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Abstract 
We describe a new statistically based algorithm that 
aligns sequences by means of predictive inference. 
Using residue frequencies, this Gibbs sampling 
algorithm iteratively selects alignments in accordance 
with their conditional probabilities. The newly 
formed alignments in tum update an evolving residue 
frequency model. When equilibrium is reached the 
most probable alignment can be identified. If a 
detectable pattem is present, generally convergence 
is rapid. Effectively, the algorithm finds optimal 
local multiple alignments in linear time (seconds on 
current workstations). Its use is illustrated on test 
sets of lipocalins and prenyltranferases. 

I. Introduction 
Multiple sequence alignment has proved to be a 
remarkably successful means of representing and 
organizing much of the present deluge of inferred protein 
sequence data. It is crucial to research on the structure 
and function of proteins, promoting the detection and 
description of sequence motifs and aiding efforts at protein 
modeling, structure prediction and engineering. In 
addition, by organizing information on mutational 
variation, multiple sequence alignment can elucidate 
molecular evolution and serve as the input for 
phylogenetic reconstruction. 

The importance of local multiple sequence alignment has 
long been appreciated and has been the subject of 
extensive study (30, 2, 29, 34. 35, 19, 22, 32, 31, 37, 5). 
The goal of automated methods is to produce optimized 

alignments, using only the information intrinsic to the 
sequences themselves. Unfortunately, rigorous algorithms 
for finding optimal solutions are so computationally 
expensive as to limit their application to a very small 
number of sequences. On the other hand, many heuristic 
approaches gain speed at the sacrifice of sensitivity to 
subtle patterns. We recently presented a relatively non- 
technical description of a new local multiple sequence 
alignment algorithm (24) based on Gibbs sampling (33). 
Here we develop the statistical foundation and 
mathematical model on which the algorithm is based. 

When biopolymers have been subjected to a limited 
amount of evolutionary change, their commonality stems 
primarily from their mutational history. Such closely 
related sequences are relatively easy to align. The focus 
here will be on the more difficult case that arises when the 
sequences have been subjected to extensive change, and 
any common patterns that remain are subtle. Among 
such distantly related sequences, common features stem 
primarily from structural or functional constraints. These 
constraints arise from the energetic interactions among 
residues or between residues and ligand. The relationship 
between energetic constraints and frequencies forms the 
basis of statistical mechanics, pioneered by Gibbs and 
Boltzmann. There is an analogous relationship for residue 
frequencies subject to random point mutations (28, 8). 
This relationship suggests that residue frequency models 
can be a valuable tool for representing the structural and 
functional constraints common to a set of proteins or 
protein domains. Accordingly, a residue frequency model 
is at the core of the methods described here. 
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Structurally related proteins share a common core 
composed largely of secondary structural elements. 
Energetic interactions among the residues of these core 
elements are the primary determinants of protein structure 
and stability. Sequence length variations, corresponding 
to gaps in alignments, stem primarily from variations in 
the lengths of loops that connect these core elements. 
Furthermore, in order to maintain the proper interactions 
between loop residues and a ligand, loop geometry often 
must be maintained. Length variation in such loops is 
thus uncommon, and corresponding loop residues are also 
subject to energetic constraints. These aspects of 
molecular structure suggest that sequences of protein 
domains sharing similar structure and/or function will 
contain ungapped blocks of residues subject to common 
energetic constraints. 

Among the classes of variation in macromolecular 
sequences one, point mutation, alters the identity of a 
residue at a given position in the sequence. In contrast, 
transpositions, insertions or deletions, and sequence 
duplications result in the misalignment of sequences. The 
need for sequence alignment algorithms stems from the 
fact that direct data on the effects of these latter 
unobserved events are missing. 

In the 1970s it became widely recognized that many 
statistical problems are most easily addressed by 
pretending that critical missing data are available. In fact, 
for some problems, statistical inference is facilitated by 
creating a set of latent variables, none of whose values are 
observed (17). The key observation was that conditional 
probabilities for the values of the missing data could be 
inferred, by application of Bayes theorem to the observed 
data. Statistical inference based on this concept was first 
described by Orchard and Woodbury (27) and called the 
"missing information principle". Its application became 
widely known through a deterministic maximum likelihood 
algorithm, expectation maximization (EM) algorithm (13). 

Gelfand and Smith (15) developed a sampling based 
approach, which they named the Gibbs sampler. It was 

developed for the case in which the posterior distribution 
is complicated, and thus difficult or impossible to obtain 
by direct integration. They employed this sampling 
algorithm both to develop a Bayesian description of the 
complete posterior distribution, and to find maximum a 
posteriori (MAP) estimates. They chose the name "Gibbs 
sampler" because a key required theorem from statistical 
physics, the Hmmersley Clifford theorem, employs 
GibbsBoltzmann potentials to model joint probabilities 
from a complete set of conditionals. The use of sampling 
methods for problems involving missing data was first 
undertaken by Tanner and Wong (36) and Li (25). In the 
last few years, this sampling approach and its extensions 
have become a topic of great interest in statistics (15,33). 
Most statistical applications have little connection with 
statistical mechanics, and thus the name Gibbs sampling 
has fallen into disfavor among some statisticians. Because 
of the connections of this work with statistical physics, the 
name Gibbs sampler here is entirely appropriate. 

The missing information principle was first used for 
sequence alignment to develop a block based expectation 
maximization (EM) algorithm for the identification and 
characterization of common motifs in biopolymer 
sequences (22). This work subsequently was extended to 
permit small variations in the spacing of pairs of blocks 
(10). More recently, EM algorithms for gap-based 
alignment methods, in the form of Hidden Markov Models 
(HMM), have been described (18). A more complete 
description of statistical aspects of the use of these ideas 
for misaligned data is given by Lawrence and Reilly (23). 
Following this tradition, the algorithm presented here 
assumes the existence of missing alignment data and 
imputes probabilities to them. A Gibbs sampling approach 
is used to exploit these inferred probabilities. 

In section I1 we define local multiple sequence alignment 
as a missing data problem, show how it may be simplified 
to a problem of predictive inference, and describe a Gibbs 
sampling algorithm to obtain maximum a posteriori 
(MAP) estimates for the possible solutions of this 
optimization problem. Applications to lipocalins and 
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prenyltransferases are presented in section 111. 

11. A Gibbs Sampling Algorithm for Local Multiple 
Sequence Alignment 
Let R, = (RlprR2pr...,R,p) be the vector of residues 
observed in sequence n. Assume that the sequences share 
K blocks containing wk (k = 1, ..., K) positions with 
common residue propensities, and let W = Ek wL. Also, let 
A,= ( Alp,...,AK.,) be the vector of starting positions of the 
K elements in sequence n, and A,= (Ak,,& ,..., Ak3) be 
a vector of the starting positions of element k in each of 
the N sequences. Our goal is to find the most probable 
alignment of all elements given the all of the sequence 
data, i.e. max (P(AIR)) . 

Given an alignment, the joint distribution of the residue 
types at the W positions in the common core may be 
represented by a multinomial residue frequency model. 
Interactions of residues with ligand, backbone atoms and 
water are essential to protein structure and function, and 
impose first order constraints on residue frequencies. 
Forces between pairs of residues are also key determinants 
of protein structure, and impose pairwise interaction 
constraints on residue frequencies. Since the multinomial 
model is a member of the exponential family (20) and we 
consider at most pairwise interactions, the log joint 
distribution of residue frequencies may be described as a 
sum over first order terms plus the sum of painvise terms 
over the set that mutually interact (4). In other words, 

W 

where C is the set of residue pairs that make contact, p,, 
is a parameter for the log probability of observing residue 
type r at position m in the structure, and pi,jJ is the 
pmmeter for the log probability of observing a pair of 
residues of types r and s at positions i and j in the 
structure. The two summations represent respectively the 
first and second order "free energy" parameters. Such a 
model has been successfully employed for "threading" 
sequences through folding motifs (9). 

Even when ligand specific effects are ignored, over 65% 
of the information conceming residue pair frequencies in 
proteins of known structure is captured by first order 
"hydrophobicity" terms (9). Consequently, in spite of the 
important contribution of pairwise interactions to protein 
stability, much of the information contained in protein 
motifs is captured by first order terms alone. Accordingly, 
in what follows we will restrict attention to first order 
residue frequency models, i.e. product multinomials. 

Since the common core of a structure is composed of 
ungapped blocks of sequence positons in the structure, a 
specific column, say w, in a specific block, say k, maps to 
a specific residue position, say m, in the structure. Using 
this mapping, let 8k,w, = exp (p,,) be the residue 
probabilities. If the position of the various elements 
within sequence n is A,, then the probability of observing 
the constituent residues is 

where N is the set of sequence positions not in any 
element, e,,, are the residue frequency parameters for non 
site positions. Application of Bayes theorem yields 

Notice that under the non-informative prior assumption 
that all alignments are equally likely, 

(3.b) 

In fact, alignment data is missing and the residue 
frequency parameters are unknown. In Bayesian statistics 
both of these are treated as random variables whose 
distribution, given the observed data, is the object of 
analysis. Thus it appears our interest should focus on 
P(A,,BIR,). However, as we shall see, 8 integrates out of 
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the problem. We begin by considering the conditional 
posterior distributions of 8 given the alignment and the 
data, which is obtained as follows: 

When the location of the k"e1ement is given in all but the 
n"sequence, probabilities for the missing location of this 
element in the remaining sequence can be attained from 

distributions. Specifically, 

IR.A,Jn3= .. . 

w11 

( n D(CkW,, [nl +PI  t ckwJnl + P 2  t ... 9 C t w , m  [nl +Pzd (26). Sampling using equation (7) greatly simplifies the 
W=O .. - 

computation, for we need only maintain the residue counts 
in all element positions, and sampling from the Dirichlet 

(D(co,,[nl+P, ,CO, rnl+Pz,... ,c,,rnI+PJ), (5) 

distribution is eliminated. 
where c,,,[-n] is the count of the number of residues of 
type r in all of the sequences except n at position w of the 
k*element, is the alignment of the k"e1ement in 
every sequence except the n" , and cOj [-n] is the count of 
the number of residues of type j in the non-element 
positions. 

The Gibbs algorithm is now straightforward. 
The process begins with a random selection of element 
locations in all sequences, from which the associated 
residue counts are calculated. Then, in a systematic 
fashion, elements are removed for relocation, and the 
associated counts are decremented. After normalization, 

location of the element in question, after which the 
appropriate counts are incremented. The procedure is 
repeated until equilibrium is achieved, from which the 
most probable alignment may be identified. The Gibbs 
sampling algorithm defined by these distributions yields an 
irreducible Markov chain with the stable distribution 
P(AIR). A geometric convergence rate to the true 

The Gibbs algorithm permits us to the joint equation (7) provides the distribution for sampling the new 
distribution P(B,AIR) by iteratively sampling from the 
complete set of conditionals. Equation ( 5 )  provides the 
conditional distribution of 8, while equations (2) and (3) 
provide the conditional distribution of A,,. However, 
sampling from the Dirichlet distribution is unnecessary and 
time consuming (26). 
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alignment distribution can be guaranteed (21). While it is 
not assured, we have observed rapid convergence in 
numerous applications. 

Phase Shifts 
The most important obstacle to quick convergence is the 
non-convexity of the probability surface from which the 
algorithm samples. This creates local optima, or energy 
traps. There are two classes of such optima: chance 
optima and shifted optima. Assume that the true element 
locations occur at positions { 23,66,189,53, ... }. If the 
sampler happens to draw positions 2164 and 187 within 
the first three sequences, then position 5 1 becomes a likely 
location within the 4"' sequence, and position 53 an 
unlikely one. Thus, the sampler tends to become trapped 
in this locally optimal alignment, and substantial further 
sampling may be required to escape. 

Notice that simultaneously shifting the alignment of all 
elements two positions to the right places them correctly. 
A shift of s positions to the right corresponds to removing 
the s leftmost columns of the element model, and adding 
s columns to the model's right end. Shifts left are 
analogous. Changes in the product multinomial associated 
with each possible shift are easily calculated. When 
shifts of up to S positions in either direction are 
considered, the relative probabilities for the 2S+1 
possibilities are proportional to the corresponding product 
multinomials. The algorithm explores these alternatives 
by sampling. 

Element Order and Colinearity 
Equation (7), which gives the predictive distribution for 
the location of the site in the n"' sequence, carries no 
information conceming element order. Thus when exon 
shuffling results in element transpositions, the sampler 
may identify common elements in spite of their reordering. 
However, because biopolymers frequently evolve without 
transposition, colinearity is a safe assumption for many 
multiple alignment problems. Notice that at each 
sampling iteration, the orders of the elements in the N-1 
sequences not under consideration are known. This 

ordering information may be employed as follows to 
improve the sensitivity of the sampler. Observations on 
order can be combined with residue frequency 
observations and their priors in equation (6) to yield a 
predictive distribution which jointly incorporates these two 
kinds of information. In the lipocalins example given 
below we employ this joint information to correctly 
identify a pair of element locations that could not be 
identified independently. 

Repeating Sequence Elements 
Biopolymer duplications which result in sequence 
repetition are much more common m event than is often 
assumed. Because the sampler conditions on the 
locations of all elements except the current one, the 
residue frequencies from repeated elements within the 
current sequence can be included in the predictive 
distribution given in equation (7). In this way, 
information from repeated elements can be employed to 
aid alignment. This information may be used to identify 
repeats within a single sequence, or to construct a local 
alignment from multiple sequences containing repeats. 
The prenyltransferase example below illustrates the use of 
the sampler in such a context. 

111. Applications 
The algorithm has been developed and tested using several 
examples of protein classes that present different types of 
difficulty for automated multiple alignment methods. As 
previously described (24), DNA binding proteins of the 
helix-turn-helix class were employed to examine the 
performance of the method in detecting and aligning a 
single, highly variable motif. This example was employed 
to develop convergence heuristics and an empirical method 
for automated determination of pattern width. 
Applications of the algorithm to more complex test cases, 
as described in (24), are illustrated here with lipocalins 
and prenyltransferases. 

Lipocalins 
As discussed above, proteins, protein domains, and even 
most protein motifs, are composed of multiple core 
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segments and ligand binding segments, with intervening 
loops of variable length. As a consequence the sequences 
of these families contain multiple blocks of ungapped 
elements which are separated by dissimilar sequences of 
highly variable length. We have successfully aligned 
several such protein families, including protein kinases, 
aspartyl proteinases, and aminoacyl-tRNA ligases. We 
report here on the most difficult of these test cases, the 
lipocalins. Lipocalins bind a wide variety of hydrophobic 
ligands and share a common polypeptide fold, but have 

of the sequence model described in section 11. As 
indicated in Figure 1 (taken from 24) , challenged with 
five very diverse lipocalin sequences of known crystal 
structure, the sampler correctly aligned these two regions 
at width 16 residues of both elements, in agreement with 
the structural evidence (12, 14). In this case only five 
sequences were made available and the patterns common 
to all of these sequences are subtle. As a consequence we 
found that inclusion of the ordering information described 
in section I1 was required to identify these ten sequence 

Motif A Motif B 

17 32 104 119 

25 40 109 124 

16 31 100 115 

14 29 105 12 0 

27 42 109 124 

YA-MANSS .. OYCPDVXPVN DPDLSAFAGAWEEIAK LPLENSNQOK...PQQRVVNLVP WVL?ATDYKNYAINYNC DYHPDKKAHS 

LACB-BOVIN.. QALIVTQTMK QLDIQKVAQTWYSLAM AASDISLLDA...KIDALNENKV LVLDTDyxIpILLFc#B NSAEPEQSLA 

BBP-PIBBR .. QACPEVKPM NFDWSNYEOKWWEVAK YPNSVEKYGK...YGGVTKENVF " D ~ I I O Y Y C  KYDEDKKGHQ 

RETB-BOVIN.. CRVSSFRVlCE NPDXARFAGTWYAWS KDPEOLFLQD ... SFLQKGNDDE WIIDTDYBTFAVQYSC RLLNLDGTCA 

MUP2-MOUSE.. HUEASSTOR NPNVXKINOEWHTIIL ASDKREKIED...SVTYDGFNTF TIPKTDYDNFUMHLI NEKDOETPQL *. *** 

Two motifs located automatically in five lipocalins of known crystal structure. The sequences, defined by 
S wissPtot database codes, are, from top to bottom, Manduca sexta insecticyanin; Bovine P-lactoglobulin; Pieris 
brussicae bilin-binding protein: bovine plasma retinol-binding protein; mouse major urinary protein 2. Asterisks 
(***) below the alignment denote generally conserved residues recognized from structural comparisons (12). 

Figure 1 : Lipocalins Multiple Alignment 

extremely diverse sequences. These proteins have two 
weak sequence motifs, centered on the generally conserved 
residues -GXW- and -'ID-, which are recognized from 
structural comparisons (12, 14). The rest of the 
topologically conserved lipocalin folds have very different 
sequences. Conventional automated sequence alignment 
methods, although successful for selected subsets of the 
data, fail to align these motifs for the full spectrum of 
lipocalin sequences such as the five aligned here. 

For many multiple element problem including the 
lipocalins, colinearity of the elements is a reasonable prior 
assumption. We thus incorporated the ordering component 
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elements correctly. 

Prenyltransferases 
Repeated elements underlie a broad spectrum of biological 
problems. Because these elements often play somewhat 
different roles their sequences frequently diverge 
substantially after duplication, rendering their detection 
and characterization challenging. The analysis of repeats 
is often labor-intensive, relying in part on visual inspection 
of "dot plots" (6) -- a procedure that limits searches and 
surveys of large databases. 



Repeats in the subunits of the heterodimeric protein- small GTPases to their sites of action on various cellular 
isoprenyltransferases provides an example of subtle membranes (11). A subtle internal repeat of possible 
internal repeats (6). These enzymes are responsible for functional significance is contained in prenyltransferases 
targeting and anchoring members of the ras superfamily of (6). Structural information is not yet available for these 

Ram 1 

FT-p 

B e t 2  

GGT-p 

Cdc4 3 

1 0 9  
1 2  9 
1 8 1  
2 3 0  
2 7 9  
3 3 1  

4 1 5  

7 4  
9 9  

1 2 2  
1 7 3  
2 2 1  
2 6 9  
3 3 1  

8 
5 6  

108 
1 5 6  
2 0 7  
2 5 5  

1 9  
6 7  

1 1 5  
1 6 3  
2 1 1  
2 5 9  

1 2  
1 2 7  
1 9 1  
2 4 0  
3 0 9  

A 

TKRKIWKLFTI 
DRKGIYQWLISL 
LTEGVLNYLKNC 
NVEKLLEWSSAR 
NKHALRDYILYC 

NVRKIIHYPKSN 

QREKHFHYLKRG 
SRPWLCYWILHS 
VATDVCQFLELC 
NREKLLQYLYSL 
LFEGTABWIARC 
NLKSLLQWVTSR 
HQQALQEYILMC 

LICEKHIRYIESL 
LKEEVISFVLSC 
RKVRLISFIRGN 
WDPAVDFVLKC 
QLEEIGWWLCER 
NYBKLTEFILKC 

LLEKHADYIASY 
NKEEILVFIKSC 
NVDKWAWQSL 
NVEKAIEFVLSC 
NSDLLOWWLCER 
DREKLRSFILAC 

VTKKHRKFFERH 
DKRSLARFVSKC 
DTEKLLGYIMSQ 
FKEDTITWLLHR 
QTELVTNYLLDR 

L B 

MLYWIANSLKVM DRDWLSDD-- 
SPSG---------- - - - - - - - - - -  GPFGGGPGQLSH LA- STYMINALSLC DNIDGCWDRID 
KEPN-------------------- GGFKTCLBVGEV DTR OIYCALSIATLL NILTEEL---- 
QWE-------------------- GGFGSCPHVDEA HGG YTFCATASLAIL RSMDQIN---- 
QLQEE------------------- RGFCGRSNKLVD GC- YSFWVGGSAAIL EAFGYGQCF-- 
CQEKEQ------------------ PGLRDKPGAHSD FY- HTNYCLLGLAVA E---------- 

LSSPS 
. . . 2 7  aa.. . SSYSCTPNDSPH 

LRQLTDAYECLDAS 
LELLDEPIPQIV 
QSPD---------- - - - - - - - - - -  GGFGGGPGQYPH LA PTYAAVNALCII GTEEAYNVIN 
KQPD-------------------- GSFLMHVGGEVD VR SAYCAASVASLT NIITPDL--- 
QNWE-------------------- GGIOOVPGMEAH GG YTFCGLAALVIL KKERSLN--- 
QMRFE------------------- GGPQGRCNKLVD GC YSFWQAGLLPLL . . .  2 0  aa... 
CQCPA------------------- GGLLDKPGKSRD FY HTCYCLSGLSIA . . .  

DTKKHNFEYWLTEHLRLN----------------------- GIYWGLTALCVL DSPETFV--- 
WDDKY------------------- GAFAPFPRHDAH LL TTLSAVQILATY DALDVLGKDR 
QLED-------------------- GSFQGDRPGEVD TR FVYTALSALSIL GELTSEV--- 
YNFD---------- - - - - - - - - - -  GGPGLCPNABSH AA QAPTCLGALAIA NKLDMLSDDQ 
QLPE-------------------- GGLNGRPSKLPD VC YSWWVLSSLAII GRLDWIN--- 
QDEKK------------------- GGISDRPBNEVD VF HTVPGVAGLSLM . . .  

GSKKDDYEYCMSEYLRMS---------------------- GVYWGLTVMDLM GQLHRM 
QHEC-------------------- GGVSASIGHDPH LL YTLSAVQILTLY DSIHVI 
QKED-------------------- GSFAGDIWGEID TR FSFCAVATLALL GKLDAI 
MNFD-------------------- GGFGCRPGSESH AG QIYCCTGFLAIT SQLHQV 
QLPS-------------------- GGLNGRPEKLPD VC YSWLASLKII GRLHWI 
QDEET------------------- GGFADRPGDMVD PF HTLFGIAGLSLL . . .  

. . .  1 0 3  a a . . .  
Q . . .  52 a a . . .  
QCYN------------------- GAPGAHNBPHSG -- YTSCALSTLALL SSLEKLSDKF 
QVSSHGCMKFESELNASYDQSDD GGFQGRENKFAD TC YAPWCLNSLHLL TKDWKMLC-- 
TQKTLT----------------- GGFSKNDEEDAD LY HSCLGSAALALI , . 

Repeating motifs in prenyltransferase subunits. Raml, Bet2 and Cdc43 are yeast gene products with NBRFPIR 
accession numbers S07864, S 15399 and A40875, respectively. FT-p is the p subunit of farnesyltransferase from 
rat brain (acc. no. A40037) and GGT-P is the p subunit of rab geranylgeranyl transferase from rat brain. The 
primary structures of these proteins have been shown to contain a variable number of tripartite internal repeats each 
of which is composed of "A" and "B" subdomains separated by a "linker region" containing multiple glycine and 
proline residues (6) . When subjected to analysis by the Gibbs sampler, these previously-defined motifs were 
identified, and additional copies were also observed (cf. Fig. 1 in 6). Dashes indicate the locations and extents 
of gaps between motifs: ellipses (...) accompanied by a number and the abbreviation "aa" indicate the locations and 
extents of larger intervening subsequences expressed as the number of amino acid residues. The spacing between 
motifs L and B is only 2-3 residues whereas that between motifs A and L is greater and more variable. 

Figure 2: Prenyltransferase Beta Subunits 
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proteins. However, previous sequence analysis indicates 
that the p subunit contains a tripartite motif that is 
repeated 3-5 times in each of four proteins. 

This example contains four characteristics that make it 
challenging. 1) The repeats are subtle. 2) Because down- 
stream information must be utilized to exploit data from 
internal repeats, the Markovian character of dynamic 
programming and other methods that use colinearity to 
advantage is not available. 3) The many elements per 
sequence result in a great number of possible alignments 
of the elements within each sequence. 4) The crowding 
of elements increases inter-element dependency and the 
complexity of the joint probability surface which the 
algorithm must explore. 

The previous analysis of this problem was subjective and 
time-consuming, relying on the combined use of several 
different multiple alignment methods. In contrast, as 
illustrated in Fig. 2 (taken from 24), the Gibbs sampling 
algorithm quickly and objectively reproduced and extended 
the previous results. 

IV. Conclusions 
We view distantly related proteins or protein substructures 
as a set of ungapped core elements subjected to random 
point mutations. These point mutations tend to maximize 
sequence entropy, but are subject to energetic constraints 
associated with protein structure and function. 
Consequently, we use a residue frequency model to 
describe the common character of distantly related 
proteins. This is a key factor in the sampler’s speed. It 
permits the high-dimensional search space of these 
problems to be explored one dimension at a time, by 
means of comparing each sequence to a common evolving 
residue frequency model. 

EM methods use a similiar strategy. Two classes of EM 
algorithms have been described: block based methods (22) 
and gap based methods, i.e. HMMs (18). The sampler 
goes a step further then these, conditioning on the 
alignment of all but the current element. This avoids the 

need to exploit the Markov property that underlies 
collinear models of sequence similarity and is required by 
dynamic programming and gap based EM methods. This 
relaxation permits the sampler to identify non-collinear 
similarities such as those arising from transpositions. 
Furthermore, downstream residue frequencies of similar 
elements such as those arising from sequence duplications 
may be exploited. The sampler outperforms block based 
EM methods on multiple element problems because of this 
conditioning. Forced to sum over all possibilities, block 
based EM methods have a time complexity that grows 
exponentially with additional elements. In contrast the 
sampler never needs to consider more than one element at 
a time. 

Choosing an appropriate number of elements of 
appropriate width remains an important problem. An 
empirical method for determining element width is 
described elsewhere (24). Choosing an optimal number of 
elements requires further study. However, we have found 
that an additional element is not warranted when multiple 
random seeds lead to many different alignments, and when 
the maximum posterior probabilities consistently fail to 
exceed those obtained from shuffled sequences. 
Employing an appropriate model for inter-element spacing 
will improve the algorithm’s sensitivity, but this feature 
has not been needed to identify even the subtle patterns 
described above. 

Inherent to a Bayesian approach is the concept that all 
unknowns are treated as random variables. Thus, we 
postulate a Dirichlet model for the residue frequency 
parameters. Through the use of predictive inference, 
computation is greatly reduced, avoiding sampling from 
posterior Dirichlet distributions, albeit at the cost of 
failing to obtain sampling estimates from the the residue 
frequency distribution. 

While prior information concerning the locations of the 
elements in the sequence and the frequency of residues in 
the common elements can be incorporated in our 
formulation, we have employed only noninformative 
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priors. In no test case to date have we found it necessary 
to relax this assumption. 

The existence of multiple local optima presents a major 
challenge to multiple sequence alignment methods. As 
described above, the inclusion of phase shifts permits the 
sampler to avoid shifted optimum through direct 
explorations. Furthermore, its inherent stochastic character 
permits the sampler to escape chance local optima that 
cause difficulties for deterministic methods. 

The memory requirements for the method are negligible; 
storing the input sequences is usually the dominant space 
demand. It is difficult to analyze the worst case time 
complexity of this algorithm. However, for typical protein 
sequence data sets, we have found that each input 
sequence needs to be sampled on average fewer than T = 

100 times before convergence. In the more time 
consuming sampling step of the basic algorithm, 
approximately Lw, multiplications are performed, where 
L is the length of the sequence that has been removed 
from the model. Therefore the total number of 
multiplications needed to execute the Gibbs sampler is 
approximately TNWL', where L' is the average length of 
the N input sequences. The factor T is expected to grow 
with increasing L'. However, experimentation suggests 
that T tends to decrease slowly with increasing N when 
the common pattem exists at roughly equal strength within 
the input sequences. Thus, linear time complexity has 
been observed in applications. In practice all of the 
examples we have examined to date have been solved in 
under two minutes on current workstations. 

Through the combination of a mathematical model that 
represents basic properties of protein structure and change, 
and a randomized optimization procedure, the Gibbs 
sampler has objectively solved difficult multiple sequence 
alignment problems in a matter of seconds in the absence 
of any expert knowledge, or ancillary information derived 
from three-dimensional structures or other sources. 
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