau}$ with $\tau \approx 1.13(2)$.

FIG. 3. (Color online) The variations of the average maximal time $\langle t_f(N) \rangle$ (blue) and the average convergence time $\langle t_f(N) \rangle$ (red) against the community size N. The exponents are $\alpha = 1.12$ and $\beta = 1.14$, respectively.

This observation leads us to conclude that both α and β are approximately the same and have a value 1.13(1). It may be noted that these exponents are much smaller than those of the original naming game (both α and β equal to 1.5) [1]. This faster consensus may be a consequence

FIG. 4. (Color online) (a) Plot of the average maximal number of words $\langle N_wm(N) \rangle$ against the community size N on a log-log scale. (b) The slopes $\gamma(N)$ between pairs of successive points in (a) gradually increase with increasing N and have been plotted against $N^{-0.44}$ to obtain the asymptotic value of $\gamma = 1.539$.

062808-3
of the fact that the interaction rule here is symmetric, thus increasing the possibility of alignment between the agents through fewer interactions as compared to the original naming game. Furthermore, here the stable state criterion is also relaxed, so the agents are assumed to reach consensus even if they do not agree on only a single word.

Next, in Fig. 4 we plotted the average maximal number of words \(\langle N_{\text{um}}(N) \rangle \) against \(N \) on a log-log scale for the same community sizes. Here again we assumed a power-law variation such as

\[
\langle N_{\text{um}}(N) \rangle \sim N^\gamma
\]

and the average slope is measured using a least-squares fit method. We obtained an average value of \(\gamma = 1.49 \). Furthermore, this analysis has been done in more detail. The intermediate slopes \(\gamma(N) \) between successive pairs of points have been measured and extrapolated against \(N^{-0.44} \). The extrapolation fits very well to a straight line, and in the limit of \(N \to \infty \) the value of \(\gamma = \gamma(\infty) = 1.539 \) has been obtained. This value of \(\gamma \) is comparable with 1.5 in the original naming game model [1].

It may be noticed that the main difference between the present model and the original naming game arises from the fact that here a failure is caused when none of the words known by the speaker is also known by the hearer, as opposed to the mean-field case in which the sufficient condition for failure is that the one random word selected by the speaker is unknown to the hearer. A similar argument also holds for the success case in which the success probability in this case is determined by whether the hearer knows one or two or three or up to any number of words known by the speaker, unlike the mean-field case in which success is determined by the match of the one random word selected by the speaker. Therefore, intuitively a single success or failure event in our model corresponds to an accumulation of a set of a number of independent success and failure events in the mean-field case, thus making the current dynamics faster and the overall exponents different.

V. THE LARGEST CLUSTER

At an intermediate time \(t \) there are \(N_d(t) \) distinct words, and in general each word is shared by a number of agents. Similar to the percolation phenomena [15], we define the cluster size \(s_i \) associated with the \(i \)th word as the number of distinct agents which have the word \(i \) in their inventories. In the algorithm described in Sec. III, we have stored the cluster sizes in the array \(b(i) \). As time evolves, cluster sizes of some words gradually vanish but at the same time the cluster sizes of the other words grow. Finally, only \(g \) distinct words survive whose cluster sizes are exactly \(N \), and at this point the dynamics reaches the fixed point. It may be noted that the size of a particular cluster increases in the failure rule and decreases in the success rule only by one agent at a time. We keep track of the variation of the size of the largest cluster \(s_m(t,N) \) and observe how it increases almost monotonically and assumes the size \(N \) at the fixed point (Fig. 5). At an intermediate stage there may be a number of distinct clusters whose sizes are equal to the largest cluster size \(s_m(t,N) \). We define the fractional size

\[
\delta(N) = \frac{s_m(t,N)}{N}
\]

and plot it against \(N \) (Fig. 6).

FIG. 5. (Color online) For a single run, the variations of the scaled sizes of the largest cluster \(s_m(t)/N \) and the second largest cluster \(s_{2m}(t)/N \) for a community with \(N = 16384 \) agents. It is seen that while the size of the largest cluster grows almost (but not exactly) monotonically, the size \(s_{2m}(t) \) of the second largest cluster reaches a maximum at time \(t_c \) and then gradually decreases to zero. The time axis has been scaled by the characteristic time \(t_c \).

FIG. 6. (Color online) (a) The average value of the characteristic time \(t_c(N) \) where the size of the second largest cluster is maximum has been plotted with the community size \(N \) on a log-log scale for \(N = 2^6, \ldots, 2^{15} \). The variation seems to be a power law: \(t_c(N) \sim N^{0.42} \). (b) Slopes between successive points have \(N \) dependence and we plot \(\delta(N) \) vs \(N^{-0.42} \), which fits best to a straight line. The extrapolated value \(\delta = 1.12 \).
scaling of the data in (a); the plot of the largest cluster runs as exhibits a data collapse.

In contrast to \(t_c(N) \) at the fixed point (Fig. 5). We define another characteristic time to a maximum value and then systematically decreases to zero.

In addition, we define the size at which the second largest cluster assumes its maximum value. This is the transition time when the second largest cluster starts dismantling and the largest cluster grows at its fastest rate, which signifies the onset of correlation in the community.

In Fig. 6(a), the characteristic time \(\langle t_c(N) \rangle \) averaged over many independent runs has been plotted on a log-log scale against the community sizes \(N = 2^6, 2^7, \ldots, 2^{15} \). While the points seem to fit a nice straight line on average, a closer look reveals that here again the local slopes between successive pairs of points have a systematic variation. Assuming that the functional form would indeed be a power law in the limit of \(N \to \infty \) as

\[
\langle t_c(N) \rangle \sim N^\delta,
\]

we have extrapolated the local slopes \(\delta(N) \) with a negative power of \(N \). The best value of this correction exponent is 0.42, and in Fig. 6(b) a plot of \(\delta(N) \) against \(N^{-0.42} \) gives a nice straight line for large \(N \) values. Extrapolating to \(N \to \infty \), we obtained \(\delta = 1.12 \).

Finally, in Fig. 7 the average value of the largest cluster size \(\mathcal{C}(t,N) \) has been plotted for three different community sizes \(N = 2^{12}, 2^{14}, \) and \(2^{16} \). We first scale the time axis \(t/N^{1.13} \) so that the scaled time could be treated similar to the site or bond occupation probability in percolation theory. The scaled axis is then shifted by 2.98 and then again scaled by \(N^{0.13} \) to obtain a data collapse.

To summarize, we devised a model for information sharing and sorting in a community of agents. Three types of mutual bipartite interactions take place among the randomly selected pairs of agents. Here the interactions are more symmetric and less restricted compared to the ordinary naming game. By Invention new words are created, by Failure inventories are shared, and by Success only the common words are sorted out. The dynamics of the system is dominated initially by Invention, followed by rapid growth of different words dominated by Failure, and finally the system gradually gets rid of uncommon words dominated by Success moves. The system finally reaches the stable state where each agent has the same set of \(g \) words in his inventory. Using extensive numerical studies, we find that the exponents describing the characteristic time scales and the maximum number of words of this model assume a completely distinct set of values compared to the ordinary naming game.
