
A Community-Centred Design Approach for
Accessible Rich Internet Applications (ARIA)

Dr Steve Green Dr Elaine Pearson Dr Voula Gkatzidou
Accessibility Research Centre Accessibility Research Centre Accessibility Research Centre

Teesside University Teesside University Teesside University
 Middlesbrough, UK, TS1 3BA Middlesbrough, UK, TS1 3BA Middlesbrough, UK, TS1 3BA

s.j.green@tees.ac.uk e.pearson@tees.ac.uk s.gkatzidou@tees.ac.uk

Franck Oliver Perrin
Accessibility Research Centre

Teesside University
Middlesbrough, UK, TS1 3BA

f.perrin@tees.ac.uk

There are a number of emerging standards and guidelines which help the web developer
or learning technologist produce inclusive static and dynamic internet-based applications which
will meet the needs of users, regardless of their special needs or individual requirements.
These standards and guidelines typically assume that the needs of the individual user are well
defined, that the function of the web application is clear and that appropriate adaptations can
be readily applied. However this also puts a heavy burden on the skills and knowledge of the
developer and fails to utilise the expertise of tutors and other members of the community for what
is potentially a very wide range of users and individual needs and requirements.
Consequently this research suggests an approach which combines the benefits of using
formally specified standards-based components in the form of W3C Widgets and Accessible Rich
Internet Applications (ARIA) with a Community-Centred Design approach based on the UK JISC
funded projects WIDE (Widgets for Inclusive Distributed Environments) and WIDGaT (a Widget
Authoring Toolkit). This work forms part of a wider research topic on adaptable personal e-
learning and e-media.

Accessibility, adaptability, disability, community of practice, user-centred design, personal learning.

1. INTRODUCTION

Authors of e-learning, e-media or web content
usually refer to the W3C Web Content Accessibility
Guidelines (WCAG, 2009) if they understand the
need to produce content which is accessible to a
wide audience. WCAG 2.0 provides extensive
guidance on how to make static content accessible
to people with a broad range of disabilities and as
such can often be applied to static e-learning
content too. However when we are producing
dynamic content or an application which can be
described as a Rich Internet Application (RIA),
usually a widget, app or gadget, then the W3C WAI
ARIA (2009) standard (Accessible RIA) might prove
to be more appropriate. In some educational
contexts where the content or application forms
part of a Personal Learning Environment (PLE)
(JISC 2009, van Harmelen 2006) then the ISO/IMS
standards for Accessibility Metadata (ACCMD, IMS
2004) or user profiles (ACCLIP, IMS 2003) might
be more specific to the problem. However the
average web designer is unlikely to be fully familiar

with all these standards and guidelines. They are
simply too detailed and too many. If e-learning
authors and web designers themselves find these
standards difficult to follow then clearly it would be
unreasonable to expect tutors and educationalists
to understand them. However these are often the
very people who have the expert knowledge of the
needs of their learners. Consequently if we wish to
involve the wider community in the design of
accessible rich internet applications and media we
need to develop a method which incorporates
within the process the basic principles which these
standards represent.

For this reason this research has taken two parallel
approaches to its definition of e-learning content
and applications. One approach is based on the
formal specification of an e-learning framework
using traditional modelling techniques such as
Unified Modelling Language (UML) and Artificial
Intelligence languages. This method has a close
affinity to the standards on which it is based.
However the second is a User-Centred Design

© The Authors. Published by BISL.
Proceedings of the BCS HCI 2012
People & Computers XXVI, Birmingham, UK

89

ACCMD
IMS AccessForAll Meta-data
Information Model

ACCGuide
IMS Guidelines for Developing
Accessible Learning Application

ACCLIP
IMS Learner Information Package
Accessibility for LIP

CEN-ISSS Learning Technologies
APLR Workshop Accessibility Properties for

Learning Resources

ARIA
W3C/WAI Accessible Rich Internet
Applications

WCAG
W3C/WAI Web Content Accessibility
Guidelines

W3C W3C Widget Standards (HTM5, CSS3
Widgets and JavaScript)

A Community-Centred Design Approach for Accessible Rich Internet Applications
Steve Green, Elaine Pearson, Voula Gkatzidou and Franck Perrin

approach based on a community of practice. This is
what we refer to as Community-Centred Design.
The authors believe that the combination of both
formal and user-centred approaches has much to
offer and can achieve a useful marriage of theory
(standards, AI and formal specification) with
practice (HCI, user needs, community design and
development). The culmination of this was the Joint
Information Systems Council (JISC) projects
Widgets for Inclusive distributed Environments
(WIDE) (ARC, 2010) and the follow up project
widget authoring toolkit - WIDGaT. This paper
looks at how inclusion, personalisation and
adaptability can be designed into hypermedia to
produce community designed widgets based on
accessible rich internet applications. We will begin
with a brief description of the guidelines and
standards on which this work is based and then
discuss the inclusive e-learning context. We will
then go on to present our community-centred
design approach applied to widget design and
conclude with a discussion and evaluation of
widget production and a preview of our WIDGaT
authoring toolkit.

2. ACCESSIBLE E-LEARNING

The standards and guidelines which are relevant to
the wider research on accessible e-learning are
listed in table 1 below. They are primarily based
around different types of static and dynamic web-
based content and applications and the need to
make hypermedia universally accessible (see table
1) (Lazarinis et al, 2011).

Table 1: Accessibility standards and guidelines

There are also a number of other important e-
learning standards not listed above which are
relevant to the specific context of e-learning (IEEE
2002, IMS 2003, Lazarinis et al. 2011). The W3C
Widget standards are included here because W3C
Widgets are inherently adaptable and arguably,

therefore contribute to the wider debate on
inclusive web or e-learning design.

2.1 W3C Widgets
W3C Widgets is a recent standard (September
2011). While there is no current reference model
there are two main examples: one is the Apache
incubator project Wookie (2009) and the second
the Opera developers’ community (2010). They are
typically known as Wookie and Opera widgets
respectively but both basically follow the W3C
standards and recommendations. Widgets are not
specified with accessibility in mind, but because the
standard is relatively simple, designed for
personalisation and re-use and for a desktop or
mobile context they are inherently adaptable. They
are meant to provide a common design solution for
a range of platforms. Most modern browsers (any
that support HTML5) and many mobile devices can
already support W3C widgets and more device
profiles are being added to the list every day.
Widgets, as defined by the W3C standard, are
based on web browser technologies. They are
zipped packages of files and directories usually
with a .wgt or .zip extension. They would usually
comprise at least four separate components:

• an XML-based configuration file config.xml
• an HTML5-based start page index.html
• a CSS3-based style sheet
• and a JavaScipt file

The XML configuration file defines the basic
features, dimensions and startup operation of the
widget. The HTML index file contains the main
widget opening page. The CSS file has the style
information for the document objects and the
JavaScript file contains the code to handle widget
events, API and web service access and any
general interaction of the widget. In addition there
could be many other HTML pages, JavaScript
libraries further CSS and of course directories of
media and resources. Some widgets will be entirely
self-contained, installable on the device or desktop,
others will need access to external media and
services either locally served from the widget
repository or through the internet. Widgets can
typically make use of APIs and web services
(usually JSON or REST) to take advantage of
existing information or open access resources. An
example would be using Google maps or geo-
location services through Google APIs (2009).

Because widgets are based on existing web
technologies the development process should be
reasonably straightforward for web developers and
programmers familiar with scripting or an object-
oriented language like C++ or Java. W3C widgets
come in a number of flavours. For example Wookie
widgets (Wookie, 2009) run from a web-server
allowing for ready communication between users
and instances of the same widget. Opera widgets

 90

A Community-Centred Design Approach for Accessible Rich Internet Applications
Steve Green, Elaine Pearson, Voula Gkatzidou and Franck Perrin

(Opera, 2010) on the other hand can be directly
installed on a desktop or mobile device allowing a
greater flexibility in off-line or personalised use.
However all widgets developed to the W3C
standard are very easy to adapt to different
platforms or contexts. It is this ease of adaptation
which makes them of particular interest to our
context of accessible personal learning. Next we
consider the accessibility specific ARIA standard.

2.2 W3C/WAI ARIA
ARIA presents guidance on the way that dynamic
web-based material should be designed and
presented for assistive technologies. Unlike IMS
AccessForAll (2003, 2004, 2009) which deals
largely with e-learning content, WCAG (W3C 2009)
and ARIA (W3C/WAI 2009) try to consider all types
of web-based application. WCAG has a large
number of recommendations for web-designers
and web developers culminating in a range of web
audit checks relevant to static content. However
here we are primarily concerned with dynamic
content and small applications including widgets.
We also need to be able to handle adaptations and
contextual elements (cf. Sloan et al. 2006). As a
result we need to consider the W3C Web
Accessibility Initiative (WAI) standard for
Accessible Rich Internet Applications (ARIA). This
standard has now been included into W3C HTML5.

What ARIA does (to add to WCAG) is to deal with
dynamic web-based content such as widgets, apps,
gadgets or tools that typically work in a way similar
to a standard desktop application. These are the
kind of tools that tend to blur the distinction
between the web, the PC desktop and the mobile
device. ARIA basically adds or re-uses a number of
attributes. The first of these is the role attribute.
Because in RIA HTML tags might actually perform
a number of functions which are not clear from the
tag element, the role performs the job of indicating
the tag’s function. For example the <body> tag
might be given the role=”application”

attribute to indicate that this is an application-type
widget or role=”document” to indicate that it is
largely static content to be read. A later <div> tag
might be identified as the ”header”, ”main”,
”menu” or ”footer” content.

In addition to the role attribute ARIA also adds the
alt and tabindex attributes to all tags. The first
basically means any document object can have an
alternative text attribute (useful for screen-readers).
The tabindex extension is less obvious. It allows
any tag to gain input focus or appear in the tab-
order for navigation with the tab key (commonly
used by screen-readers and assistive
technologies). The tabindex can have any one of
three sets of values: a positive index indicates that
the tag should be visited in the indexed tab order; a
zero index indicates that the object should appear

in its natural tab order; a negative index means that
the object should not appear in the tab-order but it
may receive focus. In practice this is often used
dynamically with one of a set of controls having a
tabindex of 0 and the others with a tabindex of -1.
The cursor keys or other controls are then used to
shift the tab focus to the other items in the tab set.
This is important to allow screen-readers a hint at
how content should best be navigated.

Further to these three attributes ARIA also adds a
whole class of status and value properties all
prefixed ‘aria-‘. For example there are properties
such as aria-valuemin, aria-valuemax and
aria-valuenow. These are useful in describing to
assistive technology the current state or value of a
control. For example there may be a slider control
using a graphic image. In ARIA this could be:

<img id=”textFontSize”

role=”slider”

alt=”text size slider”

src=”graphics/slider.jpg”

onclick=”changeTextFontSize()”

aria-valuemin=”0.5”

aria-valuemax=”4.0”

aria-valuenow=”1.5” />

The HTML and ARIA markup define the initial
values of the control as defined but it is up to the
programmer to ensure that the value of the aria-
valuenow property is kept up-to-date. In this
instance a trick that the web designer may use is to
have the CCS3 change the slider image based on
the aria-valuenow property. Only by keeping the
ARIA properties up-to-date and relevant can
assistive technologies inspect the current state of a
dynamic system.

2.3 Inclusive e-Learning
Within the context of accessible e-learning IMS
AccessForAll is also a relevant. It is essentially a
standard that proposes a mechanism by which e-
learning content can be made universally available.
It has a specific emphasis on matching media
format to user needs and preferences. The IMS
AccessForAll standards are divided up into two
main components, ACCMD – metadata and
ACCLIP – learner profiles. This section gives a brief
overview of IMS AccessForAll (IMS 2004, 2009,
ISO 2008). The metadata specification is based
around the identification, adaptation and
presentation of accessible web-based e-learning
resources but much of it is equally applicable to
any e-media. The standard divides resources into
primary and equivalent alternative resources. The
primary resource is the default whereas the
alternative has equivalent ‘semantic and
behavioural functionality and addresses the same
learning objective as the primary resource’. The
AccessForAll overview says that the primary
resource meta-data describes:

91

A Community-Centred Design Approach for Accessible Rich Internet Applications
Steve Green, Elaine Pearson, Voula Gkatzidou and Franck Perrin

• Access Modality: vision, hearing, touch,
text and combinations.

• Adaptability: display and control transform-
ations (for devices/assistive technologies)

• Equivalence: any equivalent alternative i.e.
an equivalent but alternative experience.

The following AccessForAll classes are especially
important:

• The general accessibility class
• The equivalence class
• profiles of needs and preferences (PNPs)

The overall accessibility model defined by IMS
ACCMD is presented below in Figure 1:

accessibility

resource
 Description

0..1 0..*

such systems. JISC (2009) describes a PLE as one
that replaces some or all of the tools of a standard
Virtual Learning Environment (VLE) (or LMS –
Learning Management System) with personal tools
integrated with the student’s own systems. These
environments are therefore effectively mash-ups of
components chosen by the user. The components
of such a mash-up are likely to widget, apps or
gadgets.In fact many software systems, e-learning
based or not, try to personalise the environment to
the preferences of the individual. An example of
this is iGoogle (2009). In addition to the standard
search box the user is presented with a range of
tools and is also allowed to customize the interface
in a number of important ways:

1. by choosing or creating the window theme
2. by adding, editing or moving gadgets
3. by sharing and communicating themes,

gadgets and content feeds with others.

Similarly some web based applications can be
automatically configured to handle small screen
layouts for PDAs, mobile phones and other mobile
devices. Most mobile phone manufacturers offer
user-selectable themes and widgets for their
customer base or in the case of the Apple iPhone
thousands of applications through iTunes and the
AppleStore (Apple, 2012). In a very real sense the

Primary

hasAuditory
hasText

hasVisual

equivalent

content

much of this thinking, but with the added dimension
of an educational context. Van Harmelen (2006)
believes that PLEs can be characterised by their
underlying design in terms of pedagogy,
personalisation and control. In principle personal
learning environments typically support a
collaborative, student-centred learning approach;
they are normally open rather than closed systems

0..* 0..* 0..* which might even be constructed entirely from

alternativeTo
Auditory

alternativeTo
Text

alternativeTo
Visual

available web services; they can be personalised
and the locus of control is with the user rather than
the teacher or institution. Kompen (et. al. 2008)
goes further and suggest a conceptual framework
for developing a personal learning environments

Figure 1: overall Accessibility model

While the IMS standards are important they rely on
the e-learning author, web developer or tutor to
provide a wealth of alternative media resources as
alternatives to the primary resource. They also
work best with learning objects or structured media
which can be disaggregated into a number of
media components. Consequently this standards
work best when we can deal with clearly defined
profiles of needs and preferences and re-usable
learning patterns (Green et al. 2006).

2.4 Personalisation
Modern e-learning or learning management-
systems expect environments to be supportive of
learner preferences. In fact the JISC has
commissioned a number of projects and adopted
the term Personal Learning Environment (PLE) for

from Web 2.0 tools and services. Coming from a
research background where we developed a
specialist learning environment for students with
severe cognitive and motor difficulties (Green,
Pearson & Stockton, 2006) our first concern was
that of dealing with need. However we had
recognised that content adaptation has to be
coupled with the personalisation of tools if we are
to provide a truly adaptable environment and
empower students to make choices.

3. COMMUNITY WIDGET DESIGN

The W3C Widget standard defines a plausible
technology to provide these applications and tools.
However we also wished to include our community
of practice in the design of these tools.
Consequently for this research we proposed and
used a community-centred design approach. The

 92

A Community-Centred Design Approach for Accessible Rich Internet Applications
Steve Green, Elaine Pearson, Voula Gkatzidou and Franck Perrin

process was based on widgets, existing and
emerging standards, guidance and methods, and
open source tools.

Our community of practice comprises those who
are directly involved with the teaching or support of
disabled students, together with researchers,
educationalists and developers. The community
participated in one of a series of tailored face-to-
face workshops and on-line follow up activities.
These activities were supported by dedicated web
2.0 collaboration tools including a wiki, RSS feeds
and on-line resources. The result was a number of
detailed designs. These were then translated into
widgets created for specific learning needs. The
widgets were classified and searchable by type,
subject matter, complexity, adaptations and
disability. They provided functions, tool,
applications or facilities to help the student or tutor
in the context of their education or in many cases,
their everyday life. Each widget included a
description of a persona or typical user for whom it
was designed and an example scenario, which
together made up a use-case. These use cases
were an informal but very specific example profile
of needs and preferences. The resulting widgets
were made available for use and adaptation by the
wider community under an open access, creative
commons license.

3.1 Design Workshops

The workshops were run three times in different
locations and involved a total of 11 groups of four
to six people. Each workshop had the format:

1. Introduction to Widgets and an overview of
a. open source software for accessibility
b. mobile prompts

2. Group activities
a. widget design brainstorming
b. working together on poster templates

3. Presentation and discussion of designs
4. Widget development and evaluation plans

During the design process each group considered
five or six ideas and would then choose one idea to
develop further with the aid of learning design and
storyboard templates. For these A0-sized
laminated posters were used (see figures 2 and 3).
This produced a total of around 30 designs. During
the workshops the learning design templates (see
figure 4) were completed first giving us:

• Basic details (title, date, topic etc.)
• Persona – description of the typical user
• Scenario – the context or example use
• Learning design - the widget function
• Content – resources or assets needed
• Links – external web services or links
• Related ideas – adaptations & other uses

Figure 2: Widget Learning Design Template

Figure 3: Widget Storyboard sheet

On the storyboard sheets (see figure 3) the
participants were asked to illustrate the widget
design interface and operation. Use of colourful A0
laminated templates encouraged creativity and

93

A Community-Centred Design Approach for Accessible Rich Internet Applications
Steve Green, Elaine Pearson, Voula Gkatzidou and Franck Perrin

group cohesion. This approach was adapted from
the learning object design approach used by the
RLO-CETL (Leader, 2009). However many of the
elements such as personas and scenarios are
common in user-centred or user-experience design
and the broad design approach matches the JISC
Users and Innovation Design Method (JISC, 2008)

3.2 Development Phase
Each of the widgets was classified in terms of a
number of factors grouped into:

• technical elements,
• display features
• application compatibility
• development complexity.

An important consideration was their perceived
development complexity namely simple, moderate
and complex (see table 2). The complexity of the
widget could be inferred largely from its design
features (typically whether self-contained, use of
APIs and web services etc.). Often simple widgets
could typically be programmed in a day or two.
Moderate (or medium complexity) widgets could
take a few days or a week and complex widgets
two weeks or more to develop. In addition to the
basic widget a number of templates or widgets
based on alternative content or interfaces were
also identified as part of the process. Many of these
templates were later incorporated into the WIDGaT
toolkit.

Table 2: WIDE widget by platform/complexity

Platform Simple Medium Complex Total
Wookie 11

(36%)
11

(36%)
1

(3%)
23

(74%)
Opera 4

(13%)
1

(3%)
1

(3%)
6

(20%)
Windows 2

(7%)
0
-

0
-

28
(78%)

All 17
(55%)

12
(39%)

2
(7%)

31
(100%)

Our approach to widget classification was useful for
predicting development time. However the
development of even simple widgets might be held
up waiting on further content or design decisions.
Also the classification of development complexity
could depend on the delivered widget context.
Consequently widgets were also classified as:

• Wookie: W3C widget running from a
Wookie web server.

• Opera: W3C widget but benefitting from
installation on a desktop or mobile devices.

• Windows app: not W3C widgets but
desktop applications designed to install and
run on a specific system (MS Windows)

In practice the majority of designs (74%) could be
implemented as Wookie widgets but a handful
required facilities that weren’t available to the

widgets standard APIs so needed to be Opera only
or Windows apps. The widgets were almost all
classified as simple or moderate (94%) with very
few (6%) considered complex.

Table 3. WIDE: widget by category

Categories Total Examples
Time and Task
Management

9
(29%)

One-click timer
Virtual Shopping

Independence &
Social Networking

7
(22%)

BSL Signing
Community Active

Assistive
Technologies

5
(16%)

Coloured Overlay
Magnifier

Learning Aids 5
(16%)

Spell It
Translate it

Learning Objects
and Content

5
(16%)

Sentence Jumbler
Quick Revision

In terms of the categories of widgets (see table 3)
the majority were either time or task management
(29%) or independence tools (22%) which together
accounted for slightly over half of the widget
designs. The other three categories, namely
assistive technologies, learning aids and learning
objects (or content) accounted for the remainder
with five designs each (16%). Examples of each
category of widget are available on the WIDER
resource (ARC 2011) for comment and use by the
community.

3.3 WIDE Project Initial Evaluation
The initial WIDE evaluation was largely confined to
reviewing the widgets themselves. This has turned
out to be an on-going process with comments still
coming through our WIDE community wiki and the
WIDE resource site referred to as WIDER.
However the summative WIDE project evaluation
looked at the overall process, in terms of the
original use of the wiki (its suitability as a platform
for promoting collaborative design) the widget
learning designs (templates and design process)
and the implementation methods employed. For the
final part of the evaluation study a widget learning
design template was provided and an external
evaluator invited to adapt it. The evaluator found
the process simple, the resulting widget quickly
delivered and of high quality but commented on the
difficulty of following the wiki. This is probably not a
surprise since the wiki was provided for the
community of practice and made the assumption
that participants had attended a workshop.
However in the light of these comments the
alternative WIDER repository is now available.

Initial findings suggest that the design approach
involving dedicated workshops and a community of
practice proved to be effective in that all forty
participants’ expectations (100%) were met or
exceeded. Following on from the workshops
participants were kept up-to-date with the
development of their widget designs through the

94

A Community-Centred Design Approach for Accessible Rich Internet Applications
Steve Green, Elaine Pearson, Voula Gkatzidou and Franck Perrin

dedicated WIDE wiki, RSS feeds and through
directed e-mails. In addition further groups were
added to the community of practice through the
JISC JORUMopen facility. This approach has been
presented to the JISC community on a number of
occasions and has been adopted by several
research consortia (e.g. ROLE and EDUKAPP). A
number of minor issues were identified. Firstly
there is greater need for technical developer
involvement to improve the speed at which
individual widgets can be built. Some of the
designs needed to be more thorough before they
could be passed on to the developer. It was also
apparent that some simple tools which would allow
tutors to adapt widget templates or update content
themselves would greatly increase the re-use of
existing widgets and templates.

4. WIDGET AUTHORING and WIDGaT

Following on from the WIDE project a number of
evaluation studies were carried out with groups of
web developers to see whether the community
design method used within the WIDE project could
be replicated in a more traditional program or web
design context. Here we report on our findings with
a group of 36 undergraduate students, and some
preliminary results from a further group of 35. In
addition to this we take a brief look at the
development of the WIDGaT authoring toolkit,
designed to allow novice users to create widgets.

4.1 Widget Development Evaluation
Our first group of students were drawn from a
number of final year computing courses in specific
disciplines including web and multimedia design,
creative digital media, web development and
computer programming. A significant number (5 out
of 36) had a recognised disability or special need
(namely dyslexia, dyspraxia or motor disability). All
students were studying an elective module on
Accessibility and Adaptive Technologies. Each
student was asked to identify a problem based on a
persona and scenario. This could be an individual
idea or an adaptation of one of the use-cases
available on the WIDE project wiki. Almost all
chose to develop a new use-case. The students
then proceeded to go through the widget design
process in a way that mirrored the community-
based design activity. At the end of this they then
continued to a detailed design and built a widget or
a widget prototype, depending on the complexity of
the widget design and their level of skill. For those
with more creative design skills they had the option
to concentrate on the visual and interface design
elements although in fact all students chose to
deliver a widget or prototype of some form.

Following each stage (over a month in total) tutor
feedback was given based on the areas that they
could improve. Guidance was given on technical

issues, which they would be unlikely to be familiar
with (such as the use of web services and APIs). At
the end of the process they uploaded a final design
document, the widget, prototype or detailed design
and a reflective report. The student’s attempt at
designing and developing a widget design and a
W3C compliant widget was then categorized by
dividing the process into a number of stages and
evaluating each as not-met, part-met or fully-met
against a set of predefined criteria. This is the
method that WCAG and other guidance checklists
deal with accessibility audit and evaluation. The
results of this evaluation are given in table 4.

Table 4. Widget Design/Development by Element

Design/Development
Element

Fully Met Part Met

Use-Case (persona,
scenario)

28
(78%)

8
(22%)

Storyboards 20
(56%)

16
(44%)

Widget Classification 7
(19%)

28
(78%)

Graphical User
Interface

32
(89%)

3
(8%)

Adaptations 24
(67%)

11
(31%)

Widget Development 4
(11%)

16
(44%)

In summary the students had no difficulty in
following the design approach with the majority
producing full use-cases (78%) and detailed
storyboards (56%). From this they could typically
also produce meaningful graphical user interfaces
or visual prototypes (89%). The two areas where
they were less successful was in classifying the
widget (only 19% had a thorough classification) or
producing a fully W3C compliant widget (11%). To
some degree this might be put down to the fact that
students could often successfully preview a widget
that would not be valid or which had been
inaccurately classified (in terms of their XML
configuration or metadata); they did not understand
the need for correct XML, identification of features
and packaging for the widget to run in a specific
context (such as on a Wookie widget server, as an
Opera widget or on a specific device). However
despite this most made a good attempt and
appeared from their reflections to have found the
process novel, challenging and rewarding.

The preliminary findings from a second group of 35
final year undergraduate students suggest similar
results at least in the case of the widget design
phases. However this second group were more
successful in developing working widgets with 7 out
of 35 (20%) producing fully compliant widgets and
most an acceptable prototype. However the
majority of students were still unable to follow fully
the standards for W3C Widgets.

95

A Community-Centred Design Approach for Accessible Rich Internet Applications
Steve Green, Elaine Pearson, Voula Gkatzidou and Franck Perrin

4.2 WIDGaT -Widget Authoring Toolkit Given the
fact that even relatively skilled web designers
and students may not be able to
consistently develop fully compliant widgets, we
would not expect novices to do so. What novices
may be able to use is a widget authoring tool which
can adapt to their level of expertise and allow them
to express their own designs and author their own
widgets. These widgets would typically be based
on templates - hence the WIDGaT authoring toolkit.

template by selecting and editing components, and
choosing themes or alternate styles.

WIDGaT Use-Case

Personas WIDGaT

Scenarios Data

Learning Design

Tutors
(Authors)

Students
(Learners)

WIDGaT
Authoring Tool

Widgets
(Tools/LOs)

XML CSS

HTML JS

WIDGaT
Web Services

Widget
Templates

Components

Media Content

APIs/Services

Figure 5: Widget Authoring Toolkit (WIDGaT)

Currently we are building up a number of use-
cases and templates drawn from our community of
practice including our student community and
project evaluators. As we might have anticipated
the same categories of widget, such as time and
task management, keep re-occurring allowing us to
concentrate on providing a limited number of very

Figure 4: Widget Authoring Services

WIDGaT is designed to allow non-technical users
(such as tutors or other members of our community
of practice) to design and build simple widgets. The
widgets can be easily adapted to different use-
cases, contexts and devices, which is what makes
them accessible. They conform to W3C ARIA and
Widget standards and can be learning materials or
support tools. WIDGaT is a fully working prototype
designed with our community of practice and
currently being evaluated by them as part of the
JISC WIDGaT project. We plan to make it available
as an open source project to anyone who wishes to
use it over the coming months.

4.3 WIDGaT GUI
For tutors within our community of practice, the
WIDGaT toolkit provides a graphical user interface
by which they can realise their widget designs.
Having invoked the WIDGaT toolkit (a simple web
reference from a compliant browser) then the user
is presented with a range of templates from which
they must select. They are then given some simple
dialog screens in which they can choose or edit an
appropriate use case (persona and scenario) and
provide their own author details (name, e-mail,
organisation, link) if they wish. They can skip this
stage but they will need to add these details later
for the benefit of other members of the community.

Once they are happy to proceed they are then
presented with the authoring screen (see figure 7).
This is where they can make changes to their

rich templates and associated components in the
first instance. Advanced users will be able to start
with a blank canvas but most users are expected to
work from an existing template to apply their own
adaptations. Consequently the richness of these
templates is of primary importance.

Figure 6: Resulting Widget

4.4 WIDGaT Technical Features
Behind the scenes WIDGaT works by providing a
web application to the user’s client PC which
communicates by light-weight (JSON) web services
with a web server. The widget can be edited as a
work in progress but can eventually be saved,
published to another widget server or exported as a
package to work on a variety of platforms including
a desktop or laptop PC, any Google Android mobile

 96

A Community-Centred Design Approach for Accessible Rich Internet Applications
Steve Green, Elaine Pearson, Voula Gkatzidou and Franck Perrin

device, a Smartphone or iOS for Apple i-phone and
i-pad.

Technically the WIDGaT GUI itself is an EXT JS
application which runs on a client PC or laptop or in
principle on any system with a compliant browser.
The GUI is designed to be an open source product.
The web services currently run from an Microsoft
ASP.NET web server. However the services are
provided using standard JSON (JavaScript Object
Notation). Consequently they could be rewritten to
run on almost any type of web server. An overview
of the services which the WIDGaT web server
current provides is given in table 5.

Table 5. WIDGaT JSON web services

WIDGaT W3C Widget build services
create Create a new widget
duplicate Create a duplicate widget
compose Build a widget completely
modify Change the specified widget
append Add a new component/object
delete Delete a component /object
replace Replace a component /object
refresh Rebuild the existing widget
update updating to newest version

undo Undo the last operation
package Package as a .zip and .wgt
publish Make the widget available
WIDGaT Information services
info, templates, categories, components, themes
WIDGaT display and media upload services
display, upload, register

WIDGaT will continue as an open source
development project. The more technically minded
will be able to contribute new widget templates,
components, themes or media content or to
contribute to the toolkit and services themselves.

5. CONCLUSIONS

Our original ideas were based on the notion of
providing universally available e-learning content
which can be adapted to the needs of everyone.
However this was overly ambitious and failed to
utilise the specific knowledge and expertise of our
community of practice in the design and delivery of
personalised learning experiences. Consequently
the WIDE and WIDGaT projects have attempted to
refocus our research by looking at specific use-
cases in the form a precise personas and scenario
developed into W3C and ARIA-compliant widgets.
We have supplied the community with a set of tools
to design their solutions and see them realised.

As part of our community-centred design approach
we are developing a number of standard templates,
learning design patterns and a widget component
library. These templates, components and services,

incorporate the ARIA and Widget standards and
the metadata needed for AccessForAll and the
TASS. While this will allow for transformation,
augmentations and substitution of e-media content,
the current approach with WIDGaT is to place
design decisions and adaptations directly under the
control of tutors and ultimately the learners
themselves so that both tools and content can meet
individual needs and preferences. This can be
described as access-for-me rather than access-for-
all. The next stage in our research is to evaluate
the use of our Community-Centred Design methods
and widget approach in practice within the wider
accessibility and e-learning communities.

In conclusion this research has proved to have an
application for accessibility in a wider context than
originally anticipated. While the team set out with
the idea of making rich learning materials and tools
accessible as part of an adaptable personal
learning environment, many of the widgets
proposed were geared at allowing individuals to
manage their time and resources, communicate
their concerns or take ownership of the technology.
This is clearly no bad thing but finally it forces us to
reconsider the direction of our research.

6. ACKNOWLEDGEMENTS

The authors wish to acknowledge the aid of the
JISC in funding both the WIDE and WIDGaT
project. We also need to thank our partners
TechDis and Portland College and the very many
people from our Community of Practice who gave
freely of their time, during the workshop and the
WIDGaT design and prototype trials.

7. REFERENCES

Apple (2012), Browse web apps. Retrieved March
29 2011 from http://www.apple.com/webapps/

ARC (2011) WIDER: Widgets for Inclusive
Distributed Environments. Retrieve March 29 2011
from http://arc.tees.ac.uk/wider/

Boni, M., Cenni, S., Mirri, S., Muratori, L. A., and
Salomoni, P. (2006). Automatically producing IMS
AccessForAll Metadata. In Proceedings of the 2006
international Cross-Disciplinary Workshop on Web
Accessibility (W4a): Building the Mobile Web:
Rediscovering Accessibility? (Edinburgh, U.K., May
22 - 22, 2006). W4A '06, vol. 134. ACM, New York.
Gay, G., Mirri, S., Roccetti, M., and Salomoni, P.
(2009). Adapting learning environments with
AccessForAll. In Proceedings of the 2009
international Cross-Disciplinary Conference on
Web Accessibililty (W4A) (Madrid, Spain, April 20 -
21, 2009)

GKatzidou, S. & Peaeson, E. (2009). A
Transformation, Augmentation, Substitution Service
(TASS) to Meet the Needs and Preferences of the

97

http://www.apple.com/webapps/
http://arc.tees.ac.uk/wider/

A Community-Centred Design Approach for Accessible Rich Internet Applications
Steve Green, Elaine Pearson, Voula Gkatzidou and Franck Perrin

Individual Learner. Proceedings of the IEEE
International Conference on Advanced Learning
Technologies (ICALT). Riga, Latvia

Google, Gadgets *API Developer’s Guide (2009),
Retrieved July 14, 2009 from
http://code.google.com/intl/en/apis/gadgets/
docs/dev_guide.html

 Green, S. Jones, R, Pearson, E. & Gkatzidou, S.
(2006) “Accessibility and adaptability of learning
objects: responding to metadata, learning patterns
and profiles of needs and preferences”, ALT-J,
Research in Learning Technology, 14(1), 117-129,
2006

Green, S., Pearson, E. & Stockton, C. (2006)
“Personal Learning Environments: Accessibility and
Adaptability in the Design of an Inclusive Learning
Management System”, AACE World Conference on
Educational Multimedia (EDMEDIA), Orlando,
Florida, USA, 2006

Harper, S., Yesilada, Y., and Goble, C. (2005).
"Engineering accessible design": W4A --
international cross disciplinary workshop on web
accessibility 2005 workshop report. SIGACCESS
Access. Computing. , 83 (Sep. 2005), 64-72. DOI=
http://doi.acm.org/10.1145/1102187.1102198

IEEE (2002) Standard for Learning Object Metadata
IEEE Std 1484.12.1™-2002. Retrieved November
1st2005:http://www.ieeeltsc.org/wg12LOM IMS

(2004) AccessForAll . IMS Global
learning/Dublin Core AccessForAll project, Meta-
data Specification Version 1.0 Final Specification:
Overview, Information Model, XML Binding, Best
Practice Guide 2004. Retrieved July 14, 2009 from
http://www.imsglobal.org/accessibility

IMS (2009) Global Learning Consortium. Guidelines
for Developing Accessible Learning Applications,
version 1.0. Retrieved July 14, 2009 from
http://ncam.wgbh.org/salt/guidelines/

IMS (2003) Global Learning Consortium Learner
Information PackageAccessibility for LIP Version
2.0 Final Specification: Information Model, XML
Binding, Best Practice Guide, Conformance
Specification, Use Cases, Examples, June 2003.
Retrieved March 29, 2012 from
http://www.imsglobal.org/accessibility

ISO IEC JTC1 SC36 WG7 Individualized
Adaptability and Accessibility in E-learning,
Education and Training. ISO/IEC 24751-1:2008

JISC (2009) Personal Learning Environments.
Retrieved July 14, 2009 from
http://www.jisc.ac.uk/index.cfm?name=cetis_ple

Kompen, T. R., Edirisingha, P. & Mobbs, R. (2008)
“Building Web 2.0-based personal learning
environments - a conceptual framework”, EDEN
conference, Pairs, October 2008, Retrieved March
29 2012 from http://hdl.handle.net/2381/4398

Lazarinis, F., Green S., & Pearson, E. (eds.), (2011),
Handbook of Research on E-learning Standards and
Interoperability: Frameworks and Issues, IGI Global,
2011

Leeder, D. (2009), INTERACTIVE e-learning
development workshops. Proceedings of the IADIS
International Conference Information Systems
2009, Barcelona, Spain.

Nevile, L., & Treviranus, J. (2006). Interoperability
for Individual Learner Centred Accessibility for Web-
based Educational. Systems. Educational
Technology & Society, 9 (4), 215-227

Opera, (2010), Dev.Opera 2008-2010 Widgets,
Retrieved January 19, 2011 from
http://dev.opera.com/articles/widgets/

Pearson, E., Green, S. & Gkatzidou, S. (2009),
“Responding to the challenge of providing learner-
centred, accessible, personalized and flexible
learning”. IEEE Conference on Advanced Learning
Technologies (ICALT). Riga, Latvia.

Sloan, D., Heath, A., Hamilton, F., Kelly, B., Petrie,
H., & Phipps, L. (2006) “Contextual web accessibility
- maximizing the benefit of accessibility guidelines”,
ACM International Conference Proceeding, 134,
W4A at WWW2006, May 2006, Edinburgh, UK

Van Harmelen, M. (2006) “Personal Learning
Environments”, IEEE, Proceedings of the Sixth
International Conference on Advanced Learning
Technologies (ICALT'06), 815-816, 2006

W3C WAI, (2009) Accessible Rich Internet
Applications (WAI-ARIA) 1.0, W3C Working Draft 24
February 2009, Retrieved July 14, 2009 from
http://www.w3.org/TR/wai-aria/

W3C (2009), Authoring Tool Accessibility Guidelines
(ATAG) 2.0, W3C Working Draft 21st May 2009,
Retrieved March 29, 2012 from
http://www.w3.org/TR/ATAG20/

W3C (2009) Web Content Accessibility Guidelines
(WCAG) 2.0, W3C 11 December 2008, reformatted
3 March 2009, Retrieved March 29, 2012 from
http://beta.w3.org/TR/2009/REC-WCAG20-
20090303/

W3C (2011). Widgets Packaging and XML
Configuration Recommendtaion, September 2011,
Retrieved 29 March 2012 from http://www.w3.org/
TR/widgets/

W3C-WAI (2010), WAI-ARIA overview: Retrieved
January 21, 2011 from http://www.w3.org/
WAI/intro/aria

Wookie, (2009). Apache Wookie Incubator.:
Retrieved 19 January 2011 from
http://incubator.apache.org/wookie/

Wenger, E. (1998). Communities of Practice.
Cambridge: Cambridge University Press.

98

http://code.google.com/intl/en/apis/gadgets/
http://code.google.com/intl/en/apis/gadgets/
http://doi.acm.org/10.1145/
http://doi.acm.org/10.1145/
http://www.ieeeltsc.org/wg12LOM
http://www.imsglobal.org/accessibility
http://www.imsglobal.org/accessibility
http://ncam.wgbh.org/salt/guidelines/
http://www.imsglobal.org/accessibility
http://www.imsglobal.org/accessibility
http://www.jisc.ac.uk/index.cfm
http://www.jisc.ac.uk/index.cfm
http://hdl.handle.net/2381/4398
http://dev.opera.com/articles/widgets/
http://dev.opera.com/articles/widgets/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/ATAG20/
http://www.w3.org/TR/ATAG20/
http://beta.w3.org/TR/2009/REC-WCAG20-
http://beta.w3.org/TR/2009/REC-WCAG20-
http://incubator.apache.org/wookie/
http://incubator.apache.org/wookie/

