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Abstract

Most of a signal information is often found in irregular structures and transient phenomena.

We review the mathematical characterization of singularities with Lipschitz exponents. The main

theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of

their wavelet transform are explained. We then prove that the local maxima of a wavelet

transform detect the location of irregular structures and provide numerical procedures to compute

their Lipschitz exponents. The wavelet transform of singularities with fast oscillations have a dif-

ferent behavior that we study separately. We show that the size of the oscillations can be meas-

ured from the wavelet transform local maxima. It has been shown that one and two-dimensional

signals can be reconstructed from the local maxima of their wavelet transform [14]. As an appli-

cation, we develop an algorithm that removes white noises by discriminating the noise and the

signal singularities through an analysis of their wavelet transform maxima. In two-dimensions,

the wavelet transform maxima indicate the location of edges in images. We extend the denoising

algorithm for image enhancement applications.
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1. Introduction

Singularities and irregular structures often carry the most important information in signals.

In images, the discontinuities of the intensity provide the locations of the object contours which

are particularly meaningful for recognition purposes. For many other types of signals such as

electro-cardiograms or radar signals, the interesting information is given by transient phenomena

such as peaks. In physics, it is important to study irregular structures to infer properties about the

underlined physical phenomena [1, 2, 15]. Until recently, the Fourier transform was the main

mathematical tool for analyzing singularities. The Fourier transform is global and provides a

description of the overall regularity of signals but it is not well adapted for finding the location

and the spatial distribution of singularities. This was a major motivation in mathematics and in

applied domains for studying the wavelet transform [10, 18]. By decomposing signals into ele-

mentary building blocks that are well localized both in space and frequency, the wavelet

transform can characterize the local regularity of signals. The wavelet transform and its main

properties are briefly introduced in section 2. In mathematics, the local regularity of a function is

often measured with Lipschitz exponents. Section 3 is a tutorial review on Lipschitz exponents

and their characterization with the Fourier transform and the wavelet transform. We explain the

basic theorems that relate the local Lipschitz exponents of a function to the evolution across

scales of the wavelet transform values. In practice, these theorems do not provide simple and

direct strategies for detecting and characterizing the singularities of a signal. The following sec-

tions show that the wavelet transform local maxima provide an efficient approach for studying

irregular structures in signals.

The detection of singularities with multiscale transforms has been studied not only in

mathematics but also in signal processing. In section 4, we explain the relation between the mul-

tiscale edge detection algorithms used in computer vision and the approach of Grossmann et. al.

[9] which finds singularities by following the lines of constant phase in a wavelet transform. The

detection of the wavelet transform local maxima is strongly motivated by these techniques. Sec-

tion 5 is a mathematical analysis of the local maxima property. We prove that they detect all the

singularities of signals and that the local Lipschitz exponents can often be measured from the

evolution across scales of these local maxima. Numerical examples illustrate the mathematical

results. The wavelet transform has a different behavior when singularities include fast oscilla-

tions. This particular case is studied separately. We prove that the size of the oscillations can be

measured from the points where the wavelet transform is locally maximum both along its scale

and spatial variables. These general maxima points estimate locally the main frequency com-

ponent of a signal. This approach is closely related to the algorithm of Escudie and Torresani [8]

for measuring the modulation law of asymptotic signals.



-- --

Page 3

An algorithm that reconstructs one and two-dimensional signals from the wavelet transform

local maxima has been implemented by Zhong and one of us [14]. We can therefore process the

wavelet transform maxima and reconstruct the corresponding signal. When trying to separate a

signal from its noise, we often have some prior information on the differences between the singu-

larities of the signal and the singularities of the noise. We describe an algorithm that discrim-

inates a signal from white noises by analyzing the behavior of the wavelet transform local max-

ima. The local maxima created by the noise are removed and we reconstruct a signal where most

of the noise has disappeared.

The detection of the wavelet transform local maxima is extended in two dimensions for

image processing applications. In two dimensions, singularities can also be detected and charac-

terized from the behavior across scales of the wavelet transform local maxima. The denoising

algorithm is generalized in two dimensions for image enhancement. We discriminate the noise

from the image information not only by computing the Lipschitz exponents of singularities but

also by analyzing the geometrical properties of the singularity curves that are created in the image

plane.
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Notation

Lp
(R) denotes the Hilbert space of measurable, functions such that

−∞
∫

+∞

| f(x) | p dx < +∞ .

The norm of f (x) ∈ L2
(R) is given by

|| f || 2 =
−∞
∫

+∞

| f (x) | 2 dx.

We denote the convolution of two functions f (x) ∈ L2
(R) and g (x) ∈ L2

(R) by

f ∗ g (x) =
−∞
∫

+∞

f (u) g (x −u) du.

The Fourier transform of f (x) ∈ L2
(R) is written f̂(ω) and is defined by

f̂(ω) =
−∞
∫

+∞

f (x) e−iωx dx.

For any function f (x), fs(x) denotes the dilation of f (x) by the scale factor s:

fs(x) =
s
1hh f(

s
xhh) .

L2
(R2) is the Hilbert space of measurable, square-integrable two dimensional functions. The

norm of f (x,y) ∈ L2
(R2) is given by:

|| f || 2 =
−∞
∫

+∞

−∞
∫

+∞

| f (x,y) | 2 dx dy .

The Fourier transform of f (x,y) ∈ L2
(R2) is written f̂(ωx,ωy) and is defined by

f̂(ωx,ωy) =
−∞
∫

+∞

−∞
∫

+∞

f (x,y) e−i (ωxx+ωyy) dx dy .

For any function f (x,y) ∈ L2
(R2), fs(x,y) denotes the dilation of f (x,y) by the scale factor s:

fs(x,y) =
s 2

1hhh f(
s
xhh ,

s
yhh) .
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2. Continuous Wavelet Transform

This first section reviews the main properties of the wavelet transform. Let ψ(x) be a com-

plex valued function. The function ψ(x) is said to be a wavelet if and only if its Fourier transform

ψ̂(ω) satisfies

−∞
∫

+∞

ω
| ψ̂(ω) | 2
hhhhhhhh dω < +∞ . (1)

Let ψs(x) =
s
1hhψ(

s
xhh) be the dilation of ψ(x) by the scale factor s. The wavelet transform of a func-

tion f (x) ∈ L2
(R) is defined by

Wf (s,x) = f ∗ ψ s(x) . (2)

The Fourier transform of Wf (s,x) with respect to the x variable is simply given by

Ŵf (s, ω) = f̂(ω) ψ̂(sω) . (3)

The wavelet transform can easily be extended to tempered distributions which is useful for the

scope of this paper. If f (x) is a tempered distribution of order n and if the wavelet ψ(x) is n

times continuously differentiable, then the wavelet transform of f (x) defined by equation (2) is

well defined. For example, a Dirac δ(x) is a tempered distribution of order 0 and

Wδ(s,x) = ψs(x) if ψ(x) is continuous.

One can prove [10] that the wavelet transform is invertible and f (x) is recovered with the

summation:

f (x) =
0
∫

+∞

−∞
∫

+∞

Wf (s,u) ψs(u −x) du
s
dshhh . (4)

The wavelet transform Wf (s,x) is a function of the scale s and the spatial position x. The plane

defined by the couple of variables (s,x) is called the scale-space plane [22]. Any function F (s,x)

is not a priori the wavelet transform of some function f (x). One can prove that F (s,x) is a

wavelet transform if and only if it satisfies the reproducing kernel equation

F (s 0 ,x 0) =
0
∫

+∞

−∞
∫

+∞

F (s,x) K (s 0 ,s,x 0 ,x) dx ds , with (5)

K (s 0 ,s,x 0 ,x) =
−∞
∫

+∞

ψs(u −x) ψs 0
(x 0−u) du . (6)

The reproducing kernel K (s 0 ,s,x 0 ,x) expresses the intrinsic redundancy between the value of the

wavelet transform at (s,x) and its value at (s 0 ,x 0).



-- --

Page 6

3. Characterization of Local Regularity with the Wavelet Transform

As mentioned in the introduction, a remarquable property of the wavelet transform is its

ability to characterize the local regularity of a function. In mathematics, the local regularity of

functions is often measured with Lipschitz exponents.

Definition 1

A function f (x) is said to be Lipschitz α, for 0 ≤ α ≤ 1, at a point x 0 , if and only if there exists a

constant A such that for all points x in a neighborhood of x 0

| f (x) − f (x 0) | ≤ A | x − x 0 | α . (7)

The function f (x) is uniformly Lipschitz α over the interval ]a,b [ if there exists a constant A

such that equation (7) is valid for any (x 0 ,x) ∈ ]a,b [2 . We say that f (x) is singular in x 0 if it is

not Lipschitz 1 in x 0 .

If a function is Lipschitz α, for α > 0, then it is continuous in x 0 . If f (x) is discontinuous in

x 0 and bounded in a neighborhood of x 0 , then it is Lipschitz 0 in x 0 . If f (x) is continuously dif-

ferentiable then it is Lipschitz 1 and thus not singular. Definition 1 can be extended for values

α > 1.

Definition 2

Let n be a positive integer. A function f (x) is said to be Lipschitz α, for n < α ≤ n +1, at a point

x 0 , if and only if there exists a constant A and a polynomial Pn(x) of order n such that for all

points x in a neighborhood of x 0

| f (x) − Pn(x) | ≤ A | x − x 0 | α . (8)

We call Lipschitz regularity of f (x) in x 0 the sup of all values α such that f (x) is Lipschitz α at

x 0 .

If f (x) is Lipschitz α, for α > n, then f (x) is n times continuously differentiable in x 0 and

the polynomial Pn(x) is the first n+1 terms of the Taylor series of f (x) in x 0 . We say that f (x) is

uniformly Lipschitz α on an interval ]a,b [ if the difference between f (x) and the first n terms of

the taylor series defined with respect to x 0 , satisfy equation (8) for any (x,x 0) ∈ ]a,b [2 . The

Lipschitz regularity α gives an indication of the derivability of f (x) but it is more precise. If the

Lipschitz regularity α0 of f (x) satisfies n < α0 < n +1, then we know that f (x) is n times con-

tinuously differentiable but its n th derivative is singular in x 0 and α0 characterizes this singular-

ity.
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One can prove that if f (x) is Lipschitz α then its primitive g (x) is Lipschitz α+1 [19].

However, it is not true that if a function is Lipschitz α at a point x 0 , then its derivative is

Lipschitz α−1 at the same point. Section 5.3 gives an example of function that does not satisfy

this property. Since local Lipschitz exponents do not behave well with respect to differentiation,

one can not extend directly this notion to tempered distributions. For this purpose Bony [5]

extended the concept of Lipschitz exponents through the 2-microlocalization which is closely

related to the wavelet transform as shown by Meyer [19]. We do not take this approach and use a

simpler extension of Lipschitz exponents to tempered distributions, which is sufficient for the

scope of this paper. One can prove that a function is uniformly Lipschitz α, with α > 1, on an

interval ]a,b [, if and only if its derivative is uniformly Lipschitz α−1 on the same interval. We

can thus extend the concept of uniform Lipschitz regularity to tempered distributions with the fol-

lowing definition.

Definition 3

Let f (x) be a tempered distribution of finite order on an interval ]a,b [. The distribution f (x) is

said to be uniformly Lipschitz α on ]a,b [ if and only if its primitive is uniformly Lipschitz α+1

on ]a,b [. It is necessary to define properly the notion of negative Lipschitz exponents for tem-

pered distributions because they are often encountered in numerical computations.

Definition 3 is not a point-wise extension of Lipschitz exponents and is thus much less

powerful than the microlocalization of Bony. Following this definition, a Dirac is uniformly

Lipschitz -1 in any neighborhood of 0 because its primitive is discontinuous in 0 and uniformly

Lipschitz 0 in any neighborhood of 0. From definition 3, one can also derive that for any n > 0, a

Dirac is uniformly Lipschitz n on any interval that does not include 0. We say that a distribution

f (x) has an isolated singularity at a point x 0 , if for any point x 1 in a neighborhood of x 0 , f (x) is

uniformly Lipschitz 1 in a neighborhood of x 1 but it is not uniformly Lipschitz 1 in any neigh-

borhood of x 0 . If f (x) is uniformly Lipschitz α in a neighborhood of x 0 , we say that f (x) has an

isolated singularity Lipschitz α at x 0 . The point-wise Lipschitz exponent can thus be defined at a

point where the distribution has an isolated singularity. A Dirac for example has an isolated

singularity Lipschitz −1 at 0.

A classical tool for measuring the Lipschitz regularity of a function f (x) is to look at the

asymptotic decay of its Fourier transform f̂(ω). One can prove that if a bounded function f (x) is

uniformly Lipschitz α over R then it satisfies:

−∞
∫

+∞

| f̂(ω) | (1 + | ω | α ) dω < +∞ . (9)
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This condition is necessary but not sufficient. It gives a global regularity condition over the

whole real line but one can not derive whether the function is locally more regular at a particular

point x 0 . This is due to the fact that the Fourier transform unlocalizes the information along the

spatial variable x. The Fourier transform is therefore not well adapted to measure the local

Lipschitz regularity of functions.

If the wavelet has a compact support, the value of Wf (s,x 0) depends upon the values of

f (x) on a neighborhood of x 0 of size proportional to the scale s. At fine scales, it provides a

localized information on f (x). The following theorems give the relations between the asymptotic

decay of the wavelet transform at small scales and the local Lipschitz regularity of the function.

We suppose that the wavelet ψ(x) is continuously differentiable and that it has a compact support

although this last condition is not strictly necessary. The first theorem is a well known result and

a proof can be found in [12].

Theorem 1

Let f (x) ∈ L2
(R). The function f (x) is uniformly Lipschitz α over intervals ]a +ε , b −ε[ for any

ε > 0, if and only if for any ε > 0, there exists a constant A ε such that for any x ∈ ]a+ε,b −ε[ and

any scale s,

| Wf (s,x) | ≤ A ε sα . (10)

If f (x) ∈ L2
(R), for any scale s 0 > 0, by applying the Schwartz inequality, we can easily

prove that the function | Wf (s,x) | is bounded over the domain s > s 0 . Hence, equation (10) is

really a condition on the asymptotic decay of | Wf (s,x) | when the scale s goes to zero. Let us

observe that theorem 1 is similar to the necessary condition on the Fourier transform given by

equation (10). The scale s can be viewed as locally "equivalent" to
ω
1hh . In opposition to the

Fourier transform condition, theorem 1 is a necessary and sufficient condition and is localized on

intervals and not over the whole real line.

Theorem 1 remains valid, for α < 0, for tempered distributions whose wavelet transform is

well defined. For example, the wavelet transform of a Dirac is given by

Wδ(s,x) =
s
1hhψ(

s
xhh) .

Since ψ(x) is bounded and has a compact support, | Wδ(s,x) | increases like s−1 at fine scales, in

any neighborhood of 0. Theorem 1 implies that a Dirac is uniformly Lipschitz -1 in neighborhood

of 0.
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In order to extend theorem 1 to Lipschitz exponents α larger than 1, we must impose that

the wavelet ψ(x) has enough vanishing moments. A wavelet ψ(x) is said to have n vanishing

moments if and only if for all integer k < n, it satisfies

−∞
∫

+∞

x k ψ(x) dx = 0 . (11)

If the wavelet ψ(x) has n vanishing moments, then theorem 1 remain valid of 0 ≤ α ≤ n. Let us

see how this extension works in order to understand to effect of vanishing moments. Since ψ(x)

has a compact support ψ̂(ω) is n times continuously differentiable and one can derive from equa-

tions (11) that ψ̂(ω) has a zero of order n in ω =0. For any integer p < n, ψ̂(ω) can be factorized

into

ψ̂(ω) = (iω)p ψ̂
1
(ω) .

In the spatial domain we have

ψ(x) =
d px

d pψ1(x)hhhhhhhh , (12)

and the function ψ1(x) satisfies the wavelet admissibility condition (1). The p th derivative of any

function f (x) is well defined in the sense of distributions. Hence,

Wf (s,x) = f ∗ ψ s(x) =
dx p

d p
hhhh(f ∗ s p ψs

1)(x) = s p(
dx p

d p fhhhh ∗ ψ s
1)(x) . (13)

The wavelet transform of f (x) with respect to the wavelet ψ(x) is thus equal to the wavelet

transform of its p th derivative, computed with the wavelet ψ1(x), and multiplied by s p . The func-

tion f (x) is uniformly Lipschitz α on an interval ]a,b [, for p ≤ α ≤ p +1 ≤ n, if and only if
dx p

d p fhhhh is

uniformly Lipschitz α−p on the same interval. Since 0 ≤ α−p ≤ 1, we can apply theorem 1 on the

wavelet transform of
dx p

d p fhhhh defined with respect to the wavelet ψ1 . Theorem 1 proves that
dx p

d p fhhhh is

uniformly Lipschitz α−p over intervals ]a +ε,b −ε[ if and only if there exists constants A ε > 0

such that for x ∈ ]a +ε,b −ε[,

|
dx p

d p fhhhh ∗ ψ s
1(x) | ≤ A ε sα−p .

Equation (13) proves that this is true if and only if

| Wf (s,x) | ≤ A ε sα . (14)

Equation (14) extends theorem 1 for α ≤ n. If ψ(x) has n vanishing moments but not n +1, then

the decay of | Wf (s,x) | does not tell us anything about Lipschitz exponents for α > n. For exam-

ple, the function f (x) = sin(x) is uniformly Lipschitz +∞ on any interval, but if ψ(x) has exactly n
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vanishing moments one can easily prove that the asymptotic decay of | Wf (s,x) | is equivalent to

s n on any interval. Hence, we can not derive from this decay that sin(x) is Lipschitz n +1 on any

interval.

Theorem 1 gives a characterization of the Lipschitz regularity over intervals but not pre-

cisely at a point. The second theorem proved independently by Holschneider and Tchamitchian

[12] and Jaffard [13] shows that one can also estimate the Lipschitz regularity of f (x) precisely at

a point x 0 . The theorem gives a necessary condition and a sufficient condition but not a necessary

and sufficient condition. We suppose that ψ(x) has n vanishing moments is n times continuously

differentiable and has a compact support.

Theorem 2

Let f (x) ∈ L2
(R). If f (x) is Lipschitz α at x 0 , 0 ≤ α ≤ n, then there exists a constant A such

that for all point x in a neighborhood of x 0 and any scale s

| Wf (s,x) | ≤ A (sα + | x−x 0 | α ) . (15)

Conversely, f (x) is Lipschitz α at x 0 ,0 < α ≤ n, if the two following conditions holds.

g There exists ε > 0 and a constant A such that for all points x in a neighborhood of x 0 and any

scale s

| Wf (s,x) | ≤ A s ε . (16)

g There exists a constant B such that for all points x in a neighborhood of x 0 and any scale s

| Wf (s,x) | ≤ B (sα +
| log | x−x 0 | |

| x−x 0 | α
hhhhhhhhhhhhh) . (17)

Theorem 1 proves that equation (16) imposes that f (x) should be uniformly Lipschitz ε in some

neighborhood of x 0 . The value ε can be arbitrarily small. To interpret equations (15) and (17),

let us define in the scale-space the cone of points (s,x) that satisfy

| x − x 0 | ≤ s .

For (s,x) inside this cone, equations (15) and (17) impose that when s goes to zero,

| Wf (s,x) | = O (sα ). Below this cone, the value of | Wf (s,x) | is controlled by the distance of x

with respect to x 0 . Equation (17) means that for (s,x) below the cone,

| Wf (s,x) | = O (
| log | x−x 0 | |

| x−x 0 | α
hhhhhhhhhhhhh). The behavior of the wavelet transform inside a cone pointing

to x 0 and below this cone are two components that must often be treated separately as we see in

section 5. To get a feeling of why it is not true that the derivative of a function Lipschitz α at x 0

is Lipschitz α−1 at x 0 , the reader can prove with equation (13), for p = 1, that one can define
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functions which satisfy the necessary condition (15) but whose derivative do not satisfy this con-

dition for α−1. The problem occurs when verifying condition (15) below the cone | x − x 0 | ≤ s

in the scale-space plane. We study in more detail this phenomenon in section 5.3.

Theorems 1 and 2 prove that the wavelet transform is particularly well adapted to estimate

the local regularity of functions. For example, Holschneider and Tchamitchian [12] used an

extension of theorem 2 to analyze the differentiability property of the Rieman function. In numer-

ical experiments, we generally want to detect and characterize the irregular parts of signals. As

mentioned in the introduction, many interesting physical processes yield irregular structures that

are currently being studied [2]. A well known example is the turbulence for high Reynold

numbers where there are still no comprehensive theory to understand the nature and repartition of

the irregular structures [4]. In signal processing, singularities often carry most of the signal infor-

mation. This is well illustrated in image processing where edges provide reliable features for

recognition purposes. The detection and characterization of singularities is important in many

other domains and it is necessary to define from the wavelet transform an effective tool to meas-

ure these singularities. A direct application of theorems 1 and 2 is quite unefficient to detect

singularities and to characterize their Lipschitz exponents. These theorems impose to measure

the decay of | Wf (s,x) | in a whole two-dimensional neighborhood of x 0 in the scale-space (s,x),

which requires a lot of computations. In the next paragraph, we briefly review the different tech-

niques that have been used to numerically detect singularities from the wavelet transform. We

then explain why the detection of singular points is naturally related to the behavior of the

wavelet transform local maxima.

4. Detection and Measurement of Singularities

The measurement of the wavelet transform decay in a whole neighborhood of a point x 0 in

the scale space (s,x) is numerically expensive. One technique that is often used in numerical

applications is to only measure the decay of | Wf (s,x 0) | at fine scales. This means that we meas-

ure the decay of the wavelet transform along the vertical line that points to x 0 in the scale space

(s,x). Although in many cases, this approach can provide a good estimate of the local Lipschitz

exponent, let us explain through a simple counter example why it can not be used reliably. We

suppose that the wavelet ψ(x) is symmetrical with respect to 0 and has a compact support. Let

f (x) = 0 for x < x 0 and f (x) = 1 for x ≥ x 0 . We can derive that Wf (s,x) = φ(
s

x −x 0hhhhh), where φ(x)

is the primitive of ψ(x). Since ψ(x) is symmetrical, φ(0) = 0. Hence, for any s > 0, Wf(s,x 0) = 0

and since φ(x) has a compact support, for any x ≠ x 0 , there exists a scale sx > 0 such that if s < sx

then Wf(s,x) = 0. This proves that along each vertical line in the scale-space plane, the wavelet

transform is uniformly zero for scales small enough. If we estimate the local Lipschitz exponents
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from the decay of the wavelet transform along vertical line, it "looks like" the function f (x) has

no singularities although it does have a discontinuity at x 0 . The mistakes comes from the fact that

we did not measure the decay of the wavelet transform inside a two-dimensional neighborhood of

x 0 as it is required by the theorems 1 and 2. Similar counter-examples are encountered in many

usual signals. The function sin(
x
1hh) is another type of counter-example which is studied in section

5.3.

In their pioneer work on wavelets, in order to detect singularities, Grossmann, Kronland-

Martinet and Morlet [9] have suggested to use a wavelet which is a Hardy function and then look

at the line of constant phase in the scale-space plane. A Hardy wavelet is a complex function

whose Fourier transform satisfies

ψ̂(ω) = 0 for ω < 0 . (18)

Let f (x) ∈ L2
(R) and Wf (s,x) be the complex wavelet transform built with such a wavelet. For

a fixed scale s, equation (3) implies that the Fourier transform Ŵf (s, ω) is also zero at negative

frequencies so it is also a Hardy function. Let φ(s,x) and ρ(s,x) be respectively the argument and

modulus of the complex number Wf (s,x). The argument φ(s,x) is also called the phase of the

wavelet transform. Grossmann et. al. [9] have indicated that in the neighborhood of isolated

singularities, the lines in the scale-space (s,x) where the phase φ(s,x) remains constant, converge

to the abscissa x 0 where f (x) is singular, when the scale s goes to 0. This observation can be

used to detect the singularities of a signal but from φ(s,x) one can not derive the Lipschitz regu-

larity of these singularities. Moreover, the value of φ(s,x) is unstable when the modulus ρ(s,x) is

close to zero. We must therefore also use the modulus information to characterize the different

singularities but no effective method has been derived yet.

In computer vision, it is extremely important to detect the edges that appear in images and

many researchers [6, 16, 17, 21, 22] have developed techniques based on multiscale transforms.

These multiscale transforms are equivalent to a wavelet transform but have been studied before

the development of the wavelet formalism. Let us call a smoothing function, the impulse

response of a low-pass filter. It is a function whose Fourier transform has an energy concentrated

in the low-frequencies. Let θ(x) be such a smoothing function and θs(x) =
s
1hh θ(

s
xhh). An impor-

tant example often used in computer vision is the Gaussian. Edges at the scale s are defined as

local sharp variation points of f (x) smoothed by θs(x). Let us explain how to detect these edges

with a wavelet transform. Let ψ1(x) and ψ2(x) be the two wavelets defined by

ψ1(x) =
dx

dθ(x)hhhhhh and ψ2(x) =
dx 2

d 2θ(x)hhhhhhh . (19)

The wavelet transforms defined with respect to each of these wavelets are given by:
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W 1 f (x) = f ∗ ψ s
1(x) and W 2 f (x) = f ∗ ψ s

2(x) . (20)

W 1 f (s,x) = f ∗ (s
dx

dθshhhh)(x) = s
dx
dhhh(f ∗ θ s)(x) and (21)

W 2 f (s,x) = f ∗ (s 2

dx 2

d 2θshhhhh)(x) = s 2

dx 2

d 2
hhhh(f ∗ θ s)(x) . (22)

The wavelet transforms W 1 f (s,x) and W 2 f (s,x) are proportional respectively the first and

second derivative of f (x) smoothed by θs(x). For a fixed scale s, along the x variable, the local

extrema of W 1 f (s,x) correspond to the zero-crossings of W 2 f (s,x) and to the inflection points

of f ∗ θ s(x) (see fig. 1).

The zero-crossings of W 2 f (s,x) define lines in the scale-space that are called finger-prints

by Witkin [22]. Let us prove that these finger-prints are also lines of constant phase as defined by

Grossmann et. al. [9], for a particular Hardy wavelet. Let ψ3(x) be the Hilbert transform of ψ2(x)

and ψ4(x) = ψ2(x) + iψ3(x). The wavelet ψ4(x) is a Hardy wavelet. For the wavelet transform

defined with respect to ψ4(x), the phase φ(s,x) is equal to
2
πhh or −

2
πhh if and only if

W 2 f (s,x) = f ∗ ψ s
2(x) = 0. Hence, the lines where the wavelet transform W 2 f (s,x) has a zero-

crossing are lines of constant phases of the wavelet transform defined with respect to ψ4(x).

Similarly to lines of constant phase, the zero-crossings "finger prints" indicate the locations of

sharp variation points and singularities but do not characterize their Lipschitz regularity. We

need more information about decay of | W 2 f (s,x) | in the neighborhood of these zero-crossings

lines.

Detecting the zero-crossings of W 2 f (s,x) or the local extrema of W 1 f (s,x) are similar pro-

cedures but the local extrema approach has several important advantages. An inflection point of

f ∗ θ s(x) can either be a maximum or a minimum of the absolute value of its first derivative.

Like in the abscissa x 0 and x 2 of fig. 1, the local maxima of the absolute value of the first deriva-

tive are sharp variation points of f ∗ θ s(x) whereas the minima correspond to slow variations

(abscissa x 1). These two types of inflection points can be distinguished by looking whether an

extremum of | W 1 f (s,x) | is a maximum or a minimum but they cannot be differentiated from

the zero-crossings of W 2 f (s,x). For edge or singularity detection, we are only interested in the

local maxima of | W 1 f (s,x) | . When detecting the local maxima of | W 1 f (s,x) | , we can also

keep the value of the wavelet transform at the corresponding location. With the results of

theorems 1 and 2, we prove in the next section that the values of these local maxima often charac-

terize the Lipschitz exponents of the signal irregularities.



-- --

Page 14

Fig. 1: The extrema of W 1 f (s,x) and the zero-crossings of W 2 f (s,x) are the the inflection

points of f ∗ θ s(x). The points of abscissa x 0 and x 2 are sharp variations of f ∗ θ s(x) and are

local maxima of | W 1 f (s,x) | . The local minima of | W 1 f (s,x) | in x 1 is also an inflection point

but it is a slow variation point.

5. Wavelet Transform Local Maxima

5.1. General Properties

By supposing that the wavelet ψ(x) is the first derivative of a smoothing function, we

impose that ψ(x) has only one vanishing moment. In general, we do not want to impose a

wavelet with only one vanishing moment because, as explained in section 3, then we can not esti-

mate Lipschitz exponents larger than 1. In this section, we study the mathematical properties of

the wavelet local maxima and explain how to measure Lipschitz exponents. Let us first precisely

define what we mean by local maximum.
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Definition 4

g We call local extrema of the wavelet transform of f (x), any point (s 0 ,x 0) such that

∂x

∂Wf (s 0 ,x 0)hhhhhhhhhhh = 0.

g We call local maxima of the wavelet transform of f (x), any point (s 0 ,x 0) such that when x be-

longs to either a right or the left neighborhood of x 0 , | Wf (s 0 ,x) | < | Wf (s 0 ,x 0) | and when x

belongs to the other side of the neighborhood of x 0 , | Wf (s 0 ,x) | ≤ | Wf (s 0 ,x 0) | .

g We call maxima line of the wavelet transform any connected curve in the scale space (s,x)

along which all points are local maxima of the wavelet transform.

A local maximum (s 0 ,x 0) of the wavelet transform is strictly maximum either on the right

or the left side of the x 0 . To speak of local maximum of the wavelet transform is an abuse of

language since we really mean a local maxima of the wavelet transform modulus but it simplifies

the explanations. The first theorem proves that if the wavelet transform has no maximum in a

neighborhood, then the function is Lipschitz n in this neighborhood.

Theorem 3

Let ψ(x) be a wavelet with compact support, n vanishing moments and n times continuously dif-

ferentiable. Let f (x) ∈ L1
([a,b ]). If there exists a scale s 0 > 0 such that for all scales s < s 0 and

x ∈ ]a,b [, | Wf (s,x) | has no local maxima, then for any ε > 0, f (x) is uniformly Lipschitz n on

]a +ε,b −ε[.

The proof of this theorem is in appendix 1. Like in theorem 1, the proof is made for n = 1

and then extended for any n > 0. One can also prove that the theorem remains true if we only

suppose that the restriction of f (x) to ]a,b [ is a distribution of order smaller than n −2. A simple

consequence of this theorem is that any point where the derivative of order n −1 of f (x) is singu-

lar can be detected from the wavelet transform maxima. More precisely, let us define the closure

of the wavelet transform maxima of f (x) as the set of points x 0 such that for any ε > 0 and scale

s 0 > 0, there exists a wavelet transform local maxima at a point (s 1 ,x 1) that satisfy | x 1−x 0 | < ε

and s 1 < s 0 .

Corollary 1

The closure of the set of points where f (x) is not Lipschitz n is included in the closure of the

wavelet transform maxima of f (x).
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This corollary is a straight-forward implication of theorem 3. It proves that all the singular-

ities of f (x) can be located by following the maxima lines when the scale goes to zero. It is how-

ever not true that the closure of the points where f (x) is not Lipschitz n is equal to the closure of

the wavelet transform maxima. Equation (32) proves for example that if ψ(x) is antisymmetrical

then for f (x) = sin(x), all the points pπ, p ∈ Z, belong to the closure of the wavelet local maxima

although sin(x) is infinitely continuously differentiable at these points. Let us now study how to

use the value of the wavelet transform maxima in order to estimate the Lipschitz regularity of

f (x) at the points that belong to the closure of the wavelet transform maxima.

5.2. Non-Oscillating Singularities

In this section, we study the characterization of singularities when locally the function has

no oscillations. The potential impact of oscillations is explained in the next section. We suppose

that the wavelet ψ(x) has a compact support, is n times continuously differentiable and has n van-

ishing moments. The following theorem characterizes a particular class of isolated singularities

from the behavior of the wavelet transform local maxima.

Theorem 4

Let f (x) be a tempered distribution whose wavelet transform is well defined over ]a,b [ and let

x 0 ∈ ]a,b [. We suppose that there exists a scale s 0 > 0 and a constant C such that for x ∈ ]a,b [

and s < s 0 , all the maxima of Wf (s,x) belong to a cone defined by

| x − x 0 | ≤ C s . (23)

Then, at all points x 1 ∈ ]a,b [, x 1 ≠ x 0 , f (x) is uniformly Lipschitz n in a neighborhood of x 1 .

The function f (x) is Lipschitz α at x 0 , for α ≤ n, if and only if there exists a constant A such that

along each maxima line in the cone defined by (23),

| Wf (s,x) | ≤ A sα . (24)

The proof of this theorem is given in appendix 2. Equation (24) is equivalent to

log | Wf (s,x) | ≤ log(A) + α log (s) . (25)

If the wavelet transform maxima satisfy the cone distribution imposed by theorem 4, equation

(25) proves that the Lipschitz regularity at x 0 is the maximum slope of straight lines that remain

above log | Wf (s,x) | , on a logarithmic scale. Fig. 3 shows the wavelet transform of a function

with isolated singularities that verify the cone localization hypothesis. To compute this wavelet

transform we used a wavelet with only 1 vanishing moment. The graphs of ψ(x) and of its primi-

tive θ(x) are shown in fig. 2. The Fourier transform of ψ(x) is



-- --

Page 17

ψ̂(ω) = (iω/2)
I
J
L ω/2

sin(ω/2)hhhhhhhh
M
J
O

3

. (26)

This wavelet belongs to the class of wavelets for which the wavelet transform can be computed

with a fast algorithm [23].

Fig. 2: (a): Graph a wavelet ψ(x) with compact support and one vanishing moment. It is a qua-

dratic spline. (b): Graph of the primitive θ(x).
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(a)

(b)

(c)

(d)

Fig. 3: see the caption next page.
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Fig. 3: (a): In the left neighborhood of the abscissa 0.16, the signal locally behaves like

1+(0.16−x)0.2 where as in the right neighborhood it behaves like 1+(x −0.16)0.6 . At the abscissa

0.7, its Lipschitz regularity is 1.5 and at the abscissa 0.88 the signal is discontinuous.

(b): Wavelet transform between the scales 1 and 28 computed with the wavelet shown in fig. 2(a).

The finner scales are at the top and the scales varies linearly along the vertical. Black, grey and

white points indicate that the wavelet transform has respectively negative, zero and positive

values.

(c): Each black point indicate the position of a local maxima in the wavelet transform shown in

(b). The singularity of the derivative can not be detected at the abscissa 0.7 because the wavelet

has only one vanishing moment.

(d): Local maxima of the wavelet transform of the signal (a), computed with a wavelet with two

vanishing moments. The number of maxima line increases. The singularity of the derivative at 0.7

can now be detected from the decay of the wavelet local maxima.

(e): Decay of log2 | Wf (s,x) | as a function of log2(s) along the two maxima lines that converge to

the point of abscissa 0.16, computed with the wavelet of fig. 2(a). The two different slopes show

that the f (x) has a different singular behavior in the left and right neighborhood of 0.16.
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In numerical computations, the input function is not known at all abscissa x but is charac-

terized by a uniform sampling which approximates f (x) at a resolution that depends upon the

sampling interval [14]. These samples are generally the result of a low-pass filtering of f (x) fol-

lowed by a uniform sampling. If we suppose for normalization purpose that the resolution is 1,

then we can compute the wavelet transform of f (x) only at scales larger than 1. When a function

is approximated at a finite resolution, strictly speaking, it not meaningful to speak about singular-

ities discontinuities and Lipschitz exponents. This is illustrated by the fact that we can not com-

pute the asymptotic decay of the wavelet transform amplitude since we can not compute the

wavelet transform at scales smaller than 1. In practice, we still want to use the tools that describe

singularities, even though we are limited by the resolution of measurements. Suppose that the

approximation of f (x) at the resolution 1 is given by a set of samples I
L fn

M
On ∈ Z

with fn = 0 for

n < n 0 and fn = 1 for n ≥ n 0 , like at the abscissa 0.88 of fig. 3(a). We would like to say that at

the resolution 1, f (x) behaves as if it has a discontinuity at n = n 0 although it is possible that

f (x) is continuous at n 0 but has a sharp transition at that point which is not visible at the resolu-

tion 1. The characterization of singularities from the decay of the wavelet transform enables us to

give a precise meaning to this discontinuity at the resolution 1. Since we can not measure the

asymptotic decay of the wavelet transform when the scale goes to 0, we measure the decay of the

wavelet transform up to the finner scale available. The Lipschitz exponent are computed by find-

ing the coefficient α such that A sα approximates at best the decay of | Wf (s,x) | over a given

range of scales larger than 1 (see fig. 3(b)). The discontinuity of the sequence I
L fn

M
On ∈ Z

appears

clearly from the fact that | Wf (s,x) | remains approximatively constant over a large range of

scales, in the neighborhood of n 0 . With this approach, we can use Lipschitz exponents to charac-

terize the irregularities of discrete signals. Negative Lipschitz exponents correspond to sharp irre-

gularities where the wavelet transform modulus increases at fine scales. A sequence I
L fn

M
On ∈ Z

with fn = 0 for n ≠ n 0 , and fn 0
= 1, can be viewed as the approximation of a Dirac at the resolu-

tion 1. At the abscissa 0.44, the signal of fig. 3(a) has such a discrete Dirac. The wavelet

transform increases proportionally to
s
1hh over a large range of scales, in the corresponding neigh-

borhood. In the rest of this paper, we suppose that all numerical experiments are performed on

functions approximated at the resolution 1 and we consider that the decay of the wavelet

transform at scales larger than 1 characterize the Lipschitz exponent of the function up to the

scale 1. Fast algorithms to compute the wavelet transform are described in [11, 14]. We shall not

worry anymore about the opposition between asymptotic measurements and finite resolutions.

The local maxima of the wavelet transform of fig. 3(b) are shown in fig. 3(c). The black

lines indicate the position of the local maxima in the scale-space. Fig. 3(e) gives the value of
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log2 | Wf (s,x) | as a function of log2(s) along each of the two maxima line that converge to the

point of abscissa 0.16, between the scales 21 and 28 . It is interesting to observe that at fine

scales, the slope of theses two maxima line is different and are approximatively equal to 0.2 and

0.6. This shows that f (x) behaves like a function Lipschitz 0.2 in its left neighborhood and a

function Lipschitz 0.6 in its right neighborhood. The Lipschitz regularity of f (x) at 0.16 is 0.2

which is the smallest slope of the two maxima lines.

At this point one might wonder how to choose the number of vanishing moments to analyze

a particular class of signals. If we want to estimate the Lipschitz exponents up to a maximum

value n, we know that we need a wavelet with at least n vanishing moments. In fig. 3(c), there is

one maxima line converging to the abscissa 0.7 along which the decay of log | Wf (s,x) | is pro-

portional to log(s). The signal was built from a function whose derivative is singular but this can

not be detected from the slope of log | Wf (s,x) | because the wavelet has only one vanishing

moment. Fig. 3(d) shows the maxima line obtained from a wavelet which has two vanishing

moments. The decay of the wavelet transform along the two maxima lines that converge to the

abscissa 0.7 indicates that f (x) is Lipschitz 1.5 at this location. Using wavelets with more van-

ishing moments has the advantage of being able to measure the Lipschitz regularity up to a higher

order but it also increases the number of maxima line as it can be observed by comparing fig. 3(c)

and 3(d). Let us prove this last observation. A wavelet ψ(x) with n +1 vanishings moment is the

derivative of a wavelet ψ1(x) with n vanishing moments. Similarly to equation (21), we obtain

Wf (s,x) = s
dx
dhhh(f ∗ ψ s

1)(x) = s
∂x
∂hhhW 1 f (s,x) . (27)

The wavelet transform of f (x) defined with respect to ψ(x) is proportional derivative of the

wavelet transform of f (x) with respect to ψ1(x). Hence, the number of local maxima of

| Wf (s,x) | is always larger than the number of local maxima of | W 1 f (s,x) | . The number of

maxima at a given scale often increases linearly with the number of moments of the wavelet. In

order to minimize the amount of computations, we want to have the minimum number of maxima

necessary to detect the interesting irregular behavior of the signal. This means that we must

choose a wavelet with as few vanishing moments as possible but with enough moments to detect

the Lipschitz exponents of highest order that we are interested in. Another related property that

influences the number of local maxima is the number of oscillations of the wavelet ψ(x). For

most type of singularities, the number of maxima line converging to the singularity depends upon

the number of local extrema of the wavelet itself. The simplest example to verify this is the Dirac

δ(x) since Wδ(s,x) =
s
1hhψ(

s
xhh). A wavelet with n vanishing moments has at least n +1 local max-

ima. In numerical computations, it is better to choose a wavelet with exactly n +1 local maxima.

In image processing, we often want to detect discontinuities and peaks which have Lipschitz

exponents smaller than 1. It is therefore sufficient to use a wavelet with only one vanishing
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moment. In signals obtained from turbulent fluids, interesting structures have a Lipschitz

exponent between 0 and 2 [3]. We thus need a wavelet with two vanishing moments to analyze

the turbulent structures.

In the following, we suppose that the wavelet ψ(x) is the n th derivative of a positive func-

tion θ(x) that has only one extrema and a symmetrical support equal to [−K,K ]. In order to prove

that a function f (x) is Lipschitz α at a point x 0 , theorem 2 imposes that the wavelet transform

should have a minimum decay in any cone that points to x 0 in the scale-space, but also below this

cone. The cone that points to x 0 defined by | x − x 0 | ≤ K s is called the cone of influence of x 0 .

It is the set of point (s,x) for which Wf (s,x) is influenced by the value of f (x) in the neighbor-

hood of x 0 . The next theorem proves that if we impose that f (x) has no oscillation, with a sign

constraint on Wf (s,x), then the regularity of f (x) at a point x 0 is characterized by the behavior of

its wavelet transform along any line that belongs to a cone strictly smaller than the cone of influ-

ence. We do not need to verify the decay of the wavelet transform at any other point. In section

5.3 we explain why this property is wrong if f (x) oscillates too much.

Theorem 5

The support of the wavelet ψ(x) is [−K,K ]. Let x 0 ∈ ]a,b [ and f (x) ∈ L1
([a,b ]). We suppose

that there exists a constant B and ε > 0 such that for all points x ∈ ]a,b [ and any scale s

| Wf (s,x) | ≤ B s ε with ε > 0 . (28)

Let us also suppose that there exists a scale s 0 > 0 such that for s < s 0 and x ∈ ]a,b [, Wf (s,x)

has a constant sign. Let x = X (s) be a curve in the scale space (s,x) such that | x 0 − X (s) | ≤ Cs,

with C < K. It there exists a constant A such that for any scale s < s 0 , the wavelet transform sa-

tisfies

| Wf (s,X (s)) | ≤ A s γ with 0 ≤ γ ≤ n , (29)

then f (x) is Lipschitz α at x 0 , for any α < γ.

The proof of this theorem is in appendix 3. To estimate the Lipschitz exponent in x 0 , we

use the result of theorem 2. We can control the decay of the wavelet transform inside the cone of

influence of x 0 and below this cone because of the sign condition on the wavelet transform.

Equation (28) imposes that f (x) must be uniformly Lipschitz ε in the neighborhood of x 0 as

required by theorem 2. We can prove that the function is Lipschitz α only for α < γ because we

are missing the logarithmic term that is required by theorem 2 in equation (17). If the wavelet is

the n th derivative of a positive function, one can easily prove that the wavelet transform has a

constant sign in the neighborhood of a point x 0 if and only if the n th derivative of f (x) has a con-

stant sign. This guarantees that f (x) has no fast oscillations in the neighborhood of x 0 . If n = 1, it
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means that f (x) is monotonous in the neighborhood of x 0 . A similar theorem can be obtained if

we suppose that the n th derivative of f (x) has a constant sign in a left and in a right neighbor-

hood of x 0 , but changes of sign in x 0 . In this case, we need to control the decay of the wavelet

transform along two lines that remain respectively in the left and the right part of the cone of

influence of x 0 . Theorem 5 enables us to estimate the local Lipschitz regularity of singularities

that are not isolated from the behavior of the wavelet transform maxima. The wavelet transform

has a constant sign in a neighborhood of x 0 if and only if the local maxima of Wf (s,x) have a

constant sign in a neighborhood of x 0 . It is also sufficient to verify equation (28) along the lines

of maxima in the neighborhood of x 0 . Theorem 5 proves that the Lipschitz regularity of f (x) in

x 0 can then be estimated from the decay of the wavelet transform along one line of maxima that

converges towards x 0 .

A "devil staircase" is an interesting example to illustrate the application of this theorem.

The derivative of a devil staircases is a Cantor measure. For the devil staircase shown in fig. 5(a),

the Cantor measure is built recursively as follow. For p = 0, the support of the measure µ0 is the

interval [0,1] and it has a uniform density equal to 1 on [0,1]. The measure µp is defined by sub-

dividing each domain where µp −1 has a uniform density equal to a constant c > 0, into three

domains whose respective sizes are
5
1hh ,

5
2hh and

5
2hh . The density of the measure µp is equal to 0 in

the central part, to
3
chh on the first part and

3
2chhh on last one (see fig. 4). One can verify that

0
∫
1

µp(dx) = 1. The limit measure µ∞ obtained with this iterative process is a Cantor measure. The

devil staircase is defined by:

f (x) =
0
∫
x

µ∞(dx) .

Fig. 5(a) shows the graph of a devil staircase and fig. 5(b) its wavelet transform computed with a

the wavelet of fig. 2(a). For a devil staircase, we can prove that the maxima lines converge

exactly to the points where the function f (x) is singular.

Proof: By definition, the set of points where the maxima lines converge is the closure of the

wavelet transform maxima and corollary 1 proves that it includes the closure of the points where

f (x) is singular. For a devil staircase, the support of the points where f (x) is singular is equal to

the support of the Cantor measure which is a closed set. It is thus equal to its closure. For any

point x 0 outside this closed set, we can find a neighborhood ]x 0−ε,x 0+ε[ which does not intersect

the support of µ∞(x). On this open interval, f (x) is constant so for s small enough and

x ∈ ]x 0−ε/2,x 0+ε/2[, Wf (s,x) is equal to zero. The point x 0 therefore can not belong to the clo-

sure of the wavelet transform maxima. This proves that the closure of the wavelet transform max-

ima is included in the singular support of f (x). Since the opposite is also true, it implies that
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both sets are equal.

For the particular devil staircase that we defined, the Lipschitz regularity of each singular

point depends upon the location of the point. One can prove [3] that at all locations, Lipschitz

exponent α satisfies

log (2/5)
log (2/3)hhhhhhhh ≤ α ≤

log (1/5)
log (1/3)hhhhhhhh .

Hence, equation (28) of theorem 5 is verified for ε <
log (2/5)
log (2/3)hhhhhhhh . Since a devil staircase is mono-

tonously increasing and our wavelet is the derivative of a positive function, the wavelet transform

remains positive. Theorem 5 proves that the local Lipschitz regularity of f (x) at any singular

point can be estimated from the decay of the wavelet transform along the maxima line that con-

verges to that point.

Fig. 4: Recursive operation for building a multifractal Cantor measure. The Cantor measure is

obtained as a limit of this iterative procedure.
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(a)

(b)

(c)

Fig. 5: (a): Devil staircase. (b): Wavelet transform of the devil staircase computed with the

wavelet of fig. 2(a). Black and white points indicate respectively that the wavelet transform is

zero or strictly positive. (c): Local maxima of the wavelet transform shown in (b).
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5.3. Singularities with Fast Oscillations

If the function f (x) is oscillating quickly in the neighborhood of x 0 , then one can not

characterize the Lipschitz regularity of f (x) from the behavior of its wavelet transform in the

cone of influence of x 0 . We say that a function has fast oscillations if and only if there exists

α > 0 such that f (x) is not Lipschitz α at x 0 but its primitive of f (x) is Lipschitz α+1 at x 0 . This

situation occurs when f (x) is a function which oscillates very quickly and whose singularity

behavior at x 0 is dominated by these oscillations. When computing the integral of f (x), we aver-

age locally f (x) so the oscillations are attenuated and the Lipschitz exponent in x 0 increases by

more than 1. Singularities with such an oscillatory behavior have been thoroughly studied in

mathematics [24]. A classical example is the function f (x) = sin (
x
1hh) in the neighborhood of

x = 0. This function is not continuous in 0 but is bounded in the neighborhood of 0 so it is

Lipschitz 0 in x = 0. The primitive of f (x) is O (x 2) in the neighborhood of x = 0 so it is

Lipschitz 2 in 0. By computing the primitive of f (x), we increase the Lipschitz exponent by 2

because the oscillations of sin(
x
1hh) are attenuated by the averaging effect. Let us denote by g (x)

the primitive of f (x). Let ψ1(x) be the derivative of ψ(x). Since g (x) is Lipschitz α+1, the

necessary condition (15) of theorem 2 implies that in a neighborhood of x 0 , the wavelet transform

defined with respect to ψ1(x) satisfies

| W 1g (s,x) | ≤ A (sα+1 + | x −x 0 | α+1) . (30)

Similarly to equation (21) we can prove that

W 1g (s,x) = f ∗ ψ s
1(x) = s (f ∗ ψ s)(x) = s Wf (s,x) .

We thus derive that

| Wf (s,x) | ≤ A (sα +
s
1hh | x −x 0 | α+1) . (31)

This equation proves that although f (x) is not Lipschitz α, in the cone of influence of x 0 ,

| Wf (s,x) | = O (sα ). The fact that f (x) is not Lipschitz α can therefore not be detected from the

decay of | Wf (s,x) | inside the cone of influence of x 0 but by looking at its decay below the cone

of influence, as a function of | x −x 0 | . Since f (x) is not Lipschitz α, the necessary condition (15)

implies that we can not have | Wf (s,x) | = O ( | x −x 0 | α ) for (s,x) below the cone of influence of

x 0 . When a function has fast oscillations, its worth singular behavior in a point x 0 is observed

below the cone of influence of x 0 in the scale-space plane.

Let us study in more detail the case of f (x) = sin(
x
1hh). Since the primitive is Lipschitz 2, we

can take α = 1. Equation (31) implies that in the cone of influence of 0, the wavelet transform

satisfies | Wf (s,x) | = O (s). Fig. 6(b) shows the wavelet transform of sin(
x
1hh). One can see that
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the wavelet transform has a high amplitude along a curve in the scale space (s,x) which reaches

(0,0) below the cone of influence of 0. It is along this path in the scale-space that the singular

part of f (x) reaches 0. Let us interpret this curve and prove that it is a parabola. Through this

analysis we will derive a procedure to estimate locally the size of the oscillations of f (x).

The function f (x) = sin (
x
1hh) can be written f (x) = sin(ωxx), where ωx =

x 2

1hhh can be viewed

as an "instantaneous" frequency. Let us compute the wavelet transform of a sinusoidal wave of

constant frequency ω0 . Since the wavelet that we use is antisymmetrical, one can derive from

equation (3) that the wavelet transform of h (x) = sin(ω0x) satisfy

| Wh (s,x) | = | cos(ω0x) | | ψ̂(sω0) | . (32)

For a fixed abscissa x, the decay of | Wh (s,x) | when s increases is given by the decay of

| ψ̂(sω0) | . If | ψ̂(ω) | reaches its maxima at ω = ωm , then for x fixed, | Wh (s,x) | is maximum at

s 0 =
ω0

ωmhhhh . The scale where | Wh (s,x) | is maximum is inversely proportional to the frequency of

the sinusoidal wave. The value of Wh (s,x) depends on the values of g (x) in a neighborhood of

size proportional to the scale s, so the frequency measurement is local. This "instantaneous" fre-

quency measurement is based on an idea that has been developed previously by Escudie and

Torresani for measuring the modulation law of asymptotic signals [8]. Since f (x) = sin(
x
1hh) has

an instantaneous frequency ωx =
x 2

1hhh , for a fixed abscissa x, | Wf (s,x) | is globally maximum for

s ∼∼ ωx

ωmhhhh = ωm x 2 . This is why we see in fig. 6(b) that the wavelet transform has a maximum

amplitude along a parabola that converges to the abscissa 0 in the scale-space.

Let us now study the behavior of the wavelet transform maxima. The inflection points of

f (x) are located at x =
nπ
1hhh , for n ∈ Z. Since the wavelet ψ(x) has only one vanishing moment,

all the maxima lines converge toward the points x =
nπ
1hhh . Since f (x) is continuously differenti-

able at
nπ
1hhh , the wavelet transform along a maxima line converging to

πn
1hhh satisfies

| Wf (s,x) | ≤ An s . (33)

The derivative of f (x) in
nπ
1hhh is equal to (−1)n +1 n 2 so one can derive that An = O (n 2). It is

interesting to observe that along all maxima lines in the neighborhood of 0, the wavelet transform

decays proportionally to the scale s although f (x) is discontinuous in 0. This singularity in 0 can

however be detected because the constants An grow to +∞ when we get closer to 0. Fig. 6(c)

displays the local maxima of the wavelet transform of sin(
x
1hh). The function sin(

x
1hh) is self
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similar so the maxima line should have the same behavior at all scales. In the neighborhood of 0,

at fine scales, the maxima line have a different geometry in the scale space (s,x) due to the alias-

ing when sampling sin(
x
1hh), for numerical computations. We are now going to explain how to

measure the size of the oscillations of f (x) from the points where the wavelet transform is locally

maximum along x and s. These points also provide a simple approach to detect the discontinuity

in 0.
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(a)

(b)

(c)

(d)

Fig. 6: see the caption next page.
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Fig. 6: (a): Graph of sin (
x
1hh). (b): Wavelet transform of sin(

x
1hh). The amplitude is maximum along

a parabola in the scale-space that converges to (0,0) in the scale-space. (c): Local maxima of

the wavelet transform. (d): The maxima line are displayed from the scale where is located the

general maxima to the finnest scale. The extremity of the maxima lines indicate the position of the

general maxima points and belong to a parabola in the scale-space (s,x).

Definition 5

We call general maximum of Wf (s,x) a point (s 0 ,x 0) which is a local maxima along the x vari-

able as defined by definition 4 and such that when s belongs to either the right or the left neigh-

borhood of s 0 , | Wf (s,x 0) | < | Wf (s 0 ,x 0) | and when s belongs to the other side of the neighbor-

hood of s 0 , | Wf (s,x 0) | ≤ | Wf (s 0 ,x 0) | .

A general maximum (s 0 ,x 0) is a point where | Wf (s,x) | is locally maximum in a two-

dimensional neighborhood of (s 0 ,x 0) in the scale-space plane. General maxima points belong to

the local maxima lines defined by definition 4. They are the points where | Wf (s,x) | has a local

maxima when the scale s varies along a local maxima line. These maxima points also belong to

the ridges of the wavelet transform as defined by Escudie and Torresani [8]. Equation (32)

proves that the maxima line of the wavelet transform of sin (ω0x) are the straight lines in the

scale-space plane whose coordinates are (s,nπ) for n ∈ Z. If | ψ̂(ω) | has only one local max-

imum for ω > 0, then there is only one general maximum along each maxima line which appears

at the scale s 0 =
ω0

ωmhhhh . If | ψ̂(ω) | has several local maxima, the general maximum where

| Wf (s,x) | has the highest value along each maxima line, is at the scale s 0 =
ω0

ωmhhhh . One can thus

recover the frequency ω0 from the location of the general maxima. For f (x) = sin(
x
1hh), there is

one general maxima along each maxima line converging towards the points x =
nπ
1hhh . Fig. 6(d)

displays the sub-part of each maxima line that is between the general maxima of maximum

amplitude and the finner scale. In the scale-space, these general maxima belong to a parabola

whose equation is s = A x 2 =
ωx

Ahhh , with A ∼∼ ωm . If f (x) is locally equal to the sum of several

sinusoidal waves whose frequency are well apart so that they can be discriminated by ψ̂(sω),

when s varies (see equation (32)), then we can measure the frequency of each of these sinusoidal

waves from the scales of the general maxima that they produce. The efficiency of this method

depends on how concentrated is the support of ψ̂(ω). Here, we are limited by the uncertitude
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principle which imposes that ψ(x) can not have its energy well concentrated both in the spatial

and frequency domains.

Let us now give a spatial domain interpretation of this frequency measurement. We show

that if the wavelet ψ(x) has only one vanishing moment, the general maxima points provide a

measurements of the local oscillations even if the function is not locally similar to a sinusoidal

wave. If ψ(x) has only one vanishing moment, equation (21) proves that

Wf (s,x) = s
dx
dhhh(f ∗ θ s)(x) , hence

Wf (s,x) =
−∞
∫

+∞

du
df (u)hhhhhh θ(

s
x −uhhhh) du . (34)

If locally f (x) has a simple oscillation like in fig. 7,
dx

df (x)hhhhhh has a constant sign between the two

top points x 1 and x 2 of the oscillation. The point (s 0 ,x 0) is a general maximum if the support of

θ(
s 0

x 0−xhhhhh) covers as much as possible the positive part of
dx

df (x)hhhhhh , without paying the cost of cover-

ing a domain where
dx

df (x)hhhhhh is too negative. This means that the distance between the two top

points of the oscillation is of the order of the the size of the support of θ(x) multiplied by the

scale s 0:

x 2 − x 1 ∼∼ K s0 . (35)

This spatial domain interpretation shows that even if the function is not locally similar to a

sinusoidal wave, the size of the oscillation is approximatively proportional to the scale s 0 of the

general maxima point.

If the wavelet ψ(x) has more than one vanishing moment we can also measure locally the

frequency of a sinusoidal wave from the general maxima points. If we suppose that ψ(x) is either

odd or even, then equation (32) remains valid although we have a sin instead of a cos in the

right-hand side if the wavelet is even. Let ωm be the frequency where | ψ̂(ω) | is maximum. If

f (x) is locally approximated by a sinusoidal wave of frequency ω0 , we can then derive that the

general maxima points of highest value along a maxima line is at a scale s 0 =
ω0

ωmhhhh . The frequen-

cies of several sinusoidal waves can also be discriminated with this method if they are far

enough. However, the spatial domain interpretation is not valid anymore. If the wavelet has more

than one vanishing moment, the scale of a general maxima (s 0 ,x 0) do not characterize the size of

oscillations if the function can not locally be approximated by a sinusoidal wave.
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Fig. 7: The point (s 0 ,x 0) is a general maxima of the wavelet transform of f (x) if the function

θs 0
(x−x 0) covers a domain as large as possible where the function f (x) has a positive derivative.

With equation (31), we saw that if a function f (x) has fast oscillations in the neighborhood

of x 0 , then the regularity at x 0 depends upon the behavior of Wf (s,x) below the cone of influence

of x 0 . To estimate this behavior, one approach is to measure the decay of the value of | Wf (s,x) |

at the general maxima points that are below the cone of influence of x 0 . Indeed, these general

maxima points characterize the size of the oscillations of f (x) and they give an upper bounds of

the value of the wavelet transform along each maxima line below the cone of influence. Theorem

2 proves that f (x) is Lipschitz α in x 0 only if | Wf (s,x) | = O ( | x −x 0 | α ) below the cone of influ-

ence. Hence, f (x) can be Lipschitz α at a point x 0 only if the general maxima point (si ,xi) below

the cone of influence of x 0 satisfy

| Wf (si ,xi) | = O ( | xi−x 0 | α ) . (36)

This necessary condition gives an upper bound on the Lipschitz exponents at x 0 . For

f (x) = sin(
x
1hh), this is satisfied only for α = 0. We thus detect the discontinuity in 0 from the the

values of the general maxima points. In most situations, the general maxima points must be used

in conjunction with the local maxima lines in order to estimate the decay of | Wf (s,x) | inside the

cone of influence of x 0 and below this cone of influence.



-- --

Page 33

6. Completeness of the Wavelet Maxima

We proved that the singularities of a function can be detected from the wavelet transform

local maxima. One might wonder whether the positions and the values of the wavelet transform

maxima provide a complete and stable representation of f (x). The characterization of functions

from the wavelet transform maxima detected only along the dyadic sequence of scale I
L2j M

O j ∈ Z

has been studied by Zhong and one of us [14]. A numerical algorithm that reconstructs functions

from the wavelet transform maxima was derived. In this section, we briefly review the principle

of this algorithm. Next section explains an application for suppressing the white noise from a sig-

nal by differentiating the local singularities of the signal and of the noise.

For efficient numerical implementations, we need to discretize the the scale parameter s

along a sparse sequence. When the scale is discretized along the dyadic sequence I
L2j M

O j ∈ Z
, the

wavelet transform can be computed with a fast algorithm [14]. We call dyadic wavelet transform

the sequence of functions of the variable x

I
LWf (2j ,x)

M
O j ∈ Z

. (37)

Let us briefly review the main properties of a dyadic wavelet transform. As a consequence of

equation (3), the Fourier transform of Wf (2j ,x) is given by

Ŵf (2j ,ω) = ψ̂(2jω) f̂(ω) . (38)

The function f (x) can be reconstructed from its wavelet transform and the reconstruction is

stable [7, 14] if and only there exists two constants A > 0 and B > 0 such that

A ≤
j =−∞
Σ
+∞

| ψ̂(2jω) | 2 ≤ B . (39)

Let us denote by || Wf (2j ,x) || the L2
(R) norm of the function Wf (2j ,x) along the variable x. As

a consequence of equation (39), by applying the Parseval theorem, one can prove that a dyadic

wavelet transform has a finite energy

A || f || 2 ≤
j =−∞
Σ
+∞

|| Wf (2j ,x) || 2 ≤ B || f || 2 . (40)

This means that I
LWf (2j ,x)

M
O j ∈ Z

belongs to the Hilbert space l2(L2) of sequences of functions

I
Lgj(x) MO j ∈ Z

that satisfy

j =−∞
Σ
+∞

|| gj(x) || 2 < +∞ .

Similarly to the continuous wavelet transform, the dyadic wavelet transform is overcomplete.
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This means that any sequence I
Lgj(x) MO j ∈ Z

∈ l2(L2) is not a priori the dyadic wavelet transform

of some function f (x) ∈ L2
(R). The space V of all dyadic wavelet transforms of functions in

L2
(R) is strictly included in l2(L2). An orthogonal projection from l2(L2) onto V is defined by

a reproducing kernel equation similar to equation (5) [14].

If the wavelet satisfies the condition (39), the Lipschitz regularity of a function is also

characterized by the decay across scales of the wavelet transform at the scales I
L2j M

O j ∈ Z
.

Theorems 1 and 2 remain valid if we restrict the scale to the sequence I
L2j M

O j ∈ Z
[13]. We can

thus characterize the regularity of a function from the behavior of its dyadic wavelet transform

local maxima. The results and theorems of section 5 are valid if we restrict the scale parameter s

to dyadic scales. Fig. 8(b) shows the dyadic wavelet transform of the signal given in fig. 8(a),

computed with the wavelet shown in fig. 2(a). The finner scale is limited by the resolution of the

original discrete signal. We must also stop the decomposition at a finite larger scale. If fig. 8(b),

the wavelet transform is computed up to a finite scale 26 . The information corresponding to the

dyadic wavelet transform at scales larger than 26 is regrouped into one function that carries the

lower frequencies of the function f (x), at the bottom of fig. 8(b) [14]. Fig. 8(c) displays the local

maxima of the wavelet transform. Each Dirac gives the position and value of Wf (2j ,x) at a max-

ima location.
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Fig. 8: see the caption next page.

(a)

(b)

(c)

(d)
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Fig. 8: (a): Original signal. (b): Wavelet transform up to the scale 26 . The bottom graph gives

the remaining low-frequencies at scales larger than 26 . (c): Local maxima of the wavelet

transform. At each scale, a Dirac indicates the position and value of a wavelet transform local

maxima. We also keep the remaining low-frequency information shown at the bottom. (d): Sig-

nal reconstructed from the wavelet transform local maxima shown in (c).

Since we chose a wavelet with only one vanishing moment, the wavelet transform maxima

appear specifically at the locations where the signal has sharp transitions. It thus provides an

adaptive description of the signal information. The more irregularities in the signal, the more

wavelet maxima. An important issue is to understand whether the wavelet transform maxima

carry the whole signal information. Is it possible to make a stable reconstruction of f (x) from the

maxima of its wavelet transform ? If this is possible, then one can process directly the maxima of

the wavelet transform to modify the singularities of a function. The mathematical analysis of this

non-linear inverse problem is quite difficult and we have no proof that this reconstruction is pos-

sible and stable. However, a reconstruction algorithm was developed by Zhong and one of us and

in all numerical experiments, the original signals are recovered from their wavelet transform

maxima [14]. The reconstruction algorithm is an alternative projection algorithm. Given the

position of the local maxima of each function Wf (2j ,x) and the value of Wf (2j ,x) at the

corresponding locations, we want to reconstruct the original dyadic wavelet transform
I
LWf (2j ,x)

M
O j ∈ Z

. From this dyadic wavelet transform we can then recover f (x). The sequence of

functions that we want to reconstruct is a dyadic wavelet transform and must therefore belong to

the space V of all dyadic wavelet transform. Because of the maxima constraints, this sequence

of functions must also belong to the set Γ of all sequences of functions I
Lgj(x) MO j ∈ Z

in l2(L2)

such that at for each integer j, the local maxima of gj(x) occur at the same locations and have the

same values than the local maxima of Wf (2j ,x). The solution must therefore belong to the inter-

section of Γ and V. The original dyadic wavelet transform can be reconstructed from the local

maxima if and only if this intersection is unique which has not been proven yet. The reconstruc-

tion algorithm begins with an initial sequence of functions I
Lgj(x) MO j ∈ Z

arbitrarily chosen and

then iterates on an alternative projection on V and Γ as illustrated by fig. 9. The convergence of

the algorithm (in the weak sense) would be guaranteed if Γ was convex. This is not the case

although Γ is not far from being convex [14]. In all reconstruction experiments, the error to sig-

nal ratio of the reconstructed signal was of the order of 4 10−2 after 20 iterations. If we increase

the number of iterations, the reconstruction error decreases to our limit of floating point computa-

tion precision. If the discrete signal has a total of N samples, the computation complexity of the
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projections on V and Γ is O (N log (N)) [14].

Fig. 9: The reconstruction of the wavelet transform of f (x) is done with alternating projections

on the set Γ that expresses the constraints on the local maxima and on the space V of all

dyadic wavelet transforms. The original wavelet transform is at the intersection of both.

7. Signal Denoising Based on Wavelet Maxima in One Dimension

The properties of a signal can be modified by processing its wavelet transform maxima and

then reconstructing the corresponding function. We describe an application to denoising based

on a local estimation of the signal regularity. For this purpose, we analyze the properties of the

wavelet transform of a white noise and then explain the denoising algorithm. Let n (x) be a white

noise random process and Wn (s,x) be its wavelet transform. We denote by E(X) the expected

value of a random variable X. Grossmann et. al. [9] have shown that the decay of

E ( | Wn (s,x) | 2) is proportional to
s
1hh . Indeed,

| Wn (s,x) | 2 =
−∞
∫

+∞

−∞
∫

+∞

n (u) n (v) ψs(x −u) ψs(x −v) dudv .

Since n (x) is a white noise, E (n (u)n (v)) = δ(u −v), hence

E ( | Wn (s,x) | 2) =
−∞
∫

+∞

−∞
∫

+∞

δ(u −v) ψs(x −u) ψs(x −v) dudv .

We thus derive that

E ( | Wn (s,x) | 2) =
s

|| ψ || 2
hhhhhh . (41)

At a given scale s, the wavelet transform Wn (s,x) is a random process in x. If we suppose

that the white noise n (x) is a Gaussian white noise then Wn (s,x) is also a Gaussian process. By

using this property, we prove in appendix 4 that at a scale s, the density of local maxima of the
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wavelet transform is

ds = λ
s π || ψ(1) ||

|| ψ(2) ||hhhhhhhhhh , (42)

where ψ(n)(x) is the nth derivative of ψ(x) and λ a constant between 0.5 and 1. The density of

local maxima is inversely proportional to the scale s. Fig. 10(b) shows the dyadic wavelet

transform of the signal of fig. 8(a) to which we added a Gaussian white noise of variance 1.
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(a)

(b)

(c)

Fig. 10: (a): Signal of fig. 8(a) to which we added a Gaussian white noise of variance 1. (b):

Wavelet transform computed up to the scale 24 . (c): Local maxima of the wavelet transform. At

coarser scales the maxima of the signal discontinuities dominate the maxima of the white noise.
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The most classical technique to remove the white noise from a signal is to convolve the sig-

nal with a Gaussian filter. As a result, part of the noise is removed but we also remove the high

frequencies and thus smooth the signal singularities. If we suppose that the original signal f (x)

has singularities whose Lipschitz regularity is positive, then we know that the value of the

wavelet transform maxima increase or remain constant when the scale increases. On the opposit,

the value of the wavelet transform local maxima created by the noise, decrease on average, when

the scale increases. We use this property to remove part of the wavelet maxima created by the

noise. We then reconstruct a signal from the remaining maxima where most of the noise disap-

peared.

In order to evaluate the behavior of the wavelet maxima across scales, we need to make a

correspondence between the maxima that appear at different scales 2 j . We say that a maxima at a

scale 2j propagates to another maxima at the coarser scale 2 j +1 if both maxima belong to the

same maxima line in the scale space (s,x). Equation (42) proves that for a white noise, on aver-

age, the number of maxima decreases by a factor 2 when the scale increases by 2. Half of the

maxima do not propagate from the scale 2 j to the scale 2j +1 . In order to find which maxima pro-

pagate to the next scale, one should compute the wavelet transform on a dense sequence of scales.

However, with a simple ad-hoc algorithm one can still find which maxima propagate to the next

scale, from their value and position with respect to other maxima at the next scale. This ad-hoc

algorithm is not exact but saves computations since we do not need to compute the wavelet

transform at any other scale. In the neighborhood of singularities with positive Lipschitz

exponents, the wavelet transform local maxima have an amplitude which increase or remains

constant when the scale increases. At fine scales, the white noise dominates the signal but at

coarse scales the effect of these positive Lipschitz exponents appear more clearly. This is visible

in fig. 10(c) where the maxima of the two discontinuities can be discriminated from the white

noise only at large scales. To remove the white noise components, we suppress all the maxima

that do not propagate along enough scales or whose average amplitude increases when the scale

decreases. The original signal also includes smooth variations between each discontinuities. The

energy of these smooth variations dominate the white noise at scales larger than 24 . Hence, we

only compute the wavelet transform maxima up to the scale 24 . The remaining maxima are

shown in fig. 12(a). The algorithm selects the maxima corresponding to the signal singularities

namely the two discontinuities but the amplitude of these maxima are severely affected by the

white noise at the finer scales. A priori, there is no function whose wavelet transform have max-

ima that correspond exactly to the maxima that we selected. This means that the set Γ that

characterizes the maxima constraint does not intersect the space V of all wavelet transform (see

fig. 11). The reconstruction algorithm thus do not converge but if we stop after enough iterations

(20 in practice), we reconstruct a sequence of functions which is close to Γ and V. The function
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shown in fig. 12(b) was obtained after 20 such iterations. As it can be observed, the two discon-

tinuities of the original function are still perfectly sharp although there is an overshoot due to the

white noise components that modified the values of the wavelet maxima at these locations. The

smooth part of the signal is also well restored but we still see the traces of the white noise at

scales larger than 24 . This simple algorithm shows the feasibility to discriminate a signal from its

noise with an analysis of the local maxima behavior across scales. Much better strategies for

selecting the maxima can certainly be developed depending upon the applications. In the next

sections, we explain how to define the wavelet transform maxima detection in two dimensions

and extend this denoising algorithm for images.

Fig. 11: After a modification of the local maxima, in general there is no wavelet transform whose

local maxima are exactly equal to the one that we selected. Hence, the set Γ that carries the con-

straint of the local maxima does not intersect the space V of all dyadic wavelet transforms. The

algorithm reconstructs a sequence of functions that is close to Γ and V.
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(a)

(b)

(c)

Fig. 12: (a): Local maxima kept by the denoising algorithm. (b): Signal reconstructed from the

local maxima shown in (a). The overshoot at the discontinuity locations is due to the modification

of the maxima amplitude by the white noise. (c): Original signal.
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8. Wavelet Maxima of Images

In images, the most important features are often the sharp variation points of the intensity

also called edge points. This is well illustrated by our ability to recognize on object from a draw-

ing that outlines the edges. Wavelets with only one vanishing moment are therefore sufficient for

detecting edges. The extension of the wavelet maxima representation in two-dimensions is

mostly inspired by the multiscale edge detection algorithm of Canny [6]. We define two

wavelets which are respectively the partial derivative along x and y of a two-dimensional smooth-

ing function θ(x,y):

ψ1(x,y) =
∂x

∂θ(x,y)hhhhhhh and ψ2(x,y) =
∂y

∂θ(x,y)hhhhhhh . (43)

Let ψs
1(x,y) =

s 2

1hhhψ1(
s
xhh ,

s
yhh) and ψs

2(x,y) =
s 2

1hhhψ2(
s
xhh ,

s
yhh). For any function f (x,y) ∈ L2

(R2),

the wavelet transform defined with respect to ψ1(x,y) and ψ2(x,y) has two components:

W 1 f (s,x,y) = f ∗ ψ s
1(x,y) and W 2 f (s,x,y) = f ∗ ψ s

2(x,y) . (44)

Similarly to equation (21), one can easily prove that

I
J
LW 2 f(s,x,y)

W 1 f(s,x,y) M
J
O

= s

I
J
J
J
L ∂y

∂hhh(f ∗ θ s)(x,y)

∂x
∂hhh(f ∗ θ s)(x,y)

M
J
J
J
O

= s ∇
→

(f ∗ θ s)(x,y) . (45)

Hence, the two components of the wavelet transform are the coordinates of the gradient vector of

f (x,y) smoothed by θs(x,y). Canny [6] defines the edge points of f (x,y) at the scale s as the

points where the modulus of the gradient vector of f ∗ θ s(x,y) is maximum in the direction where

the gradient vector points too. Edge points are inflection points of the surface f ∗ θ s(x,y). We

use the same approach to define the local maxima of the wavelet transform. Before studying in

more details these local maxima, let us briefly review the properties of a two-dimensional

wavelet transform.

In two dimensions, the scale space is a three dimensional space (s,(x,y)) and it is crucial to

keep as few scales as possible in order to limit the computations as well as the memory require-

ments. We thus define a two-dimensional dyadic wavelet transform where the scale s varies only

along the dyadic sequence I
L2j M

O j ∈ Z
. We call two-dimensional dyadic wavelet transform of

f (x,y) the set of functions

Wf = I
LW 1 f (2j ,x,y) , W 2 f (2j ,x,y)

M
O j ∈ Z

. (46)

Let ψ̂
1
(ωx,ωy) and ψ̂

2
(ωx,ωy) be the Fourier transform of ψ1(x,y) and ψ2(x,y). The Fourier

transform of W 1 f (2j ,x,y) and W 2 f (2j ,x,y) is respectively given by:
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Ŵ
1

f (2j ,ωx,ωy) = f̂(ωx,ωy) ψ̂
1
(2jωx,2jωy) and (47)

Ŵ
2

f (2jωx,ωy) = f̂(ωx,ωy) ψ̂
2
(2jωx,2jωy) . (48)

A dyadic wavelet transform is a complete and stable representation of f (x,y) if and only if the

two-dimensional Fourier plane is covered by the dyadic dilations of ψ̂
1
(ωx,ωy) and ψ̂

2
(ωx,ωy).

This means that there exists two strictly positive constants A and B such that

∀ (ωx,ωy) ∈ R2 , A ≤
j =−∞
Σ
+∞

( | ψ̂
1
(2jωx,2jωy) | 2 + | ψ̂

2
(2jωx,2jωy) | 2 ) ≤ B . (49)

In two-dimensions, a dyadic wavelet transform is also overcomplete. Any sequence of two

dimensional functions I
Lg j

1(x,y) , g j
2(x,y) MO j ∈ Z

is not a priori the dyadic wavelet transform of

some two-dimensional function f (x,y). In order to be a dyadic wavelet transform, such a

sequence must also a satisfy reproducing kernel equation [14]. The space V of the dyadic

wavelet transform of all functions in L2
(R2) is strictly included in the space of all sequences of

L2
(R2) functions.

In two dimensions, the Lipschitz exponent of a function, for 1 ≥ α ≥ 0, is defined with a

straight forward extension of definition 1 where the variable x is replaced by (x,y). Theorems 1

and 2 remain valid with similar conditions on both components W 1 f (s,x,y) and W 2 f (s,x,y). If

we restrict the scale to dyadic scales, these two theorems also remain valid if the wavelets satisfy

the condition (49). The local Lipschitz regularity of a function f (x,y) can thus be estimated from

the evolution across scales of both | W 1 f (2j ,x,y) | and | W 2 f (2j ,x,y) | . The decay across scales

of both components is bounded by the decay of

Mf (2j ,x,y) = √ddddddddddddddddddddddddddd| W 1 f (2j ,x,y) | 2 + | W 2 f (2j ,x,y) | 2 . (50)

The function Mf (2j ,x,y) is called the modulus of the wavelet transform at the scale 2 j . Equation

(45) proves that Mf (2j ,x,y) is proportional the modulus of the gradient vector ∇
→

(f ∗ θ 2j (x,y).

Theorem 1 is extended as follow. We suppose that the wavelets ψ1(x,y) and ψ2(x,y) are continu-

ously differentiable and have a compact support.

Theorem 6

Let f (x,y) ∈ L2
(R2). For any ε > 0, f (x,y) is uniformly Lipschitz α ,0 ≤ α ≤ 1, in

]a +ε,b −ε[ × ]c +ε,d −ε[, if and only if for any ε > 0, there exists a constant A ε such that for all

(x,y) ∈ ]a +ε,b −ε[ × ]c +ε,d −ε[ and any scale 2j

| Mf (2j ,x,y) | ≤ A ε (2j)α . (51)
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The proof of this theorem is a simple extension of the proof of theorem 1. To recover the

two components of the wavelet transform given the modulus Mf(2j ,x,y), we also need to com-

pute

Af (2j ,x,y) = argtan(
W 2 f (2j ,x,y)

W 1 f (2j ,x,y)hhhhhhhhhhh ) . (52)

Equation (45) proves that Af (2j ,x,y) is the angle between the gradient vector ∇
→

(f ∗ θ 2j (x,y) and

the horizontal. Fast algorithms are described in [14] to compute the two-dimensional dyadic

wavelet transform of an image. The first two columns of fig. 13 shows the dyadic wavelet

transform of a circle image between the scales 21 and 24 . We clearly recognize the effect of the

partial derivative along x and y in each component of the wavelet transform. The modulus and

angle images of the circle are shown in the third and fourth columns fig. 13. Along the border of

the circle, the angle turns form 0 to 2πand the modulus of the wavelet transform is maximum.

At each scale 2j , the local maxima of the wavelet transform are the points (x,y) where the

modulus image Mf (2j ,x,y) is locally maximum along the gradient direction given by Af (2j ,x,y).

The local maxima are inflection points of f ∗ θ 2j (x,y). We record the position of each of these

local maxima and the values of Mf (2j ,x,y) and Af (2j ,x,y) at the corresponding location. In fig.

13, the local maxima are at the border of the circle. In this particular example, the value of

Mf (2j ,x,y) at the local maxima locations remain constant at all scales 2 j . This is a consequence

of theorem 6. It proves that the image intensity is discontinuous at the border of the circle. The

first column of fig. 14 gives another example of modulus images Mf (2j ,x,y) corresponding to

the image shown at the top. The second column gives the position of the maxima. At fine scales

there are many maxima created by the light image noise. Most of these maxima have a small

modulus value. The third column displays the maxima whose modulus are larger than a given

threshold. The wavelet maxima of highest modulus value correspond to the sharp image varia-

tions.

An interesting class of singularities are the one where locally the function f (x,y) is singular

in one direction but varies smoothly in the perpendicular direction. For example, like in the circle

image, the intensity might have a discontinuity of constant amplitude that belongs to a smooth

curve in the image plane (x,y). These curves are more meaningful than the edge points by them-

selves because they provide the boundaries of the image structures. We thus reorganize the max-

ima representation into chains of local maxima to recover these edge curves. To chain an edge

point with its neighbors, we use the fact that the orientation of the gradient angle given by

Af (2j ,x,y), is perpendicular to the tangent of the edge curve that goes through this point, after

smoothing by θ2j (x,y) [23]. The border of the circle image defines one maxima curve at each

scale.
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Like in one dimension, it is important to know whether it is possible to reconstruct the ori-

ginal image given the position of the local maxima at each scale 2j and the value of Mf (2j ,x,y)

and Af (2j ,x,y) at the corresponding locations. In computer vision, David Marr [16] made the

conjecture that images can be reconstructed from multiscale edges which means in our case that

they can be recovered from the wavelet maxima. The reconstruction algorithm that was described

in one dimension has also been extended in two dimensions [14]. Like in one dimension, we

define a set Γ of all sequences of functions in L2
(R2) which have the same maxima than the

wavelet transform of f (x,y). This means that the maxima occur at the same locations and the

angle and modulus values are the same at the corresponding locations. We know that we want to

reconstruct a sequence of functions that is in Γ but which is also a two-dimensional dyadic

wavelet transform. This means that it must also belong to space V of all dyadic wavelet

transforms. The reconstruction algorithm makes an alternative projection successively on Γ and

V. The corresponding image is then recovered by applying the inverse wavelet operator on the

reconstructed wavelet transform. Fast implementations are described in [14]. Each projection

operation requires O (N log (N)) operations for an image with N pixels. Numerical results shows

that after less than 10 iterations the algorithm reconstructs an image with has no visual differ-

ences with the original image. With more iterations, we can recover exactly the original image

[14]. This algorithm gives a numerical verification of David Marr conjecture but we have no

mathematical proof of the convergence.
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Fig. 13: The original image is at the top left. The top right carries the image information at

scales larger than 24 . The first column from the left gives the images I
LW 1 f (2j ,x,y)

M
O1≤j≤4

and

the scale increases from top to bottom. The second columns displays I
LW 2 f (2j ,x,y)

M
O1≤j≤4

.

Black, grey and white pixels indicate respectively negative, zero and positive sample values. The

third column displays the modulus images I
LMf (2j ,x,y)

M
O1≤j≤4

, black pixels indicate zero values

whereas white one correspond to the highest value. The fourth column gives the angle images
I
LAf (2j ,x,y)

M
O1≤j≤4

. The angle value turns from 0 to 2π along the circle contour. The fifth

column displays in black the position of the local maxima of I
LMf (2j ,x,y)

M
O1≤j≤4

in the direction

given by the corresponding angle images Af (2j ,x,y).
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Fig. 14: The original image is at the top left. The top right carries the image information at

scales larger than 24 . The first column gives the modulus images Mf (2j ,x,y) for 1 ≤ j ≤ 4.

The second column displays the position of the local maxima of Mf (2j ,x,y), for 1 ≤ j ≤ 4. The

third column displays the position of the local maxima whose amplitude are larger than a given

threshold. The small maxima corresponding to light noise variations are removed by the thres-

holding.
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9. Image Denoising Based on Wavelet Maxima

The reconstruction algorithm enables us to extend the denoising algorithm that was

described in one dimension. Let us first briefly extend the one-dimensional results concerning

the wavelet transform of a white noise. Let n (x,y) be a white noise random process. Let

Mn (2j ,x,y) be the modulus of the wavelet transform of n (x,y). With a similar proof than for

equation (41), one can show that

E ( | Mn (2j ,x,y) | 2) =
2j

|| ψ1 || 2 + || ψ2 || 2
hhhhhhhhhhhhhhh . (53)

If most of the singularities of the original the image have positive Lipschitz exponents, we can

separate the noise from the signal by measuring the evolution across scales of the wavelet

transform maxima. This was the basic idea of the one-dimensional denoising algorithm. In two

dimensions, we can also use an a-priori knowledge on the geometrical properties of the image

singularities in the image plane (x,y). For example, in man-made environments, the important

image information are singularities that belong to smooth edge curves because they indicate the

borders of the different objects. On the contrary, the sharp variation points of a white noise do

not create such smooth curves. The noise can therefore be discriminated from the image informa-

tion from the geometrical properties of the maxima curves and the evolution across scales of the

wavelet transform values along these curves.

The top left of fig. 15 shows the same image than in fig. 14 but contaminated with a Gaus-

sian white noise whose standard deviation is 40. The first column of fig. 15 gives the maxima of

the noisy image. These maxima are chained together to compute the maxima chains. We remove

all the chains whose length is smaller than a given threshold. Like in one dimension, we also

remove all the maxima that do not propagate up to the scale 23 or propagate with an average

value that increases when the scale decreases. This means that the corresponding Lipschitz regu-

larity is negative. The second column of fig. 15 shows the remaining maxima. This procedure

suppresses most of the maxima created by the noise but the angle and modulus values of the

remaining maxima are highly contaminated by the white noise at fine scales. We remove part of

the effect of the white noise by averaging these values along each maxima chain. This operation

is legitimate because we know that most interesting features have maxima curves along which the

angle and the modulus varies smoothly. This operation does not smooth the corresponding singu-

larities but smoothes the variation of the singularity types along the edge curves. The top right of

fig. 15 shows the reconstructed image. As it can be viewed, most of the white noise has been

suppressed. Some of the image edges are severely affected by the noise and the corresponding

boundaries are affected in the reconstructed image.
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We want to emphasize that this ad-hoc denoising algorithm is only a feasibility study. In

general, to separate the noises from the original signal it is necessary to have some prior informa-

tion on the signal and the noise properties. By reorganizing the signal information through

wavelet maxima, we can easily express prior informations on singularities. For images, this can

be a powerful tool because such prior information is often available. Clearly, the simple algo-

rithm that we describe would perform badly if the image has some irregular textures that we do

not want to remove. Irregular textures often have singularities with negative Lipschitz exponents

and do not create long smooth maxima curves. In fact, a white noise is a particular example of

irregular texture. More precise statistical models must be developed to handle textured images.
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Fig. 15: The original image is shown at the top of the last column. Below is the same image con-

taminated with a Gaussian white noise whose standard deviation is 40. The first column gives

the the position of the local maxima of the wavelet transform modulus Mf (2j ,x,y), for 1 ≤ j ≤ 4.

The second column gives the local maxima of Mf (2j ,x,y), for 1 ≤ j ≤ 4, that are kept by the

denoising algorithm. The image at the bottom of the last column is reconstructed from the local

maxima shown in the second column.
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10. Conclusion

We proved that the wavelet transform local maxima detect all the singularities of a function

and often characterize their Lipschitz regularity. This mathematical study provides algorithms

for characterizing the singularities of irregular signals such as the multifractal structures observed

in physics. Oscillations can also be measured from the general maxima of the wavelet transform

with a technique similar to the approach of Escudie and Torresani [8].

With the wavelet local maxima, we can express prior informations on the regularity of a

signal versus the regularity of a noise. As an application, we described an algorithm that removes

the white noise of a signal by removing some local maxima from its wavelet transform. We

reconstruct the corresponding signal with an algorithm that was developed by Zhong and one of

us. We extended the wavelet maxima detection in two dimensions and showed the result of the

denoising algorithm for images. The representation of the image information with the multiscale

edges obtained from the wavelet maxima has also applications in pattern recognition as well as

compact image coding. An algorithm that selects the important edges for building a compact

image code is described in [14].
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Appendix 1

Proof of Theorem 3

We first prove theorem 3 for a wavelet with at least one vanishing moment and we suppose

that f (x) ∈ L1
([a,b ]). We show that if Wf (s,x) has no maxima for x ∈ ]a,b [ and s < s 0 , then

for any ε > 0, f (x) is uniformly Lipschitz 1 on the interval [a +ε,b −ε]. The proof is then

extended for wavelets with more vanishing moments. Since ψ(x) has at least one-vanishing

moment, it is the derivative of some function φ(x). If ψ(x) has more than one vanishing moment,

φ(x) is not a smoothing function. Let us first prove the following lemmas.

Lemma 1

If f (x) ∈ L1
([a,b ]), there exists a constant A 1 , such that for all ε > 0, there exists a scale sε

1

with

∀ s < sε
1 ,

a +ε
∫

b −ε

| f ∗ φ s(x) | dx ≤ A 1 . (54)

Proof:

I =
a +ε
∫

b −ε

| f ∗ φ s(x) | dx =
a +ε
∫

b −ε

|
−∞
∫

+∞

f (u) φs(x −u) du | dx .

There exists sε
1 such that for s < sε

1 , the support of φs(u) is included in [−ε,ε]. Hence, for s < sε
1

I =
a +ε
∫

b −ε

|
a
∫
b

f (u) φs(x −u) du | dx ≤
a
∫
b

| f (u) |
a +ε
∫

b −ε

| φs(x −u) | dx du .

With a change of variable, we derive that

I ≤
−∞
∫

+∞

| φ(x) | dx
a
∫
b

| f (u) | du = A 1 . (55)

End of proof of lemma 1.

Lemma 2

If Wf (s,x) has no maxima for x ∈ ]a,b [, for all ε > 0, there exists a constant Aε
2 and sε

2 with

∀ s < sε
2 , | f ∗ φ s(x) | ≤ Aε

2 . (56)

Proof: We proved in equation (21) that

Wf (s,x) = s
dx
dhhh(f ∗ φ s)(x) . (57)
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Since | Wf (s,x) | has no maxima on ]a,b [, we can distinguish two cases. Either Wf (s,x) has no

extrema on ]a,b [ or | Wf (s,x) | has one minima.

g If Wf (s,x) has no extrema on ]a,b [ then it is monotonous and equation (57) implies that

f ∗ φ s(x) is either convex or concave. Let ε > 0, lemma 1 implies that there exists sε
1 such that

for all s < sε
1

a +ε
∫

b −ε

| f ∗ φ s(x) | dx ≤ A 1 .

One can prove quite easily that a function which is concave or convex and has a finite integral

over an interval must be bounded by a constant that only depends upon the size of the interval

and the value of the integral. Hence, there exists Aε
2 such that | f ∗ φ s(x) | ≤ Aε

2 for

x ∈ [a +ε,b −ε].

g If | Wf (s,x) | has one minima on ]a,b [ then it must have a constant sign on ]a,b [ because it has

no maxima. From equation (57), we derive that f ∗ φ s(x) is monotonous on ]a,b [. On the interval

[a+ε,b −ε], | f ∗ φ s(x) | is thus bounded by the maximum of | f ∗ φ s(a +ε) | and | f ∗ φ s(b −ε) | .

Over the two intervals [a +ε/2,a +ε] and [b −ε,b −ε/2], f ∗ φ s(x) is also monotonous. Lemma 1

implies that for s < sε/2
1 ,

a +ε/2
∫

a +ε

| f ∗ φ s(x) | dx +
b −ε
∫

b −ε/2

| f ∗ φ s(x) | dx ≤ A 1 .

We thus derive that the maximum of | f ∗ φ s(a +ε) | and | f ∗ φ s(b −ε) | is bounded by
ε

2A 1hhhh. This

proves that in both cases, for s small enough, | f ∗ φ s(x) | is bounded on any interval ]a +ε,b −ε[.

End of proof of lemma 2.

Lemma 3

If | Wf (s,x) | has no maxima for x ∈ ]a,b [, for all ε > 0, there exists a constant Aε
3 and sε

3 with

∀ s < sε
3 ,

a +ε
∫

b −ε

|
dx
dhhh(f ∗ φ s)(x) | dx ≤ Aε

3 . (58)

Proof: Since Wf (s,x) has at most one extrema on ]a,b [, equation (57) implies that

f ∗ φ s(x) has at most one zero-crossing at some abscissa xs . Hence,

I =
a +ε
∫

b −ε

|
dx
dhhh(f ∗ φ s)(x) | dx = |

a +ε
∫
xs

dx
dhhh(f ∗ φ s)(x) dx | + |

xs

∫
b −ε

dx
dhhh(f ∗ φ s)(x) dx | .

We obtain

I = | f ∗ φ s(xs) − f ∗ φ s(a +ε) | + | f ∗ φ s(b −ε) − f ∗ φ s(xs) | .
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From lemma 2, we derive that if s < sε
2 ,

I ≤ 4 Aε
2 = Aε

3 .

End of proof of lemma 3.

In order to prove theorem 3 and therefore that f (x) is uniformly Lipschitz 1 on any interval

]a +ε , b −ε[, theorem 1 shows that it is sufficient to prove that for any x ∈ ]a +ε , b −ε[ and

s < s ε,

| Wf (s,x) | ≤ A ε s . (59)

Since Wf (s,x) = s
dx
dhhh(f ∗ φ s)(x), it is equivalent to prove that |

dx
dhhh(f ∗ φ s)(x) | ≤ A ε. Since

Wf (s,x) has no maxima on ]a,b [, for x ∈ [a +ε , b −ε], |
dx
dhhh(f ∗ φ s)(x) | is smaller than the max-

imum of |
dx
dhhh(f ∗ φ s)(a +ε) | and |

dx
dhhh(f ∗ φ s)(b −ε) | . Lemma 3 proves that for s < sε/2

3 ,

a +ε/2
∫

a +ε

|
dx
dhhh(f ∗ φ s)(x) | dx +

b −ε
∫

b −ε/2

|
dx
dhhh(f ∗ φ s)(x) | dx ≤ Aε/2

3 .

One can thus derive that the maximum of |
dx
dhhh(f ∗ φ s)(a +ε) | and |

dx
dhhh(f ∗ φ s)(b −ε) | is smaller

than
ε
2hhAε/2

3 . This finishes the proof of theorem 3 for a wavelet with one vanishing moment.

Let us now prove that theorem 3 is valid if ψ(x) has n vanishing moments, by induction on

n. We proved that it is true for n = 1. We show that if it is true for n then it must be valid for

n +1. Let ψ(x) be a wavelet with n +1 vanishing moments. The wavelet ψ(x) is the derivative of a

wavelet φ(x) with n vanishing moments and

Wf (s,x) = s (
dx
dfhhh ∗ φ s)(x) . (60)

Clearly, ψ(x) has at least n vanishing moments so our induction hypothesis implies that f (x) is

uniformly Lipschitz n on any interval ]a +ε/2,b −ε/2[. Since n ≥ 1, it means that the derivative of

f (x) in the sense of distributions is bounded on [a +ε/2,b −ε/2]. Hence

dx
df (x)hhhhhh ∈ L1

([a +ε/2,b −ε/2]). Let a 0 = a+ε/2 and b 0 = b−ε/2. We are going to apply again

the induction hypothesis on the function
dx

df (x)hhhhhh with the wavelet φ(x), on the interval ]a 0 ,b 0[.

Equation (60) proves that the wavelet transform of
dx

df (x)hhhhhh with respect to φ(x) has no maxima on

the interval ]a 0 ,b 0[. Since
dx

df (x)hhhhhh ∈ L1
([a 0 ,b 0]), we know by induction that

dx
df (x)hhhhhh is uni-

formly Lipschitz n over any interval [a 0+ε/2,b 0−ε/2] = [a+ε,b−ε]. This proves that f (x) is uni-

formly Lipschitz n +1 on this interval which is our induction hypothesis for n +1.
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Appendix 2

Proof of Theorem 4

We prove that f (x) is Lipschitz n at all points different then x 0 with a simple application of

theorem 3. Let x 1 ∈ ]a,x 0[. For s < s 0 , | Wf (s,x) | has maxima only in a cone pointing to x 0 .

Hence, for ε > 0 such that a+ε < x 0−ε, there exists s ε such that for s < s ε, and

x ∈ ]a +ε/2,x 0−ε/2[, | Wf (s,x) | has no maxima. From theorem 3 we derive that f (x) is uni-

formly Lipschitz n in [a +ε,x 0−ε]. From this result we easily derive that f (x) is uniformly

Lipschitz n in a neighborhood of any point x 1 ∈ ]a,x 0[. The same proof is valid for x 1 ∈ ]x 0 ,b[.

Let us now prove that the Lipschitz regularity in x 0 is characterized by the decay of the

wavelet transform local maxima. Let x 1 ∈ ]a,x 0[ and x 2 ∈ ]x 0 ,b[. We proved that f (x) is uni-

formly Lipschitz n in the neighborhood of x 1 and x 2 . Theorem 1 proves that there exists s 0 such

that for s < s 0 ,

| Wf (s,x 1) | ≤ A 1 s n and | Wf (s,x 2) | ≤ A 2 s n . (61)

For x ∈ ]x 1 ,x 2[ and s < s 0 , the value of | Wf (s,x) | is smaller or equal to the maximum value

among | Wf (s,x 1) | , | Wf (s,x 2) | and the wavelet transform modulus at all the local maxima that

occur at the same scale inside the cone pointing to x 0 . Equation (24) of theorem 4 imply that all

these have an amplitude smaller than A sα , with 0 ≤ α ≤ n. Hence, we derive from equation (61)

that there exists a constant B such that if x ∈ ]x 1 ,x 2[ and s < s 0 ,

| Wf (s,x) | ≤ B sα .

Since x 0 ∈ ]x 1 ,x 2[, theorem 1 implies that f (x) is Lipschitz α in x 0 .



-- --

Page 57

Appendix 3

Proof of Theorem 5

In order to apply theorem 2, we want to prove that there exists a scale s 1 and ε > 0 such that if

s < s 1 and x ∈ ]x 0−ε,x 0+ε[,

| Wf (s,x) | ≤ B (s γ + | x −x 0 | γ) . (62)

We prove this by showing separately that there exists two constants B 1 and B 2 such that

| Wf (s,x) | ≤ B 1 s γ , (63)

when (s,x) is in the cone of influence of x 0 and

Wf (s,x) ≤ B 2 | x −x 0 | γ , (64)

when (s,x) is below the cone of influence of x 0 . Once equation (62) is proved, theorem 5 is a

simple consequence of theorem 2, for α < γ. For α = γ, we can not apply theorem 2 because we

are missing the logarithmic term. Theorem 5 supposes that Wf (s,x) has a constant sign in a

neighborhood of x 0 , and we shall suppose that it is positive. For s < s 0 and | X (s) − x 0 | < Cs,

we have

Wf (s,X (s)) ≤ A s γ . (65)

We first prove equation (63) and then equation (64) for ε =
4

K −Chhhhhs 0 and s 1 =
4K

K −Chhhhhs 0 .

The wavelet ψ(x) is the n th derivative of a positive function θ(x) of support equal to

[−K,K ], that has only one extrema.

Wf (s,x) = s n (f (n) ∗ θ s)(x) , (66)

where f (n)(x) is the n th derivative of f (x) in the sens of distributions. The function θ(x) is a posi-

tive function with a strictly positive integral. Since equation (66) is valid at all scales s < s 0 , it

implies that f (n)(x) ≥ 0 for x ∈ ]a,b [ (positive in the sense of distributions). Equation (66) can be

rewritten

Wf (s,x) = s n −1

−∞
∫

+∞

θ(
s

x −uhhhh) f (n)(u) du . (67)

Let (s,x) be a point in the cone of influence of x 0 , | x −x 0 | ≤ Ks. The support of θ(
s

x −uhhhh) is

included in [x 0−2Ks,x 0+2Ks ]. Let M =
x∈ [−K,K ]

max θ(x). Since θ(x) ≥ 0 and f n(x) ≥ 0,

Wf (s,x) ≤ s n −1

x 0−2Ks
∫

x 0+2Ks

M f (n)(u) du (68)
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Since θ(x) is positive and has only one extrema, there exists λ > 0 such that

∀ x ∈ [
2

−K −Chhhhhh ,
2

K +Chhhhh] , θ(x) > λM . (69)

Let s′ =
K −C
4Kshhhhh , we know that | x 0−X (s′) | ≤ Cs′. For u ∈ [−2Ks, 2Ks ], we thus derive that

|
s′

X (s′)−uhhhhhhh | ≤
2

K +Chhhhh . By applying the property (69) we obtain

∀ u ∈ [−2Ks, 2Ks ] , θ(
s′

X (s′)−uhhhhhhh) ≥ λ M . (70)

Equation (68) and (70) yield

Wf (s,x) ≤ s n −1

λ
1hh

−∞
∫

+∞

θ(
s′

X (s′)−uhhhhhhh) f (n)(u) du =
λ
1hh Wf (s′,X (s′)) . (71)

We suppose that equation (65) holds so

Wf (s′,X (s′)) ≤ A (s′)γ =
(K −C)γ
A (4K)γ
hhhhhhhs γ . (72)

We thus derive from equation (71) that

Wf (s,x) ≤ B 1 s γ with B 1 =
(K −C)γ
A (4K)γ
hhhhhhh . (73)

Let us now prove that if (s,x) is below the cone of influence of x 0 , Wf (s,x) ≤ B 2 | x −x 0 | γ.

Wf (s,x) = s n −1

−∞
∫

+∞

θ(
s

x −uhhhh) f (n)(u) du . (74)

Let s 2 =
K

| x −x 0 |hhhhhhh . Since (x,s) is below the cone of influence of x 0 , | x −x 0 | ≥ Ks, so s ≤ s 2 . The

support of θ(
s

x −uhhhh) is thus included in [x 0−2Ks 2 ,x 0+2Ks 2] and and since θ(x) ≤ M,

Wf (s,x) ≤ s n −1

x 0−2Ks 2

∫
x 0+2Ks 2

M f (n)(u) du . (75)

Let us now define s′2 =
K −C

4Ks 2hhhhh . Like in equation (71), we can prove that

Wf (s,x) ≤
λ
1hh Wf (s′2 ,X (s′2)) . (76)

Equation (65) implies

Wf (s′2 ,X (s′2)) ≤ A (s′2)γ =
(K −C)γ

A 4γ
hhhhhhh | x − x 0 | γ . (77)

By inserting equation (77) in equation (76) we obtain
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Wf (s,x) ≤ B 2 | x −x 0 | γ with B 2 =
(K −C)γ

A 4γ
hhhhhhh . (78)

One can verify that both equations (73) and (78) are valid for x ∈ ]x 0−ε,x 0+ε[ and s < s 2 with

ε =
4

K −Chhhhhs 0 and s 1 =
4K

K −Chhhhhs 0 .
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Appendix 4

White noise Wavelet Transform

It is well know [20] that the density of zero-crossings of a differentiable Gaussian process

whose autocorrelation is R (τ) is

√ddddπ2 R (0)

−R (2)(0)hhhhhhhh , (79)

where R (n)(τ) is the n th derivative of R (τ). The density of extrema of a process is equal to the

density of zero-crossings of the derivative of the process. The autocorrelation of the derivative is

−R (2)(τ). Hence, the density of extrema is

√ddddπ2 R (2)(0)

−R (4)(0)hhhhhhhhh . (80)

The autocorrelation of the Gaussian process Wn (s,x) is defined by

R (τ) = E (Wn (s,x +τ)Wn (s,x)) =
−∞
∫

+∞

−∞
∫

+∞

n (u) n (v) ψs(x +τ−u) ψs(x −v) dudv .

Since n (x) is a white noise, E (n (u)n (v)) = δ(u −v) and we obtain

R(τ) =
−∞
∫

+∞

ψs(τ+u) ψs(u) du . (81)

From this equation, we can prove that R (4)(0) =
s 5

1hhh || ψ(2) || 2 and R (2)(0) =
s 3

1hhh || ψ(1) || 2 . From

equation (80), we derive that the density of extrema of the process Wn (s,x) is

s π || ψ(1) ||

|| ψ(2) ||hhhhhhhhhh . (82)

At least half of these local extrema are local maxima of | Wn (s,x) | . The number of local maxima

depends upon the proportion of local extrema and zero-crossings of Wn (s,x). Equations (79) and

(81) prove that the density of zero-crossings of Wn (s,x) is
s π || ψ ||
|| ψ(1) ||hhhhhhhh . The proportion of local

extrema and zero-crossings of Wn (s,x) is independent of the scale which proves that the density

of local maxima of | Wn (s,x) | is

ds = λ
s π || ψ(1) ||

|| ψ(2) ||hhhhhhhhhh , (83)

where λ is a constant between 0.5 and 1 that depends only on || ψ || , || ψ(1) || and || ψ(2) || .
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