Automatic selection of reference taxa for protein–protein interaction prediction with phylogenetic profiling

Martin Simonsen1,2,*, Stefan R. Maetschke2,3 and Mark A. Ragan2,3

1Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark, 2Australian Research Council Centre of Excellence in Bioinformatics and 3The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia

ABSTRACT

Motivation: Phylogenetic profiling methods can achieve good accuracy in predicting protein–protein interactions, especially in prokaryotes. Recent studies have shown that the choice of reference taxa (RT) is critical for accurate prediction, but with more than 2500 fully sequenced taxa publicly available, identifying the most informative RT is becoming increasingly difficult. Previous studies on the selection of RT have provided guidelines for manual taxon selection, and for eliminating closely related taxa. However, no general strategy for automatic selection of RT is currently available.

Results: We present three novel methods for automating the selection of RT, using machine learning based on known protein–protein interaction networks. One of these methods in particular, Tree-Based Search, yields greatly improved prediction accuracies. We further show that different methods for constituting phylogenetic profiles often require very different RT sets to support high prediction accuracy.

Availability: The datasets and software used in the experiments can be found at http://users-birc.au.dk/zx/phyloprof/

Supplementary information: Supplementary data are available at Bioinformatics online.

Received on September 18, 2011 ; revised on December 23, 2011; accepted on December 27, 2011

1 INTRODUCTION

With the advent of next-generation technologies, genomic data are now appearing at a rate that renders manual annotation and analysis of genome sequences infeasible, thus motivating the development of automated computational methods. Prediction of protein–protein interactions (PPIs) is a key problem in systems biology, and methods based on e.g. interactions between protein domains (Ng et al., 1999), gene-fusion events (Keränen et al., 1999) and phylogenetic profiling (Gaasterland et al., 1999; Pellegrini et al., 1999) (PP) support genome-scale inference at low computational cost. The application of PP in PPI prediction is based on the hypothesis that gene products which function together are likely to exhibit a common pattern of occurrence across taxa. The phylogenetic profile of a gene or gene product represents its pattern of presence and absence across a set of taxa, and thus similarity between profiles can be used as an indicator of functional linkages. PPI prediction using PP has proven to be fairly accurate in prokaryotes but has been much less successful in eukaryotes, a situation attributed to the modularity of eukaryotic proteins, large-scale evolutionary trends including secondary endosymbioses and parasitism and the limited diversity of sequenced genomes (Jothi et al., 2007; Ruano-Rubio et al., 2009; Smuklin et al., 2009). Many studies identify the choice of reference taxa (RT) as critical for accurate prediction and suggest that accuracy can be improved by matching the RT to the interaction network under investigation. Representatives of all three domains of life (bacteria, archaea and eukaryotes) should be used for highly conserved networks, whereas close relatives are best suited for predicting more specialized functions. Furthermore, inclusion of too many closely related taxa, and taxa with derivative or biased gene complements, can diminish the prediction accuracy (Herman et al., 2011; Jothi et al., 2009; Karimpour-Fard et al., 2007; Ruano-Rubio et al., 2009; Smuklin et al., 2009; Sun et al., 2009). Balancing these considerations greatly complicates manual RT selection, thus motivating the development of automatic selection approaches.

Here we introduce three novel machine-learning methods for selection of informative RT based on known PPI networks. We compare the accuracy with which PPIs in one prokaryote and three eukaryotes are predicted with the resulting taxon sets, and demonstrate that one of the methods in particular, Tree-Based Search (TBS), supports highly accurate predictions. Four different PP methods are used in the PPI prediction experiments, and we show that no single taxon set achieves top accuracy with all PP methods. Finally, we show that taxon sets can be optimized using PPI networks from other taxa without substantially affecting the prediction accuracy.

2 DATA

2.1 Phylogenetic profiles

Our set of RT consists of all fully sequenced species in UniProt (Bairoch et al., 2005) version 22. This set contains 52 eukaryotes, 859 bacteria and 69 archaea, including multiple strains of some species. We downloaded the complete set of protein sequences from UniProt, including plasmids, and used these to create real-valued phylogenetic profiles containing E-values from pairwise BLAST searches. For binary profiles, we used an E-value threshold of 10−6.

Jothi et al. (2009) investigated the prediction of metabolic pathways in Escherichia coli and Saccharomyces cerevisiae using PP and a series of manually selected reference-taxon sets. In their experiments, the taxon set BAE3a, containing 60 taxa from all three domains, supported the best average

*To whom correspondence should be addressed.
prediction accuracy in both query taxa. We compiled a taxon set which closely resembles BAU3a (five strains unavailable in Uniprot were replaced by closely related strains) to enable a comparison with a manual taxa selection approach.

2.2 Phylogenetic trees

We created a multifurcating phylogenetic tree (T) over all 980 RT using the taxonomic common tree tool from the NCBI webpage (http://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi). In T, taxa with multiple strains in RT are represented as internal nodes, whereas all other taxa are represented as leaf nodes. A second tree T_{bin} based on T, was constructed as follows. Each taxon in RT represented as an internal node in T was replaced with an artificial node and then relaxed as a leaf at a random position under the artificial node. For each set of sibling leaves A and parent p, where \(|S| \geq 2 \), a new binary tree with room for \(|S| \) leaves was constructed and used to replace the subtree rooted at \(p \) in T. The new leaves \(S \) were then inserted as leaves at random positions in this binary tree. In the resulting tree T_{bin}, all taxa in RT are thus represented as leaves and have at most one sibling (Fig. 1).

T_{bin} allows a more finely grained selection of RT compared with T when used in combination with the Tree Level Filtering (TLF) and TBS methods presented in Section 3 due to an increased number of hierarchical levels.

2.3 PPI networks

High confidence PPI networks were created for each of E. coli, S. cerevisiae, Drosophila melanogaster and Arabidopsis thaliana using the STRING database (Szomolay et al. 2006; Von Mering et al. 2007) version 8.3 (Table 1). These networks were created by filtering for binding proteins supported by experimental data, curated databases or both. Only interactions where at least one of these evidence channels has a confidence score \(\geq 0.9 \) (the highest confidence in STRING) were used. The interactions include both proteins that interact physically and proteins that are part of the same protein complex but without direct contact.

For each of the four networks, we created a dataset containing all PPIs in the network, and twice as many non-interacting protein pairs. These were generated following Ben-Hur et al. (2003) by randomly pairing proteins and discarding pairs for which STRING contains evidence of interaction at any confidence level excluding evidence originating from PP methods (the co-occurrence evidence channel). Exclusion of PPIs that are supported only by co-occurrence-based methods would lead to an overestimate of the prediction accuracy of PP methods, and thus such pairs are regarded as negatives. Results of experiments with datasets containing different positive-negative ratios (see Section 3 of the Supplementary Material) indicate that the use of a ratio higher than 1:2 will not affect prediction accuracies significantly.

3 METHODS

3.1 Prediction accuracy measure

We use the area under curve (AUC) as a measure of prediction accuracy, which enables the accuracy of different combinations of PP methods, optimization methods and PPI networks to be compared in a clear way. ROC curves for key results can be found in Section 4.4 of the Supplementary Material. Given a list of protein pairs ranked by interaction confidence, the AUC was computed using the Gini coefficient:

\[
AUC = \frac{1}{2} \sum_{k=1}^{n} (X_k - X_{k-1})(Y_k + Y_{k-1}),
\]

where \(X \) is the false positive rate and \(Y \) the true positive rate at pair \(k \) in the ranked list.

Tenfold cross-validation experiments are used to evaluate the performance of different taxa selection approaches as follows. Each dataset was divided into 10 random subsets of equal size and each subset was then used to evaluate a taxon set which had been optimized on the remaining nine subsets. Paired t-tests for key cross-validation experiments are provided in Section 4.5 of the Supplementary Material.

3.2 Phylogenetic profiling methods

The original PP method by Pellegrini et al. (2002) (referred to as the Pellegrini method) employs the Hamming distance between binary phylogenetic profiles to cluster similar profiles. Instead of clustering profiles, the Hamming distance between profile pairs can be used as a confidence score for interactions between the corresponding proteins, thus allowing the ranking of a list of protein pairs. The Pellegrini method considers two profile pairs with the same Hamming distance as equally significant evidence of interactions. This is problematic as, in an extreme case, all matching entries in one profile pair could contain ones while they contain zeroes in the other pair.

To ensure that the Pellegrini method infers only interactions between proteins where there is significant evidence of correlated evolution, profile pairs for which the number of matches (Number of matching entries containing ‘1’) falls below the threshold \(|BP| \) \((0.1 \text{ are assigned a distance of } |BP| \text{ where } |BP| \text{ is the length of the binary profiles. This threshold yielded the highest accuracy in preliminary experiments.})\) use mutual information between pairs of real-valued profiles as a confidence score, where a high score is taken as evidence of correlated evolution (referred to as the Mutual Information method). We calculated mutual information values as described in Date et al. (2003), and use these values to rank protein pairs.

We et al. (2003) calculate confidence scores for interactions between protein pairs using binary profiles and the hypergeometric distribution (referred to as the Hypergeometric Distribution method). The expected number of matches between two profiles is described with a hypergeometric distribution, assuming no interaction and uniform distribution of matches. The confidence score is then computed as the \(P \)-value for the number of matches between two profiles being as large as the number of matches under the hypergeometric distribution. This method was further developed first by Date et al. (2003), who adjusted the size for each reference genome, and later by Date et al. (2004), who showed how phylogenetic relationships among RT could be taken into account. For this method we adopt the linear coefficient from Date et al. (2003) to combine \(P \)-values. The confidence scores computed by both the hypergeometric distribution

![Fig. 1. An example of how a phylogenetic tree, containing multiple strains of Haemophilus influenzae, is transformed into a tree where all RT (marked with *) are represented as leaf nodes.](image-url)

Table 1. PPI network statistics

<table>
<thead>
<tr>
<th>Taxa</th>
<th>No. of proteins</th>
<th>No. of interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>789</td>
<td>1752</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>3301</td>
<td>21,096</td>
</tr>
<tr>
<td>Drosophila melanogaster</td>
<td>1205</td>
<td>7718</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>1886</td>
<td>22,941</td>
</tr>
</tbody>
</table>
and Runs Informed methods are used to rank a list of protein pairs in our experiments.

3.3 Reference-taxon set optimization methods

Selecting the set of RT that leads to the best prediction accuracy can be formulated as an optimization problem. Given a set of RT, the objective is to identify the subset of taxa which optimizes a score function \(S(RT', P, F) \). Here RT' is a subset of RT, \(P \) is a set of putative interacting proteins, and \(F \) is a set of P containing true interacting protein pairs (e.g. a PPI network). \(F \) is a PP-based method which assigns confidence scores to protein pairs in \(P \) using phylogenetic profiles computed using the taxa in RT'. The score function ranks protein pairs in \(P \) according to their confidence score and computes the corresponding AUC as described in Section 3.3. RT' is represented as a binary vector of length \(|RT'| \), where each entry corresponds to a reference-taxon and contains '1' if the taxon is in RT' and '0' otherwise.

As there are \(2^{|RT'|} \) different combinations of RT, it is infeasible to identify an optimal RT' using exhaustive search, and hence heuristic methods must be used.

3.3.1 Tree-level filtering The method of Ran et al. [25] referred to here as the TLF method, filters out closely related taxa from a reference-taxon set. A phylogenetic tree with hierarchical levels (Fig 2) is used for the selection of taxon sets of different sizes as follows. For each level \(l \), a set of clades \(C_l \) is constructed by first placing the leaves of each subtree rooted at level \(l \) in the same clade, and then placing all remaining leaves in their own unique clade. Given some \(l \), one of three different filters is applied to select a single taxon from each clade defined at level \(l \). The exterior and interior filters select a random taxon positioned at the highest and lowest level in each clade in \(C_l \), respectively, and the random filter selects at random a taxon from each clade in \(C_l \). We applied all three filters to each level in \(T_{bin} \), and the taxon set which gave rise to the highest score was taken as the best. If \(T \) is used instead of \(T_{bin} \), taxa positioned as sibling leaf nodes can be selected in only one of three ways by the TLF method. (i) None of them is selected. (ii) One of them is selected. (iii) All of them are selected. \(T_{bin} \) allows such nodes to be selected in more ways as each leaf has a maximum of one sibling.

3.3.2 Iterative taxon selection In the iterative taxon selection (ITS) method, the binary vector RT' is first initialized with random values and scored. The entries in RT are then reversed in random order, and after each change the resulting set of taxa RT' is scored. If \(S(RT'', P, F) > S(RT', P, F) \), RT' is replaced by RT''. The optimization terminates if changing all entries in RT'' once does not improve the score; otherwise another iteration of the search heuristic is performed.

3.3.3 Genetic algorithm Genetic algorithms (GA) [33] are a family of search heuristics applicable to binary parameter vectors. The genetic algorithm used in this work maintains a population of \(n \) parameter vectors (initialized with random values) and iteratively applies recombination, mutation and selection steps to create successive generations of parameter vectors. The recombination step randomly pairs parameter vectors in the population, and applies uniform crossover [34] on each pair with a probability of 0.6. The uniform crossover strategy swaps each pair of parameters in two vectors with a probability of 0.4. The mutation step introduces random mutations in parameter vectors by selecting random values in each vector element with a probability of 0.001. After the recombination and mutation steps, the score of each vector is computed and a new population of size \(n \) is created from the old population in the selection step, using binary tournament selection [35]. Goldberg et al. [36] This selection scheme iteratively selects two random parameter vectors from the previous population, and stores the best-scoring vector in the new population (note that each vector can be selected multiple times). Our selection scheme also uses elitist selection, where the best-scoring vector is always included in the new population. We also investigated two other recombination strategies that take phylogenetic relationships of RT into account, but as the accuracy and rate of convergence achieved using these strategies were similar to those of uniform crossover, they were not included in the experiments. Details on these recombination strategies can be found in Section 1 of the Supplementary Material.

3.3.4 TBS Similar to TLF (above), the TBS method uses a phylogenetic tree with hierarchical levels (Fig 2) to guide the search for an informative reference-taxon set (see Section 2 of the Supplementary Material for pseudocode). This takes place in three steps: first, RT' is initialized with all reference taxa (RT'=RT), and scored. A new set of taxa, RT'', is then constructed by copying RT'' and removing all taxa rooted at some inner node \(v \). If RT'' results in a better score than RT', the pair \((v, \Delta)\) [where \(\Delta=|S(RT'', P, F) - S(RT', P, F)| \) is stored in a set \(M \), and RT' is replaced by RT''. The hierarchical levels in \(T_{bin} \) are used to define the order in which nodes are visited as follows: at each level, a node \(v \) is visited if \(v \) is an inner node and no ancestor of \(v \) is found in \(M \). Nodes are visited in random order at each level, starting at level \(0 \) and progressing to the highest level in the tree. This first step works as a crude filter that quickly excludes many taxa from RT''.

In the second step, a more fine-grained filter is applied to the taxa rooted at \(v \), where \((v, \Delta)\) is \(M \). The pairs in \(M \) are ordered by their \(\Delta \) values and removed in ascending order, i.e. the nodes which gave rise to the smallest improvements in the score are removed first. For each removed pair, the children of \(v \) are visited in random order and for each child \(c \), RT'' is constrained as a copy of RT'' where entries corresponding to taxa rooted at \(v \) are negated. Next, \(\Delta \) is computed and if \(\Delta > 0 \), RT'' is set to RT''. For any value of \(\Delta \), \(M \) is updated by inserting the pair \((v, \Delta)\). Experiments showed that exclusion of subsets of taxa rooted at a node \(v \) (where \((v, \Delta) \in M \) and \(\Delta \) is small) improves the score more often than does exclusion of taxa rooted at nodes where \(\Delta \) is large. Intuitively, a set of taxa rooted at a node with a small \(\Delta \) is more likely to contain both informative and uninformative taxa that cancel each other out, where removing uninformative taxa improves the score.

In the third step, all remaining taxa in RT'' are excluded one by one. If an exclusion results in a better score, that taxon stays excluded; otherwise it is again included in RT''.

As with the TLF method, the use of \(T_{bin} \) in the first and second steps allows taxa represented as sibling nodes in \(T \) to be selected in more ways. However, because of the fine-grained selection performed by third step, the difference between using \(T \) and \(T_{bin} \) is often negligible with this method.

4 RESULTS AND DISCUSSION

4.1 Cross-validation experiments

Four PPI datasets (Section 2.3) were used to evaluate the 10-fold cross-validation prediction accuracy (AUC) of the different RT selection methods using the PP methods described in Section 3.
Because of space limitations we present only the results for the
E. coli and D. melanogaster PPI networks here, whereas the results
for S. cerevisiae and A. thaliana are presented in Section 4.3 of
the Supplementary Material. Tbin was used where applicable, as
preliminary experiments indicated that this tree supported the best
overall prediction accuracy for TLF and TBS.

The four optimization methods described in Section 3.3 were
employed to create sets of taxa for each PP method, with the
exception of the Runs Informed method. As both ITS and GA require
the score function to be evaluated many times where, |RT| is large,
it is infeasible to use them in combination with Runs Informed, as
it runs in O(|RT|^2) time. In all experiments, the GA method used
a population size of 32 and 5000 generations to optimize reference-
taxon sets; this was sufficient to find (local) maxima for all PP
methods in our experiments.

The results of cross-validation experiments for E. coli and
D. melanogaster are shown in Figures 3 and 4 respectively. All
optimization methods were able to identify reference-taxon
sets which improved the prediction accuracy compared with both
the complete set of 980 taxa and the BAE3a set. However, the
increase in prediction accuracy differs considerably among the four
PP methods. The Pellegrini and Runs Informed methods show a
significant improvement in AUC for both query taxa, whereas the
AUC of the Mutual Information method was improved only slightly.

The improvement in prediction accuracy for the hypergeometric
distribution method is small for the three eukaryotes, whereas a large
improvement can be observed on the E. coli datasets. As shown in
Table 2, the hypergeometric distribution method requires a large
improvement in prediction accuracy for the hypergeometric
distribution method is small for the three eukaryotes, whereas a large
improvement can be observed on the E. coli datasets. As shown in
Table 2, the hypergeometric distribution method requires a large
improvement in prediction accuracy for the hypergeometric
distribution method is small for the three eukaryotes, whereas a large
improvement can be observed on the E. coli datasets. As shown in
Table 2, the hypergeometric distribution method requires a large
improvement in prediction accuracy for the hypergeometric
distribution method is small for the three eukaryotes, whereas a large
improvement can be observed on the E. coli datasets. As shown in
Table 2, the hypergeometric distribution method requires a large
improvement in prediction accuracy for the hypergeometric
distribution method is small for the three eukaryotes, whereas a large
improvement can be observed on the E. coli datasets. As shown in
Table 2, the hypergeometric distribution method requires a large
improvement in prediction accuracy for the hypergeometric
distribution method is small for the three eukaryotes, whereas a large
improvement can be observed on the E. coli datasets. As shown in
Table 2, the hypergeometric distribution method requires a large
improvement in prediction accuracy for the hypergeometric
distribution method is small for the three eukaryotes, whereas a large
improvement can be observed on the E. coli datasets. As shown in
Table 2, the hypergeometric distribution method requires a large
improvement in prediction accuracy for the hypergeometric
distribution method is small for the three eukaryotes, whereas a large
improvement can be observed on the E. coli datasets. As shown in
Table 2, the hypergeometric distribution method requires a large
improvement in prediction accuracy for the hypergeometric
distribution method is small for the three eukaryotes, whereas a large
improvement can be observed on the E. coli datasets. As shown in
Table 2, the hypergeometric distribution method requires a large
improvement in prediction accuracy for the hypergeometric
distribution method is small for the three eukaryotes, whereas a large
improvement can be observed on the E. coli datasets. As shown in
Table 2, the hypergeometric distribution method requires a large
improvement in prediction accuracy for the hypergeometric
distribution method is small for the three eukaryotes, whereas a large
improvement can be observed on the E. coli datasets. As shown in
Table 2, the hypergeometric distribution method requires a large
improvement in prediction accuracy for the hypergeometric
distribution method is small for the three eukaryotes, whereas a large
improvement can be observed on the E. coli datasets. As shown in
Table 2, the hypergeometric distribution method requires a large
improvement in prediction accuracy for the hypergeometric
distribution method is small for the three eukaryotes, whereas a large
improvement can be observed on the E. coli datasets. As shown in
Table 2, the hypergeometric distribution method requires a large
improvement in prediction accuracy for the hypergeometric
Table 2. Distribution of RT over the tree kingdoms of life after optimization of the taxon set with E. coli and D. melanogaster as query taxa

<table>
<thead>
<tr>
<th>Prediction method</th>
<th>Archaea</th>
<th>Bacteria</th>
<th>Eukaryotes</th>
<th>Total</th>
<th>Archaea</th>
<th>Bacteria</th>
<th>Eukaryotes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pellegrini</td>
<td>8</td>
<td>92</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Mutual Information</td>
<td>25</td>
<td>162</td>
<td>9</td>
<td>196</td>
<td>8</td>
<td>79</td>
<td>18</td>
<td>105</td>
</tr>
<tr>
<td>Hypergeometric Distribution</td>
<td>44</td>
<td>264</td>
<td>3</td>
<td>311</td>
<td>14</td>
<td>301</td>
<td>28</td>
<td>343</td>
</tr>
<tr>
<td>Runs Informed</td>
<td>54</td>
<td>118</td>
<td>5</td>
<td>177</td>
<td>1</td>
<td>4</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

All taxon sets were optimised with TBS using the full dataset of each PPI network.

taxon. Conversely, the Mutual Information and Hypergeometric Distribution methods achieve top accuracies with large taxon sets in which prokaryotes predominate. In the case of E. coli, the best taxon set found for the Runs Informed method is relatively large compared with taxon sets found for the three eukaryotes. We therefore speculate that the low prediction accuracy of the Run Informed method with E. coli could be attributed to a poorly optimized reference-taxon set.

4.3 Cross-taxon prediction

Figures 5 and 6 present the results of cross-taxon PPI prediction experiments (See Section 4.3 of the Supplementary Material for additional results). In these experiments, taxon sets were optimized using TBS with the full dataset for each of the four PPI networks. The resulting reference-taxon sets were then used for PPI prediction in S. cerevisiae and D. melanogaster to investigate if optimized taxon sets can be applied across species. For each PP method, we show the result of a self-test, i.e. where training and prediction were carried out using the same dataset. As the AUCs of the self-tests are similar to the average AUCs in the 10-fold validation experiments, overfitting does not appear to be a major concern, and the self-test AUCs can therefore be used as benchmarks.

In both Figures 5 and 6 the taxon sets optimized for E. coli lead to low prediction accuracies when used for prediction in eukaryotes. This is unsurprising, considering the large phylogenetic distance between the three eukaryotes used here and E. coli. Although the three eukaryotes are not closely related either, the results in Figure 5 indicate that optimized taxon sets can be shared between these. In particular, the AUC for the Pellegrini or Runs Informed methods show a significant increase when both optimization and prediction was performed with an eukaryote. In one experiment where the Runs Informed method was used to predict PPIs in S. cerevisiae with a taxon set optimized for D. melanogaster, the prediction accuracy did not improve compared to using the full taxon set (see Section 4.3 of the Supplementary Material). An explanation for this observation could be that the relatively small size of the D. melanogaster PPI network. When a taxon set is optimized using a small network, the evolutionary history of taxa in the resulting set cannot be expected to encompass other interactions than those present in the network, and thus the taxon set will be more-specialized than a set optimized using a larger network. As large high-quality networks are currently available for only a few eukaryotes, cross-taxon optimization seems to be a useful approach for increasing the accuracy of PPI prediction.

The number of taxa shared between each pair of taxon sets used in the cross-taxon experiments is shown in Table 4 (see Section 4.2 of the Supplementary Material for additional results). Taxon sets optimized for E. coli have a small or non-existent overlap with those optimized for the three eukaryotes, and result in a low prediction accuracy in eukaryotes (Fig 5). However, there is no clear relationship between the size or extent of intersections and the prediction accuracy in three eukaryotes. The Pellegrini method achieves a high AUC when predicting PPI in S. cerevisiae using the taxon set optimized for A. thaliana although only 20% of the taxa in this set are found in the set optimized for S. cerevisiae.

Fig. 5. Escherichia coli cross-taxon prediction results. The x-axis shows the PP method used for PPI prediction. The networks used by TBS to optimize the reference-taxon sets are shown in the legend.

Fig. 6. Drosophila melanogaster cross-taxon prediction results. The x-axis shows the PP method used for PPI prediction. The networks used by TBS to optimize the reference-taxon sets are shown in the legend.
Table 3. Comparison of AUCs from cross-validation and cross-taxon experiments using TBS optimization

<table>
<thead>
<tr>
<th>Prediction method</th>
<th>Saccharomyces cerevisiae</th>
<th>Drosophila melanogaster</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CV</td>
<td>CT</td>
</tr>
<tr>
<td>Pellegrini</td>
<td>0.70</td>
<td>0.69</td>
</tr>
<tr>
<td>Mutual Information</td>
<td>0.65</td>
<td>0.62</td>
</tr>
<tr>
<td>Hypergeometric Distribution</td>
<td>0.57</td>
<td>0.56</td>
</tr>
<tr>
<td>Runs Informed</td>
<td>0.72</td>
<td>0.70</td>
</tr>
</tbody>
</table>

CV = average AUCs of 10-fold cross-validation. CT = AUCs of cross-taxon experiments, where the reference-taxon set was optimized with A. thaliana PPI data.

Conversely, when the taxon set optimized for D. melanogaster is used in combination with the Runs Informed method to predict PPIs in S. cerevisiae, the result is a low AUC despite a much-larger overlap of 40%. Studies (Jothi et al., 2007; Singh et al., 2008) indicate that some taxa can be substituted or even omitted from a reference-taxon set without significantly degrading the prediction accuracy, whereas other taxa cannot. Accordingly, two taxon sets with a small overlap can support similar AUCs as long as informative taxa are present in both sets and less-informative taxa, e.g. with low-quality annotation, are left out.

4.4 Cross-method prediction

Studies of the effect of reference-taxon selection on the prediction accuracy of PP methods typically focus on a single method (Jothi et al., 2007; Karimpour-Fard et al., 2003; Singh et al., 2008; Sun et al., 2005, 2007). Our results demonstrate that the optimal composition of RT depends not only on the query taxon but also on the PP method used. Figures 7 and 8 show the cross-method prediction results where taxon sets were optimized with TBS for each of the four PP methods, and then used for PPI prediction with each of the four PP methods (see Section 4.3 of the Supplementary Material for additional results). In cases where taxon sets are optimized for one PP method and then used for prediction with another method, the prediction accuracy drops significantly. From these results, it is evident that PP methods are not interchangeable with regard to a given taxon set which further complicates the selection of RT, as selection must target a specific PP method.

4.5 Implications of results

The optimization methods presented here reduce the complexity of constructing reference-taxon sets by automatically accounting for factors such as phylogenetic relationships among RT and quality of annotation. Guidelines such as those presented by Jothi et al. (2007) represent an improvement over use of all possible RT, but as the optimal composition of RT depends on not only query taxon but also PP method, manual selection of RT is an unpromising direction, particularly as more genomes are sequenced.

Previous studies have concluded that the prediction accuracy of PP methods in eukaryotes is generally poor compared with the results achieved in prokaryotes (Jothi et al., 2007; Kharchenko et al., 2006; Ruano-Rubio et al., 2009; Snitkin et al., 2006). Insufficient numbers of fully sequenced eukaryotic genomes, complex cellular histories...
(e.g. endosymbioses), genome reduction in parasites, mismatch between breadth of the reference-taxon set and the network under investigation, and quality of annotation were put forward as possible causes of lower prediction accuracy. Here we have shown that with a correct selection of taxon sets, PPI prediction can be as accurate for eukaryotes as for *E. coli*. However, the results in $\text{Berman et al.} \, \text{2011}$ indicate that co-complexed proteins are easier to predict with co-occurrence-based methods compared with transient interactions. Thus, the increase in prediction accuracy which can be achieved with the presented taxon set optimization methods may vary depending on the type of query interactions and the quality of available training data.

5 CONCLUSIONS

We have introduced three new methods for automatic selection of RT for PP which can be used in combination with existing PP methods. Our results show that the choice of RT can have a substantial effect on the accuracy of PPI prediction, and that a single reference-taxon set does not guarantee good prediction accuracy with all PP methods. Taxon sets optimized with TBS achieved consistently high prediction accuracies compared with those attained via the previously published TLF method or with a manually composed reference-taxon set. Furthermore, our experiments showed that the original Pellegrini *et al.* PP method often supported higher prediction accuracies compared with more recent alternatives when optimized taxon sets were used.

As complete genome sequences appear at an ever-increasing frequency, manual selection of informative RT becomes increasingly difficult. Here we have shown that informative sets of RT can be selected in an objective, fast and scalable manner for eukaryotes as well as prokaryotes. Our approach utilizes a known PPI network to select informative RT and we have demonstrated that where a high-quality network is unavailable for the query taxon, an informative taxon set can be constructed using a network from another taxon. As discussed by $\text{Jothi et al.} \, \text{2007}$, the evolutionary history of the RT must correspond with that of the query taxon to achieve high prediction accuracy. Thus, PPI prediction accuracies could likely be improved even more by optimizing taxon sets on networks enriched in proteins homologous (or better, orthologous) to those in the set of query interactions. For example, a network enriched in membrane proteins might be used to create a reference-taxon set for predicting novel PPIs among membrane proteins.

We anticipate that in-depth examination of the composition of optimized taxon sets could lead to further improvements in taxon-selection strategies, and in the accuracy of PP methods for PPI prediction.

ACKNOWLEDGEMENTS

We thank Dr Melissa J. Davis for help with retrieval of genomic data from Uniprot and constructing PPI networks.

Funding: Australian Research Council grants (CE0348221 and DP110103884).

Conflict of Interest: none declared.

REFERENCES

$\text{Ben-Hur,A. et al.} \, \text{2006}$ Choosing negative examples for the prediction of protein-protein interactions. *BMC Bioinformatics*, 7 (Suppl. 1), S2.

